| Quantification and classification of engineered, incidental, and natural cerium-containing particles by spICP-TOFMS
Szakas, S. E., Lancaster, R., Kaegi, R., & Gundlach-Graham, A. (2022). Quantification and classification of engineered, incidental, and natural cerium-containing particles by spICP-TOFMS. Environmental Science: Nano. https://doi.org/10.1039/d1en01039e |
| Toxicity and translocation of Ag, CuO, ZnO and TiO<sub>2</sub> nanoparticles upon exposure to fish intestinal epithelial cells
Geppert, M., Sigg, L., & Schirmer, K. (2021). Toxicity and translocation of Ag, CuO, ZnO and TiO2 nanoparticles upon exposure to fish intestinal epithelial cells. Environmental Science: Nano, 8(8), 2249 (12 pp.). https://doi.org/10.1039/D1EN00050K |
| Emerging investigator series: automated single-nanoparticle quantification and classification: a holistic study of particles into and out of wastewater treatment plants in Switzerland
Mehrabi, K., Kaegi, R., Günther, D., & Gundlach-Graham, A. (2021). Emerging investigator series: automated single-nanoparticle quantification and classification: a holistic study of particles into and out of wastewater treatment plants in Switzerland. Environmental Science: Nano, 8(5), 1211-1225. https://doi.org/10.1039/d0en01066a |
| Release of gold (Au), silver (Ag) and cerium dioxide (CeO<sub>2</sub>) nanoparticles from sewage sludge incineration ash
Wielinski, J., Gogos, A., Voegelin, A., Müller, C. R., Morgenroth, E., & Kaegi, R. (2021). Release of gold (Au), silver (Ag) and cerium dioxide (CeO2) nanoparticles from sewage sludge incineration ash. Environmental Science: Nano, 8(11), 3220-3232. https://doi.org/10.1039/D1EN00497B |
| Nanosilver impacts on aquatic microbial decomposers and litter decomposition assessed as pollution-induced community tolerance (PICT)
Batista, D., Tlili, A., Gessner, M. O., Pascoal, C., & Cássio, F. (2020). Nanosilver impacts on aquatic microbial decomposers and litter decomposition assessed as pollution-induced community tolerance (PICT). Environmental Science: Nano, 7(7), 2130-2139. https://doi.org/10.1039/D0EN00375A |
| Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets
Geitner, N. K., Ogilvie Hendren, C., Cornelis, G., Kaegi, R., Lead, J. R., Lowry, G. V., … Wiesner, M. R. (2020). Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 7(1), 13-36. https://doi.org/10.1039/c9en00448c |
| Effect of NOM on copper sulfide nanoparticle growth, stability, and oxidative dissolution
Hoffmann, K., Bouchet, S., Christl, I., Kaegi, R., & Kretzschmar, R. (2020). Effect of NOM on copper sulfide nanoparticle growth, stability, and oxidative dissolution. Environmental Science: Nano, 7(4), 1163-1178. https://doi.org/10.1039/c9en01448a |
| Effects of natural organic matter (NOM), metal-to-sulfide ratio and Mn<sup>2+</sup> on cadmium sulfide nanoparticle growth and colloidal stability
Hoffmann, K., Christl, I., Kaegi, R., & Kretzschmar, R. (2020). Effects of natural organic matter (NOM), metal-to-sulfide ratio and Mn2+ on cadmium sulfide nanoparticle growth and colloidal stability. Environmental Science: Nano, 7(11), 3385-3404. https://doi.org/10.1039/d0en00764a |
| Organic matter influences transformation products of ferrihydrite exposed to sulfide
ThomasArrigo, L. K., Bouchet, S., Kaegi, R., & Kretzschmar, R. (2020). Organic matter influences transformation products of ferrihydrite exposed to sulfide. Environmental Science: Nano, 7(11), 3405-3418. https://doi.org/10.1039/d0en00398k |
| Transformation of cerium dioxide nanoparticles during sewage sludge incineration
Gogos, A., Wielinski, J., Voegelin, A., Emerich, H., & Kaegi, R. (2019). Transformation of cerium dioxide nanoparticles during sewage sludge incineration. Environmental Science: Nano, 6, 1765-1776. https://doi.org/10.1039/C9EN00281B |
| Interference of silver nanoparticles with essential metal homeostasis in a novel enterohepatic fish <em>in vitro</em> system
Minghetti, M., & Schirmer, K. (2019). Interference of silver nanoparticles with essential metal homeostasis in a novel enterohepatic fish in vitro system. Environmental Science: Nano (6), 1777-1790. https://doi.org/10.1039/C9EN00310J |
| Internalization and toxicological mechanisms of uncoated and PVP-coated cerium oxide nanoparticles in the freshwater alga: <em>Chlamydomonas reinhardtii</em>
Pulido-Reyes, G., Briffa, S. M., Hurtado-Gallego, J., Yudina, T., Leganés, F., Puntes, V., … Fernández-Piñas, F. (2019). Internalization and toxicological mechanisms of uncoated and PVP-coated cerium oxide nanoparticles in the freshwater alga: Chlamydomonas reinhardtii. Environmental Science: Nano, 6(6), 1959-1972. https://doi.org/10.1039/c9en00363k |
| The influence of surface coating functionality on the aging of nanoparticles in wastewater
Surette, M. C., Nason, J. A., & Kaegi, R. (2019). The influence of surface coating functionality on the aging of nanoparticles in wastewater. Environmental Science: Nano, 6(8), 2470-2483. https://doi.org/10.1039/C9EN00376B |
| Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process
Sørensen, S. N., Baun, A., Burkard, M., Dal Maso, M., Foss Hansen, S., Harrison, S., … Spurgeon, D. J. (2019). Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environmental Science: Nano, 6, 505-518. https://doi.org/10.1039/C8EN00933C |
| Long-term exposure to silver nanoparticles affects periphyton community structure and function
Gil-Allué, C., Tlili, A., Schirmer, K., Gessner, M. O., & Behra, R. (2018). Long-term exposure to silver nanoparticles affects periphyton community structure and function. Environmental Science: Nano, 5(6), 1397-1407. https://doi.org/10.1039/C8EN00132D |
| Influence of organic compounds on the sulfidation of copper oxide nanoparticles
Gogos, A., Voegelin, A., & Kaegi, R. (2018). Influence of organic compounds on the sulfidation of copper oxide nanoparticles. Environmental Science: Nano, 5(11), 2560-2569. https://doi.org/10.1039/C8EN00523K |
| Where is the nano? Analytical approaches for the detection and quantification of TiO<sub>2</sub> engineered nanoparticles in surface waters
Gondikas, A., Von Der Kammer, F., Kaegi, R., Borovinskaya, O., Neubauer, E., Navratilova, J., … Hofmann, T. (2018). Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. Environmental Science: Nano, 5(2), 313-326. https://doi.org/10.1039/c7en00952f |
| Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems
Laux, P., Riebeling, C., Booth, A. M., Brain, J. D., Brunner, J., Cerrillo, C., … Luch, A. (2018). Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems. Environmental Science: Nano, 5(1), 48-63. https://doi.org/10.1039/c7en00594f |
| Searching for relevant criteria to distinguish natural vs. anthropogenic TiO<sub>2</sub> nanoparticles in soils
Pradas del Real, A. E., Castillo-Michel, H., Kaegi, R., Larue, C., de Nolf, W., Reyes-Herrera, J., … Sarret, G. (2018). Searching for relevant criteria to distinguish natural vs. anthropogenic TiO2 nanoparticles in soils. Environmental Science: Nano, 5(12), 2853-2863. https://doi.org/10.1039/c8en00386f |
| Sulfidation kinetics of copper oxide nanoparticles
Gogos, A., Thalmann, B., Voegelin, A., & Kaegi, R. (2017). Sulfidation kinetics of copper oxide nanoparticles. Environmental Science: Nano, 4(8), 1733-1741. https://doi.org/10.1039/C7EN00309A |