Active Filters

  • (-) Journal = Environmental Science: Nano
Search Results 1 - 20 of 23
Select Page
Nanosilver impacts on aquatic microbial decomposers and litter decomposition assessed as pollution-induced community tolerance (PICT)
Batista, D., Tlili, A., Gessner, M. O., Pascoal, C., & Cássio, F. (2020). Nanosilver impacts on aquatic microbial decomposers and litter decomposition assessed as pollution-induced community tolerance (PICT). Environmental Science: Nano, 7(7), 2130-2139. https://doi.org/10.1039/D0EN00375A
Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets
Geitner, N. K., Ogilvie Hendren, C., Cornelis, G., Kaegi, R., Lead, J. R., Lowry, G. V., … Wiesner, M. R. (2020). Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 7(1), 13-36. https://doi.org/10.1039/c9en00448c
Effect of NOM on copper sulfide nanoparticle growth, stability, and oxidative dissolution
Hoffmann, K., Bouchet, S., Christl, I., Kaegi, R., & Kretzschmar, R. (2020). Effect of NOM on copper sulfide nanoparticle growth, stability, and oxidative dissolution. Environmental Science: Nano, 7(4), 1163-1178. https://doi.org/10.1039/c9en01448a
Transformation of cerium dioxide nanoparticles during sewage sludge incineration
Gogos, A., Wielinski, J., Voegelin, A., Emerich, H., & Kaegi, R. (2019). Transformation of cerium dioxide nanoparticles during sewage sludge incineration. Environmental Science: Nano, 6, 1765-1776. https://doi.org/10.1039/C9EN00281B
Interference of silver nanoparticles with essential metal homeostasis in a novel enterohepatic fish <em>in vitro</em> system
Minghetti, M., & Schirmer, K. (2019). Interference of silver nanoparticles with essential metal homeostasis in a novel enterohepatic fish in vitro system. Environmental Science: Nano (6), 1777-1790. https://doi.org/10.1039/C9EN00310J
Internalization and toxicological mechanisms of uncoated and PVP-coated cerium oxide nanoparticles in the freshwater alga: <em>Chlamydomonas reinhardtii</em>
Pulido-Reyes, G., Briffa, S. M., Hurtado-Gallego, J., Yudina, T., Leganés, F., Puntes, V., … Fernández-Piñas, F. (2019). Internalization and toxicological mechanisms of uncoated and PVP-coated cerium oxide nanoparticles in the freshwater alga: Chlamydomonas reinhardtii. Environmental Science: Nano, 6(6), 1959-1972. https://doi.org/10.1039/c9en00363k
The influence of surface coating functionality on the aging of nanoparticles in wastewater
Surette, M. C., Nason, J. A., & Kaegi, R. (2019). The influence of surface coating functionality on the aging of nanoparticles in wastewater. Environmental Science: Nano, 6(8), 2470-2483. https://doi.org/10.1039/C9EN00376B
Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process
Sørensen, S. N., Baun, A., Burkard, M., Dal Maso, M., Foss Hansen, S., Harrison, S., … Spurgeon, D. J. (2019). Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environmental Science: Nano, 6, 505-518. https://doi.org/10.1039/C8EN00933C
Long-term exposure to silver nanoparticles affects periphyton community structure and function
Gil-Allué, C., Tlili, A., Schirmer, K., Gessner, M. O., & Behra, R. (2018). Long-term exposure to silver nanoparticles affects periphyton community structure and function. Environmental Science: Nano, 5(6), 1397-1407. https://doi.org/10.1039/C8EN00132D
Influence of organic compounds on the sulfidation of copper oxide nanoparticles
Gogos, A., Voegelin, A., & Kaegi, R. (2018). Influence of organic compounds on the sulfidation of copper oxide nanoparticles. Environmental Science: Nano, 5(11), 2560-2569. https://doi.org/10.1039/C8EN00523K
Where is the nano? Analytical approaches for the detection and quantification of TiO<sub>2</sub> engineered nanoparticles in surface waters
Gondikas, A., Von Der Kammer, F., Kaegi, R., Borovinskaya, O., Neubauer, E., Navratilova, J., … Hofmann, T. (2018). Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. Environmental Science: Nano, 5(2), 313-326. https://doi.org/10.1039/c7en00952f
Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems
Laux, P., Riebeling, C., Booth, A. M., Brain, J. D., Brunner, J., Cerrillo, C., … Luch, A. (2018). Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems. Environmental Science: Nano, 5(1), 48-63. https://doi.org/10.1039/c7en00594f
Searching for relevant criteria to distinguish natural vs. anthropogenic TiO&lt;sub&gt;2&lt;/sub&gt; nanoparticles in soils
Pradas del Real, A. E., Castillo-Michel, H., Kaegi, R., Larue, C., de Nolf, W., Reyes-Herrera, J., … Sarret, G. (2018). Searching for relevant criteria to distinguish natural vs. anthropogenic TiO2 nanoparticles in soils. Environmental Science: Nano, 5(12), 2853-2863. https://doi.org/10.1039/c8en00386f
Sulfidation kinetics of copper oxide nanoparticles
Gogos, A., Thalmann, B., Voegelin, A., & Kaegi, R. (2017). Sulfidation kinetics of copper oxide nanoparticles. Environmental Science: Nano, 4(8), 1733-1741. https://doi.org/10.1039/C7EN00309A
Interactions of TiO<SUB>2</SUB> nanoparticles and the freshwater nematode <I>Plectus aquatilis</I>: particle properties, kinetic parameters and bioconcentration factors
Isaacson, C. W., Sigg, L., Ammann, A. A., Stadnicka-Michalak, J., & Schirmer, K. (2017). Interactions of TiO2 nanoparticles and the freshwater nematode Plectus aquatilis: particle properties, kinetic parameters and bioconcentration factors. Environmental Science: Nano, 4(3), 712-719. https://doi.org/10.1039/c6en00495d
Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils
Praetorius, A., Gundlach-Graham, A., Goldberg, E., Fabienke, W., Navratilova, J., Gondikas, A., … von der Kammer, F. (2017). Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano, 4(2), 307-314. https://doi.org/10.1039/c6en00455e
A novel two-compartment barrier model for investigating nanoparticle transport in fish intestinal epithelial cells
Geppert, M., Sigg, L., & Schirmer, K. (2016). A novel two-compartment barrier model for investigating nanoparticle transport in fish intestinal epithelial cells. Environmental Science: Nano, 3(2), 388-395. https://doi.org/10.1039/c5en00226e
Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances
Taylor, C., Matzke, M., Kroll, A., Read, D. S., Svendsen, C., & Crossley, A. (2016). Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. Environmental Science: Nano, 3(2), 396-408. https://doi.org/10.1039/c5en00183h
Effect of humic acid on the kinetics of silver nanoparticle sulfidation
Thalmann, B., Voegelin, A., Morgenroth, E., & Kaegi, R. (2016). Effect of humic acid on the kinetics of silver nanoparticle sulfidation. Environmental Science: Nano, 3(1), 203-212. https://doi.org/10.1039/c5en00209e
Silver nanoparticle–protein interactions in intact rainbow trout gill cells
Yue, Y., Behra, R., Sigg, L., Suter, M. J. F., Pillai, S., & Schirmer, K. (2016). Silver nanoparticle–protein interactions in intact rainbow trout gill cells. Environmental Science: Nano, 3(5), 1174-1185. https://doi.org/10.1039/c6en00119j