Active Filters

  • (-) Journal = Journal of Biological Chemistry
Search Results 1 - 13 of 13
  • RSS Feed
Select Page
A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by <I>Sphingomonas xenophaga</I> Bayram. <I>ipso</I>-Hydroxylation and intramolecular rearrangement
Gabriel, F. L. P., Heidlberger, A., Rentsch, D., Giger, W., Guenther, K., & Kohler, H. P. E. (2005). A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram. ipso-Hydroxylation and intramolecular rearrangement. Journal of Biological Chemistry, 280(16), 15526-15533. https://doi.org/10.1074/jbc.M413446200
Substitutions in region 2.4 of σ<SUP>70</SUP> allow recognition of the σ<SUP>S</SUP>-dependent <I>aidB</I> promoter
Lacour, S., Leroy, O., Kolb, A., & Landini, P. (2004). Substitutions in region 2.4 of σ70 allow recognition of the σS-dependent aidB promoter. Journal of Biological Chemistry, 279(53), 55255-55261. https://doi.org/10.1074/jbc.M410855200
Nucleotides from -16 to -12 determine specific promoter recognition by bacterial &sigma;<sup>S</sup>-RNA polymerase
Lacour, S., Kolb, A., & Landini, P. (2003). Nucleotides from -16 to -12 determine specific promoter recognition by bacterial σS-RNA polymerase. Journal of Biological Chemistry, 278(39), 37160-37168. https://doi.org/10.1074/jbc.M305281200
Changing the substrate reactivity of 2-hydroxybiphenyl 3-monooxygenase from <I>Pseudomonas azelaica</I> HBP1 by directed evolution
Meyer, A., Schmid, A., Held, M., Westphal, A. H., Röthlisberger, M., Kohler, H. P. E., … Witholt, B. (2002). Changing the substrate reactivity of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica HBP1 by directed evolution. Journal of Biological Chemistry, 277(7), 5575-5582. https://doi.org/10.1074/jbc.M110018200
Hydroxylation of indole by laboratory-evolved 2-hydroxybiphenyl 3-monooxygenase
Meyer, A., Würsten, M., Schmid, A., Kohler, H. P. E., & Witholt, B. (2002). Hydroxylation of indole by laboratory-evolved 2-hydroxybiphenyl 3-monooxygenase. Journal of Biological Chemistry, 277(37), 34161-34167. https://doi.org/10.1074/jbc.M205621200
Catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from <I>Pseudomonas azelaica</I> HBP1
Suske, W. A., van Berkel, W. J. H., & Kohler, H. P. E. (1999). Catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica HBP1. Journal of Biological Chemistry, 274(47), 33355-33365. https://doi.org/10.1074/jbc.274.47.33355
Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from <I>Pseudomonas azelaica</I> HBP1
Suske, W. A., Held, M., Schmid, A., Fleischmann, T., Wubbolts, M. G., & Kohler, H. P. E. (1997). Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1. Journal of Biological Chemistry, 272(39), 24257-24265. https://doi.org/10.1074/jbc.272.39.24257
Carbon monoxide dehydrogenase from <I>Methanosarcina frisia</I> Gö1. Characterization of the enzyme and the regulated expression of two operon-like <I>cdh</I> gene clusters
Eggen, R. I. L., van Kranenburg, R., Vriesema, A. J. M., Geerling, A. C. M., Verhagen, M. F. J. M., Hagen, W. R., & de Vos, W. M. (1996). Carbon monoxide dehydrogenase from Methanosarcina frisia Gö1. Characterization of the enzyme and the regulated expression of two operon-like cdh gene clusters. Journal of Biological Chemistry, 271(24), 14256-14263. https://doi.org/10.1074/jbc.271.24.14256
Isolation and characterization of the hyperthermostable serine protease, pyrolysin, and its gene from the hyperthermophilic archaeon <I>Pyrococcus furiosus</I>
Voorhorst, W. G. B., Eggen, R. I. L., Geerling, A. C. M., Platteeuw, C., Siezen, R. J., & de Vos, W. M. (1996). Isolation and characterization of the hyperthermostable serine protease, pyrolysin, and its gene from the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 271(34), 20426-20431. https://doi.org/10.1074/jbc.271.34.20426
The broad substrate chlorobenzene dioxygenase and <I>cis</I>-chlorobenzene dihydrodiol dehydrogenase of <I>Pseudomonas</I> sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation
Werlen, C., Kohler, H. P. E., & van der Meer, J. R. (1996). The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. Journal of Biological Chemistry, 271(8), 4009-4016. https://doi.org/10.1074/jbc.271.8.4009
Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating <I>Acinetobacter johnsonii</I> 210A
van Veen, H. W., Abee, T., Kortstee, G. J. J., Pereira, H., Konings, W. N., & Zehnder, A. J. B. (1994). Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii 210A. Journal of Biological Chemistry, 269(47), 29509-29514.
Substrate specificity of the two phosphate transport systems of <I>Acinetobacter johnsonii</I> 210A in relation to phosphate speciation in its aquatic environment
van Veen, H. W., Abee, T., Kortstee, G. J. J., Konings, W. N., & Zehnder, A. J. B. (1994). Substrate specificity of the two phosphate transport systems of Acinetobacter johnsonii 210A in relation to phosphate speciation in its aquatic environment. Journal of Biological Chemistry, 269(23), 16212-16216.
Mechanism and energetics of the secondary phosphate transport system of <I>Acinetobacter johnsonii</I> 210A
van Veen, H. W., Abee, T., Kortstee, G. J. J., Konings, W. N., & Zehnder, A. J. B. (1993). Mechanism and energetics of the secondary phosphate transport system of Acinetobacter johnsonii 210A. Journal of Biological Chemistry, 268(26), 19377-19383.