Active Filters

  • (-) Journal = Langmuir
Search Results 1 - 12 of 12
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Electrophoretic deposition of nanoporous oxide coatings from concentrated CuO nanoparticle dispersions
Dörner, L., Schmutz, P., Kägi, R., Kovalenko, M. V., & Jeurgens, L. P. H. (2020). Electrophoretic deposition of nanoporous oxide coatings from concentrated CuO nanoparticle dispersions. Langmuir, 36(28), 8075-8085. https://doi.org/10.1021/acs.langmuir.0c00720
Antifouling properties of a self-assembling glutamic acid-lysine zwitterionic polymer surface coating
Ziemba, C., Khavkin, M., Priftis, D., Acar, H., Mao, J., Benami, M., … Herzberg, M. (2019). Antifouling properties of a self-assembling glutamic acid-lysine zwitterionic polymer surface coating. Langmuir, 35(5), 1699-1713. https://doi.org/10.1021/acs.langmuir.8b00181
Sensitive detection of competitive molecular adsorption by surface-enhanced raman spectroscopy
Altun, A. O., Bond, T., Pronk, W., & Park, H. G. (2017). Sensitive detection of competitive molecular adsorption by surface-enhanced raman spectroscopy. Langmuir, 33(28), 6999-7006. https://doi.org/10.1021/acs.langmuir.7b01186
Influence of H<SUP>+</SUP> and calcium ions on surface functional groups of Synechococcus PCC 7942 cells
Dittrich, M., & Sibler, S. (2006). Influence of H+ and calcium ions on surface functional groups of Synechococcus PCC 7942 cells. Langmuir, 22(12), 5435-5442. https://doi.org/10.1021/la0531143
Electrokinetic potential of bacterial cells
van der Wal, A., Minor, M., Norde, W., Zehnder, A. J. B., & Lyklema, J. (1997). Electrokinetic potential of bacterial cells. Langmuir, 13(2), 165-171. https://doi.org/10.1021/la960386k
In situ Fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO<SUB>2</SUB> in the aqueous phase
Hug, S. J., & Sulzberger, B. (1994). In situ Fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase. Langmuir, 10(10), 3587-3597. https://doi.org/10.1021/la00022a036
Reductive dissolution of manganese(III,IV) (hydr)oxides by oxalate: the effect of pH and light
Xyla, A. G., Sulzberger, B., Luther, III, G. W., Hering, J. G., Van Cappellen, P., & Stumm, W. (1992). Reductive dissolution of manganese(III,IV) (hydr)oxides by oxalate: the effect of pH and light. Langmuir, 8(1), 95-103. https://doi.org/10.1021/la00037a019
Reductive dissolution of iron(III) (hydr)oxides by hydrogen sulfide
dos Santos Afonso, M., & Stumm, W. (1992). Reductive dissolution of iron(III) (hydr)oxides by hydrogen sulfide. Langmuir, 8(6), 1671-1675. https://doi.org/10.1021/la00042a030
Fluorescence spectroscopic evidence for surface complex formation at the mineral-water interface: elucidation of the mechanism of ligand-promoted dissolution
Hering, J. G., & Stumm, W. (1991). Fluorescence spectroscopic evidence for surface complex formation at the mineral-water interface: elucidation of the mechanism of ligand-promoted dissolution. Langmuir, 7(8), 1567-1570. https://doi.org/10.1021/la00056a004
Light-induced dissolution of hematite in the presence of oxalate: a case study
Siffert, C., & Sulzberger, B. (1991). Light-induced dissolution of hematite in the presence of oxalate: a case study. Langmuir, 7(8), 1627-1634. https://doi.org/10.1021/la00056a014
Dissolution of hydrous iron(III) oxides by reductive mechanisms
Suter, D., Banwart, S., & Stumm, W. (1991). Dissolution of hydrous iron(III) oxides by reductive mechanisms. Langmuir, 7(4), 809-813. https://doi.org/10.1021/la00052a033
Oxygenation of vanadyl(IV). Effect of coordinated surface hydroxyl groups and OH<SUP>-</SUP>
Wehrli, B., & Stumm, W. (1988). Oxygenation of vanadyl(IV). Effect of coordinated surface hydroxyl groups and OH-. Langmuir, 4, 753-758. https://doi.org/10.1021/la00081a045