Active Filters

  • (-) Keywords = biofilm
Search Results 1 - 20 of 62

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Effects of an experimental increase in flow intermittency on an alpine stream
Siebers, A. R., Paillex, A., Misteli, B., & Robinson, C. T. (2020). Effects of an experimental increase in flow intermittency on an alpine stream. Hydrobiologia. https://doi.org/10.1007/s10750-020-04350-7
Small-scale heterogeneity in drinking water biofilms
Neu, L., Proctor, C. R., Walser, J. C., & Hammes, F. (2019). Small-scale heterogeneity in drinking water biofilms. Frontiers in Microbiology, 10, 2446 (14 pp.). https://doi.org/10.3389/fmicb.2019.02446
Gravity-driven membrane filtration for water and wastewater treatment: a review
Pronk, W., Ding, A., Morgenroth, E., Derlon, N., Desmond, P., Burkhardt, M., … Fane, A. G. (2019). Gravity-driven membrane filtration for water and wastewater treatment: a review. Water Research, 149, 553-565. https://doi.org/10.1016/j.watres.2018.11.062
Source community and assembly processes affect the efficiency of microbial microcystin degradation on drinking water filtration membranes
Silva, M. O. D., Desmond, P., Derlon, N., Morgenroth, E., & Pernthaler, J. (2019). Source community and assembly processes affect the efficiency of microbial microcystin degradation on drinking water filtration membranes. Frontiers in Microbiology, 10, 843 (15 pp.). https://doi.org/10.3389/fmicb.2019.00843
Biofilms in 3D porous media: delineating the influence of the pore network geometry, flow and mass transfer on biofilm development
Carrel, M., Morales, V. L., Beltran, M. A., Derlon, N., Kaufmann, R., Morgenroth, E., & Holzner, M. (2018). Biofilms in 3D porous media: delineating the influence of the pore network geometry, flow and mass transfer on biofilm development. Water Research, 134, 280-291. https://doi.org/10.1016/j.watres.2018.01.059
Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms
Desmond, P., Best, J. P., Morgenroth, E., & Derlon, N. (2018). Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Research, 132, 211-221. https://doi.org/10.1016/j.watres.2017.12.058
Investigating in-sewer transformation products formed from synthetic cathinones and phenethylamines using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry
Kinyua, J., Negreira, N., McCall, A. K., Boogaerts, T., Ort, C., Covaci, A., & van Nuijs, A. L. N. (2018). Investigating in-sewer transformation products formed from synthetic cathinones and phenethylamines using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Science of the Total Environment, 634, 331-340. https://doi.org/10.1016/j.scitotenv.2018.03.253
Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water
Mao, G., Wang, Y., & Hammes, F. (2018). Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water. Science of the Total Environment, 613-614, 1220-1227. https://doi.org/10.1016/j.scitotenv.2017.09.166
Biofilms in shower hoses
Proctor, C. R., Reimann, M., Vriens, B., & Hammes, F. (2018). Biofilms in shower hoses. Water Research, 131, 274-286. https://doi.org/10.1016/j.watres.2017.12.027
A framework for good biofilm reactor modeling practice (GBRMP)
Rittmann, B. E., Boltz, J. P., Brockmann, D., Daigger, G. T., Morgenroth, E., Helleshøj Sørensen, K., … Vanrolleghem, P. A. (2018). A framework for good biofilm reactor modeling practice (GBRMP). Water Science and Technology, 77(5), 1149-1164. https://doi.org/10.2166/wst.2018.021
Characterization of aquatic biofilms with flow cytometry
Sgier, L., Merbt, S. N., Tlili, A., Kroll, A., & Zupanic, A. (2018). Characterization of aquatic biofilms with flow cytometry. Journal of Visualized Experiments (136), e57655 (9 pp.). https://doi.org/10.3791/57655
Flow-cytometric quantification of microbial cells on sand from water biofilters
Vignola, M., Werner, D., Hammes, F., King, L. C., & Davenport, R. J. (2018). Flow-cytometric quantification of microbial cells on sand from water biofilters. Water Research, 143, 66-76. https://doi.org/10.1016/j.watres.2018.05.053
Day–night ammonium oxidation in an urban stream: the influence of irradiance on ammonia oxidizers
Bernal, S., Merbt, S. N., Ribot, M., Casamayor, E. O., & Martí, E. (2017). Day–night ammonium oxidation in an urban stream: the influence of irradiance on ammonia oxidizers. Freshwater Science, 36(2), 272-283. https://doi.org/10.1086/691797
Biofilm carrier migration model describes reactor performance
Boltz, J. P., Johnson, B. R., Takács, I., Daigger, G. T., Morgenroth, E., Brockmann, D., … Derlon, N. (2017). Biofilm carrier migration model describes reactor performance. Water Science and Technology, 75(12), 2818-2828. https://doi.org/10.2166/wst.2017.160
From biofilm ecology to reactors: a focused review
Boltz, J. P., Smets, B. F., Rittmann, B. E., Van Loosdrecht, M. C. M., Morgenroth, E., & Daigger, G. T. (2017). From biofilm ecology to reactors: a focused review. Water Science and Technology, 75(8), 1753-1760. https://doi.org/10.2166/wst.2017.061
Microbiology of household plumbing causes and consequences
Proctor, C. R. (2017). Microbiology of household plumbing causes and consequences [Doctoral dissertation, ETH Zürich]. https://doi.org/10.3929/ethz-b-000255592
Micropollutant-induced tolerance of <I>in situ</I> periphyton: establishing causality in wastewater-impacted streams
Tlili, A., Hollender, J., Kienle, C., & Behra, R. (2017). Micropollutant-induced tolerance of in situ periphyton: establishing causality in wastewater-impacted streams. Water Research, 111, 185-194. https://doi.org/10.1016/j.watres.2017.01.016
The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance
Derlon, N., Grütter, A., Brandenberger, F., Sutter, A., Kuhlicke, U., Neu, T. R., & Morgenroth, E. (2016). The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance. Water Research, 102, 63-72. https://doi.org/10.1016/j.watres.2016.06.019
Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration
Chomiak, A., Traber, J., Morgenroth, E., & Derlon, N. (2015). Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration. Water Research, 85, 512-520. https://doi.org/10.1016/j.watres.2015.08.009
Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity-driven membrane filtration
Derlon, N., Mimoso, J., Klein, T., Koetzsch, S., & Morgenroth, E. (2014). Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity-driven membrane filtration. Water Research, 60, 164-173. https://doi.org/10.1016/j.watres.2014.04.045
 

Pages