Active Filters

  • (-) Keywords = freshwater
  • (-) Keywords ≠ macroinvertebrates
Search Results 1 - 20 of 32
Select Page
An abundant future for quagga mussels in deep European lakes
Kraemer, B. M., Boudet, S., Burlakova, L. E., Haltiner, L., Ibelings, B. W., Karatayev, A. Y., … Spaak, P. (2023). An abundant future for quagga mussels in deep European lakes. Environmental Research Letters, 18(12), 124008 (11 pp.). https://doi.org/10.1088/1748-9326/ad059f
Microbial nitrogen transformation potential in sediments of two contrasting lakes is spatially structured but seasonally stable
Baumann, K. B. L., Thoma, R., Callbeck, C. M., Niederdorfer, R., Schubert, C. J., Müller, B., … Bürgmann, H. (2022). Microbial nitrogen transformation potential in sediments of two contrasting lakes is spatially structured but seasonally stable. mSphere, 7(1), e01013-21 (20 pp.). https://doi.org/10.1128/msphere.01013-21
Variation in egg size and offspring phenotype among and within seven Arctic charr morphs
Beck, S. V., Räsänen, K., Kristjánsson, B. K., Skúlason, S., Jónsson, Z. O., Tsinganis, M., & Leblanc, C. A. (2022). Variation in egg size and offspring phenotype among and within seven Arctic charr morphs. Ecology and Evolution, 12(10), e9427 (16 pp.). https://doi.org/10.1002/ece3.9427
Co-occurrence, ecological profiles and geographical distribution based on unique molecular identifiers of the common freshwater diatoms <em>Fragilaria </em>and <em>Ulnaria</em>
Kahlert, M., Maaria Karjalainen, S., Keck, F., Kelly, M., Ramon, M., Rimet, F., … Zimmermann, J. (2022). Co-occurrence, ecological profiles and geographical distribution based on unique molecular identifiers of the common freshwater diatoms Fragilaria and Ulnaria. Ecological Indicators, 141, 109114 (13 pp.). https://doi.org/10.1016/j.ecolind.2022.109114
Fewer non-native insects in freshwater than in terrestrial habitats across continents
Sendek, A., Baity-Jesi, M., Altermatt, F., Bader, M. K. F., Liebhold, A. M., Turner, R. M., … Brockerhoff, E. G. (2022). Fewer non-native insects in freshwater than in terrestrial habitats across continents. Diversity and Distributions, 28(11), 2303-2315. https://doi.org/10.1111/ddi.13622
Decision-making and best practices for taxonomy-free environmental DNA metabarcoding in biomonitoring using Hill numbers
Mächler, E., Walser, J. C., & Altermatt, F. (2021). Decision-making and best practices for taxonomy-free environmental DNA metabarcoding in biomonitoring using Hill numbers. Molecular Ecology, 30(13), 3326-3339. https://doi.org/10.1111/mec.15725
Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system
Ramoneda, J., Hawes, I., Pascual-García, A., MacKey, T. J., Sumner, D. Y., & Jungblut, A. D. (2021). Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system. FEMS Microbiology Ecology, 97(4), fiab044 (12 pp.). https://doi.org/10.1093/femsec/fiab044
Hypoxia modifies the response to flutamide and linuron in male three-spined stickleback (<em>Gasterosteus aculeatus</em>)
Fitzgerald, J. A., Trznadel, M., Katsiadaki, I., & Santos, E. M. (2020). Hypoxia modifies the response to flutamide and linuron in male three-spined stickleback (Gasterosteus aculeatus). Environmental Pollution, 263, 114326 (10 pp.). https://doi.org/10.1016/j.envpol.2020.114326
Sampling rates for passive samplers exposed to a field-relevant peak of 42 organic pesticides
Schreiner, V. C., Bakanov, N., Kattwinkel, M., Könemann, S., Kunz, S., Vermeirssen, E. L. M., & Schäfer, R. B. (2020). Sampling rates for passive samplers exposed to a field-relevant peak of 42 organic pesticides. Science of the Total Environment, 740, 140376 (10 pp.). https://doi.org/10.1016/j.scitotenv.2020.140376
Integrated assessment of climate change impacts on multiple ecosystem services in Western Switzerland
Zarrineh, N., Abbaspour, K. C., & Holzkämper, A. (2020). Integrated assessment of climate change impacts on multiple ecosystem services in Western Switzerland. Science of the Total Environment, 708, 135212 (11 pp.). https://doi.org/10.1016/j.scitotenv.2019.135212
Exploring variability in environmental impact risk from human activities across aquatic ecosystems
Borgwardt, F., Robinson, L., Trauner, D., Teixeira, H., Nogueira, A. J. A., Lillebø, A. I., … Culhane, F. (2019). Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Science of the Total Environment, 652, 1396-1408. https://doi.org/10.1016/j.scitotenv.2018.10.339
Risk to the supply of ecosystem services across aquatic ecosystems
Culhane, F., Teixeira, H., Nogueira, A. J. A., Borgwardt, F., Trauner, D., Lillebø, A., … Robinson, L. A. (2019). Risk to the supply of ecosystem services across aquatic ecosystems. Science of the Total Environment, 660, 611-621. https://doi.org/10.1016/j.scitotenv.2018.12.346
Size-dependent tradeoffs in seasonal freshwater environments facilitate differential salmonid migration
Dermond, P., Melián, C. J., & Brodersen, J. (2019). Size-dependent tradeoffs in seasonal freshwater environments facilitate differential salmonid migration. Movement Ecology, 7, 40 (11 pp.). https://doi.org/10.1186/s40462-019-0185-1
Introducing the H2020 AQUACROSS project: knowledge, assessment, and management for AQUAtic biodiversity and ecosystem services aCROSS EU policies
Lago, M., Boteler, B., Rouillard, J., Abhold, K., Jähnig, S. C., Iglesias-Campos, A., … Hugh, M. D. (2019). Introducing the H2020 AQUACROSS project: knowledge, assessment, and management for AQUAtic biodiversity and ecosystem services aCROSS EU policies. Science of the Total Environment, 652, 320-329. https://doi.org/10.1016/j.scitotenv.2018.10.076
The future of biotic indices in the ecogenomic era: integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems
Pawlowski, J., Kelly-Quinn, M., Altermatt, F., Apothéloz-Perret-Gentil, L., Beja, P., Boggero, A., … Kahlert, M. (2018). The future of biotic indices in the ecogenomic era: integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Science of the Total Environment, 637-638, 1295-1310. https://doi.org/10.1016/j.scitotenv.2018.05.002
Tracing the quagga mussel invasion along the Rhine river system using eDNA markers: early detection and surveillance of invasive zebra and quagga mussels
De Ventura, L., Kopp, K., Seppälä, K., & Jokela, J. (2017). Tracing the quagga mussel invasion along the Rhine river system using eDNA markers: early detection and surveillance of invasive zebra and quagga mussels. Management of Biological Invasions, 8(1), 101-112. https://doi.org/10.3391/mbi.2017.8.1.10
Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: an interlaboratory case study
Heinlaan, M., Muna, M., Knöbel, M., Kistler, D., Odzak, N., Kühnel, D., … Sigg, L. (2016). Natural water as the test medium for Ag and CuO nanoparticle hazard evaluation: an interlaboratory case study. Environmental Pollution, 216, 689-699. https://doi.org/10.1016/j.envpol.2016.06.033
Antibiotic resistance genes in freshwater biofilms may reflect influences from high-intensity agriculture
Winkworth-Lawrence, C., & Lange, K. (2016). Antibiotic resistance genes in freshwater biofilms may reflect influences from high-intensity agriculture. Microbial Ecology, 72(4), 763-772. https://doi.org/10.1007/s00248-016-0740-x
Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes
Czekalski, N., Sigdel, R., Birtel, J., Matthews, B., & Bürgmann, H. (2015). Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environment International, 81, 45-55. https://doi.org/10.1016/j.envint.2015.04.005
Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA
Deiner, K., Walser, J. C., Mächler, E., & Altermatt, F. (2015). Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation, 183, 53-63. https://doi.org/10.1016/j.biocon.2014.11.018