Active Filters

  • (-) Keywords = habitat fragmentation
Search Results 1 - 10 of 10
  • RSS Feed
Select Page
Spread of networked populations is determined by the interplay between dispersal behavior and habitat configuration
Rayfield, B., Baines, C. B., Gilarranz, L. J., & Gonzalez, A. (2023). Spread of networked populations is determined by the interplay between dispersal behavior and habitat configuration. Proceedings of the National Academy of Sciences of the United States of America PNAS, 120(11), e2201553120 (8 pp.). https://doi.org/10.1073/pnas.2201553120
River fragmentation and fish population structure: a comparison of three Swiss midland rivers
Gouskov, A., & Vorburger, C. (2016). River fragmentation and fish population structure: a comparison of three Swiss midland rivers. Freshwater Science, 35(2), 689-700. https://doi.org/10.1086/685658
Fragmentation genetics of the grassland butterfly <I>Polyommatus coridon</I>: stable genetic diversity or extinction debt?
Habel, J. C., Brückmann, S. V., Krauss, J., Schwarzer, J., Weig, A., Husemann, M., & Steffan-Dewenter, I. (2015). Fragmentation genetics of the grassland butterfly Polyommatus coridon: stable genetic diversity or extinction debt? Conservation Genetics, 16(3), 549-558. https://doi.org/10.1007/s10592-014-0679-8
Spatially heterogeneous perturbations homogenize the regulation of insect herbivores
Harvey, E., & MacDougall, A. S. (2015). Spatially heterogeneous perturbations homogenize the regulation of insect herbivores. American Naturalist, 186(5), 623-633. https://doi.org/10.1086/683199
A set of new and cross-amplifying microsatellite loci for conservation genetics of the endangered stone crayfish (<I>Austropotamobius torrentium</I>)
Vorburger, C., Rhyner, N., Hartikainen, H., & Jokela, J. (2014). A set of new and cross-amplifying microsatellite loci for conservation genetics of the endangered stone crayfish (Austropotamobius torrentium). Conservation Genetics Resources, 6(3), 629-631. https://doi.org/10.1007/s12686-014-0157-0
Erfolgreiche Habitatvernetzung für Laubfrösche
Angelone, S., Flory, C., Cigler, H., Rieder-Schmid, J., Wyss, A., Kienast, F., & Holderegger, R. (2010). Erfolgreiche Habitatvernetzung für Laubfrösche. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 155(3-4), 43-50.
Macroinvertebrate diversity in fragmented Alpine streams: implications for freshwater conservation
Monaghan, M. T., Robinson, C. T., Spaak, P., & Ward, J. V. (2005). Macroinvertebrate diversity in fragmented Alpine streams: implications for freshwater conservation. Aquatic Sciences, 67(4), 454-464. https://doi.org/10.1007/s00027-005-0787-0
Experimental inbreeding reduces seed production and germination independent of fragmentation of populations of <I>Swertia perennis</I>
Lienert, J., & Fischer, M. (2004). Experimental inbreeding reduces seed production and germination independent of fragmentation of populations of Swertia perennis. Basic and Applied Ecology, 5(1), 43-52. https://doi.org/10.1078/1439-1791-00212
Isozyme variability of the wetland specialist <em>Swertia perennis</em> (Gentianaceae) in relation to habitat size, isolation, and plant fitness
Fischer, M., Lienert, J., Schneller, J., & Diemer, M. (2002). Isozyme variability of the wetland specialist Swertia perennis (Gentianaceae) in relation to habitat size, isolation, and plant fitness. American Journal of Botany, 89(5), 801-811. https://doi.org/10.3732/ajb.89.5.801
Population genetic structure of 3 alpine stream insects: influences of gene flow, demographics, and habitat fragmentation
Monaghan, M. T., Spaak, P., Robinson, C. T., & Ward, J. V. (2002). Population genetic structure of 3 alpine stream insects: influences of gene flow, demographics, and habitat fragmentation. Journal of the North American Benthological Society, 21(1), 114-131. https://doi.org/10.2307/1468304