Active Filters

  • (-) Keywords = iodide
Search Results 1 - 5 of 5
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Kinetics of the reaction between hydrogen peroxide and aqueous iodine: implications for technical and natural aquatic systems
Shin, J., Lee, Y., & von Gunten, U. (2020). Kinetics of the reaction between hydrogen peroxide and aqueous iodine: implications for technical and natural aquatic systems. Water Research, 179, 115852 (9 pp.). https://doi.org/10.1016/j.watres.2020.115852
Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate
Zhao, X., Ma, J., & von Gunten, U. (2017). Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate. Water Research, 119, 126-135. https://doi.org/10.1016/j.watres.2017.04.033
Ozonation of iodide-containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs
Allard, S., Nottle, C. E., Chan, A., Joll, C., & von Gunten, U. (2013). Ozonation of iodide-containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs. Water Research, 47(6), 1953-1960. https://doi.org/10.1016/j.watres.2012.12.002
Oxidation of iodide and iodine on birnessite (δ-MnO<SUB>2</SUB>) in the pH range 4–8
Allard, S., von Gunten, U., Sahli, E., Nicolau, R., & Gallard, H. (2009). Oxidation of iodide and iodine on birnessite (δ-MnO2) in the pH range 4–8. Water Research, 43(14), 3417-3426. https://doi.org/10.1016/j.watres.2009.05.018
Kinetics of reactions of chlorine dioxide (OClO) in water—I. Rate constants for inorganic and organic-compounds
Hoigné, J., & Bader, H. (1994). Kinetics of reactions of chlorine dioxide (OClO) in water—I. Rate constants for inorganic and organic-compounds. Water Research, 28(1), 45-55. https://doi.org/10.1016/0043-1354(94)90118-X