Active Filters

  • (-) Keywords = metabolites
Search Results 1 - 14 of 14
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Biotransformation changes bioaccumulation and toxicity of diclofenac in aquatic organisms
Fu, Q., Fedrizzi, D., Kosfeld, V., Schlechtriem, C., Ganz, V., Derrer, S., … Hollender, J. (2020). Biotransformation changes bioaccumulation and toxicity of diclofenac in aquatic organisms. Environmental Science and Technology. https://doi.org/10.1021/acs.est.9b07127
Isolation of the (+)-pinoresinol-mineralizing <i>Pseudomonas</i> sp. strain SG-MS2 and elucidation of its catabolic pathway
Shettigar, M., Balotra, S., Cahill, D., Warden, A. C., Lacey, M. J., Kohler, H. P. E., … Pandey, G. (2018). Isolation of the (+)-pinoresinol-mineralizing Pseudomonas sp. strain SG-MS2 and elucidation of its catabolic pathway. Applied and Environmental Microbiology, 84(4), e02531-17 (14 pp.). https://doi.org/10.1128/AEM.02531-17
Identification of biotransformation products of citalopram formed in activated sludge
Beretsou, V. G., Psoma, A. K., Gago-Ferrero, P., Aalizadeh, R., Fenner, K., & Thomaidis, N. S. (2016). Identification of biotransformation products of citalopram formed in activated sludge. Water Research, 103, 205-214. https://doi.org/10.1016/j.watres.2016.07.029
LC-MS/MS determination of potential endocrine disruptors of cortico signalling in rivers and wastewaters
Ammann, A. A., Macikova, P., Groh, K. J., Schirmer, K., & Suter, M. J. F. (2014). LC-MS/MS determination of potential endocrine disruptors of cortico signalling in rivers and wastewaters. Analytical and Bioanalytical Chemistry, 406(29), 7653-7665. https://doi.org/10.1007/s00216-014-8206-9
Genetic and metabolic analysis of the carbofuran catabolic pathway in <I>Novosphingobium</I> sp. KN65.2
Nguyen, T. P. O., Helbling, D. E., Bers, K., Fida, T. T., Wattiez, R., Kohler, H. P. E., … De Mot, R. (2014). Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2. Applied Microbiology and Biotechnology, 98(19), 8235-8252. https://doi.org/10.1007/s00253-014-5858-5
Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry
Huntscha, S., Singer, H. P., McArdell, C. S., Frank, C. E., & Hollender, J. (2012). Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1268, 74-83. https://doi.org/10.1016/j.chroma.2012.10.032
Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites
Zounkova, R., Kovalova, L., Blaha, L., & Dott, W. (2010). Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites. Chemosphere, 81(2), 253-260. https://doi.org/10.1016/j.chemosphere.2010.06.029
Predicting the ecotoxicological effects of transformation products
Escher, B. I., Baumgartner, R., Lienert, J., & Fenner, K. (2009). Predicting the ecotoxicological effects of transformation products. In A. B. A. Boxall (Ed.), The handbook of environmental chemistry: Vol. 2. Transformation products of synthetic chemicals in the environment (pp. 205-244). https://doi.org/10.1007/698_2_015
Polar organic micropollutants in the water cycle
Hollender, J., Singer, H., & Mcardell, C. S. (2008). Polar organic micropollutants in the water cycle. In P. Hlavinek, O. Bonacci, J. Marsalek, & I. Mahrikova (Eds.), NATO science for peace and security. Series C: environmental security. Dangerous pollutants (xenobiotics) in urban water cycle (pp. 103-116). https://doi.org/10.1007/978-1-4020-6795-2_11
Detection of methylquinoline transformation products in microcosm experiments and in tar oil contaminated groundwater using LC-NMR
Reineke, A. K., Preiss, A., Elend, M., & Hollender, J. (2008). Detection of methylquinoline transformation products in microcosm experiments and in tar oil contaminated groundwater using LC-NMR. Chemosphere, 70(11), 2118-2126. https://doi.org/10.1016/j.chemosphere.2007.08.061
Behavior of two differently radiolabelled 17α-ethinylestradiols continuously applied to a laboratory-scale membrane bioreactor with adapted industrial activated sludge
Cirja, M., Zuehlke, S., Ivashechkin, P., Hollender, J., Schäffer, A., & Corvini, P. F. X. (2007). Behavior of two differently radiolabelled 17α-ethinylestradiols continuously applied to a laboratory-scale membrane bioreactor with adapted industrial activated sludge. Water Research, 41(19), 4403-4412. https://doi.org/10.1016/j.watres.2007.06.022
Contribution to the detection and identification of oxidation metabolites of nonylphenol in <I>Sphingomonas</I> sp. Strain TTNP3
Corvini, P. F. X., Meesters, R., Mundt, M., Schäffer, A., Schmidt, B., Schröder, H. F., … Hollender, J. (2007). Contribution to the detection and identification of oxidation metabolites of nonylphenol in Sphingomonas sp. Strain TTNP3. Biodegradation, 18(2), 233-245. https://doi.org/10.1007/s10532-006-9058-6
Metabolism of a nonylphenol isomer by <I>Sphingomonas</I> sp. strain TTNP3
Corvini, P. F. X., Elend, M., Hollender, J., Ji, R., Preiss, A., Vinken, R., & Schäffer, A. (2005). Metabolism of a nonylphenol isomer by Sphingomonas sp. strain TTNP3. Environmental Chemistry Letters, 2(4), 185-189. https://doi.org/10.1007/s10311-004-0094-3
Joint persistence of transformation products in chemicals assessment: case studies and uncertainty analysis
Fenner, K., Scheringer, M., & Hungerbühler, K. (2003). Joint persistence of transformation products in chemicals assessment: case studies and uncertainty analysis. Risk Analysis, 23(1), 35-53. https://doi.org/10.1111/1539-6924.00288