Active Filters

  • (-) Keywords = microscopy
Search Results 1 - 4 of 4
  • RSS Feed
Select Page
Spatiotemporal mineral phase evolution and arsenic retention in microfluidic models of zerovalent iron-based water treatment
Wielinski, J., Jimenez-Martinez, J., Göttlicher, J., Steininger, R., Mangold, S., Hug, S. J., … Voegelin, A. (2022). Spatiotemporal mineral phase evolution and arsenic retention in microfluidic models of zerovalent iron-based water treatment. Environmental Science and Technology, 56(19), 13696-13708. https://doi.org/10.1021/acs.est.2c02189
Underwater dual-magnification imaging for automated lake plankton monitoring
Merz, E., Kozakiewicz, T., Reyes, M., Ebi, C., Isles, P., Baity-Jesi, M., … Pomati, F. (2021). Underwater dual-magnification imaging for automated lake plankton monitoring. Water Research, 203, 117524 (12 pp.). https://doi.org/10.1016/j.watres.2021.117524
Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties
Busch, W., Bastian, S., Trahorsch, U., Iwe, M., Kühnel, D., Meißner, T., … Schirmer, K. (2011). Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties. Journal of Nanoparticle Research, 13(1), 293-310. https://doi.org/10.1007/s11051-010-0030-3
Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD
Kaegi, R., Wagner, T., Hetzer, B., Sinnet, B., Tzvetkov, G., & Boller, M. (2008). Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD. Water Research, 42(10–11), 2778-2786. https://doi.org/10.1016/j.watres.2008.02.009