Active Filters

  • (-) Keywords = nanomaterials
Search Results 1 - 8 of 8
  • RSS Feed
Select Page
Ingestion of bivalve droppings by benthic invertebrates may lead to the transfer of nanomaterials in the aquatic food chain
Kuehr, S., Diehle, N., Kaegi, R., & Schlechtriem, C. (2021). Ingestion of bivalve droppings by benthic invertebrates may lead to the transfer of nanomaterials in the aquatic food chain. Environmental Sciences Europe, 33(1), 35 (16 pp.). https://doi.org/10.1186/s12302-021-00473-3
Testing the bioaccumulation potential of manufactured nanomaterials in the freshwater amphipod <em>Hyalella azteca</em>
Kuehr, S., Kaegi, R., Maletzki, D., & Schlechtriem, C. (2021). Testing the bioaccumulation potential of manufactured nanomaterials in the freshwater amphipod Hyalella azteca. Chemosphere, 263, 127961 (15 pp.). https://doi.org/10.1016/j.chemosphere.2020.127961
Cytotoxicity, accumulation and translocation of silver and silver sulfide nanoparticles in contact with rainbow trout intestinal cells
Opršal, J., Knotek, P., Zickler, G. A., Sigg, L., Schirmer, K., Pouzar, M., & Geppert, M. (2021). Cytotoxicity, accumulation and translocation of silver and silver sulfide nanoparticles in contact with rainbow trout intestinal cells. Aquatic Toxicology, 237, 105869 (11 pp.). https://doi.org/10.1016/j.aquatox.2021.105869
Challenges in determining the size distribution of nanoparticles in consumer products by asymmetric flow field-flow fractionation coupled to inductively coupled plasma-mass spectrometry: the example of Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, and SiO
Correia, M., Uusimäki, T., Philippe, A., & Loeschner, K. (2018). Challenges in determining the size distribution of nanoparticles in consumer products by asymmetric flow field-flow fractionation coupled to inductively coupled plasma-mass spectrometry: the example of Al2O3, TiO2, and SiO2 nanoparticles in toothpaste. Separations, 5(4), 56 (25 pp.). https://doi.org/10.3390/separations5040056
Silver nanoparticles in sewage sludge: bioavailability of sulfidized silver to the terrestrial isopod <i>Porcellio scaber</i>
Kampe, S., Kaegi, R., Schlich, K., Wasmuth, C., Hollert, H., & Schlechtriem, C. (2018). Silver nanoparticles in sewage sludge: bioavailability of sulfidized silver to the terrestrial isopod Porcellio scaber. Environmental Toxicology and Chemistry, 37(6), 1606-1613. https://doi.org/10.1002/etc.4102
Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review
Lead, J. R., Batley, G. E., Alvarez, P. J. J., Croteau, M. N., Handy, R. D., McLaughlin, M. J., … Schirmer, K. (2018). Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review. Environmental Toxicology and Chemistry, 37(8), 2029-2063. https://doi.org/10.1002/etc.4147
Scientific basis for regulatory decision-making of nanomaterials report on the workshop, 20–21 January 2014, center of applied ecotoxicology, Dübendorf
Studer, C., Aicher, L., Gasic, B., von Goetz, N., Hoet, P., Huwyler, J., … Walser, T. (2015). Scientific basis for regulatory decision-making of nanomaterials report on the workshop, 20–21 January 2014, center of applied ecotoxicology, Dübendorf. Chimia, 69(1-2), 52-56. https://doi.org/10.2533/chimia.2015.52
Agglomeration of Ag and TiO<SUB>2</SUB> nanoparticles in surface and wastewater: role of calcium ions and of organic carbon fractions
Topuz, E., Traber, J., Sigg, L., & Talini, I. (2015). Agglomeration of Ag and TiO2 nanoparticles in surface and wastewater: role of calcium ions and of organic carbon fractions. Environmental Pollution, 204, 313-323. https://doi.org/10.1016/j.envpol.2015.05.034