Active Filters

  • (-) Keywords = ozone
Search Results 1 - 20 of 63

Pages

  • RSS Feed
Select Page
Reactions of amines with ozone and chlorine: two novel oxidative methods to evaluate the N-DBP formation potential from dissolved organic nitrogen
Essaïed, K. A., Brown, L. V., & von Gunten, U. (2022). Reactions of amines with ozone and chlorine: two novel oxidative methods to evaluate the N-DBP formation potential from dissolved organic nitrogen. Water Research, 209, 117864 (15 pp.). https://doi.org/10.1016/j.watres.2021.117864
Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: from laboratory- to full-scale
Gulde, R., Rutsch, M., Clerc, B., Schollée, J. E., von Gunten, U., & McArdell, C. S. (2021). Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: from laboratory- to full-scale. Water Research, 200, 117200 (16 pp.). https://doi.org/10.1016/j.watres.2021.117200
Oxidation of 51 micropollutants during drinking water ozonation: formation of transformation products and their fate during biological post-filtration
Gulde, R., Clerc, B., Rutsch, M., Helbing, J., Salhi, E., McArdell, C. S., & von Gunten, U. (2021). Oxidation of 51 micropollutants during drinking water ozonation: formation of transformation products and their fate during biological post-filtration. Water Research, 207, 117812 (20 pp.). https://doi.org/10.1016/j.watres.2021.117812
Oxidant-reactive carbonous moieties in dissolved organic matter: selective quantification by oxidative titration using chlorine dioxide and ozone
Houska, J., Salhi, E., Walpen, N., & von Gunten, U. (2021). Oxidant-reactive carbonous moieties in dissolved organic matter: selective quantification by oxidative titration using chlorine dioxide and ozone. Water Research, 207, 117790 (11 pp.). https://doi.org/10.1016/j.watres.2021.117790
Reactions of aliphatic amines with ozone: kinetics and mechanisms
Lim, S., McArdell, C. S., & von Gunten, U. (2019). Reactions of aliphatic amines with ozone: kinetics and mechanisms. Water Research, 157, 514-528. https://doi.org/10.1016/j.watres.2019.03.089
Differences in viral disinfection mechanisms as revealed by quantitative transfection of echovirus 11 genomes
Torrey, J., von Gunten, U., & Kohn, T. (2019). Differences in viral disinfection mechanisms as revealed by quantitative transfection of echovirus 11 genomes. Applied and Environmental Microbiology, 85(14), e00961-19 (14 pp.). https://doi.org/10.1128/AEM.00961-19
Proxies to monitor the inactivation of viruses by ozone in surface water and wastewater effluent
Wolf, C., Pavese, A., von Gunten, U., & Kohn, T. (2019). Proxies to monitor the inactivation of viruses by ozone in surface water and wastewater effluent. Water Research, 166, 115088 (11 pp.). https://doi.org/10.1016/j.watres.2019.115088
Ozone and chlorine reactions with dissolved organic matter - Assessment of oxidant-reactive moieties by optical measurements and the electron donating capacities
Önnby, L., Salhi, E., McKay, G., Rosario-Ortiz, F. L., & von Gunten, U. (2018). Ozone and chlorine reactions with dissolved organic matter - Assessment of oxidant-reactive moieties by optical measurements and the electron donating capacities. Water Research, 144, 64-75. https://doi.org/10.1016/j.watres.2018.06.059
Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process
Yao, W., Qu, Q., von Gunten, U., Chen, C., Yu, G., & Wang, Y. (2017). Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process. Water Research, 108, 373-382. https://doi.org/10.1016/j.watres.2016.11.014
N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: reaction kinetics, mechanisms, and implications for NDMA formation control
Lim, S., Lee, W., Na, S., Shin, J., & Lee, Y. (2016). N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: reaction kinetics, mechanisms, and implications for NDMA formation control. Water Research, 105, 119-128. https://doi.org/10.1016/j.watres.2016.08.054
Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: assessment of biological effects
Mestankova, H., Parker, A. M., Bramaz, N., Canonica, S., Schirmer, K., von Gunten, U., & Linden, K. G. (2016). Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: assessment of biological effects. Water Research, 93, 110-120. https://doi.org/10.1016/j.watres.2015.12.048
Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water
McCurry, D. L., Krasner, S. W., von Gunten, U., & Mitch, W. A. (2015). Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water. Water Research, 84, 161-170. https://doi.org/10.1016/j.watres.2015.07.024
Development of mutagenicity during degradation of <I>N</I>-nitrosamines by advanced oxidation processes
Mestankova, H., Schirmer, K., Canonica, S., & von Gunten, U. (2014). Development of mutagenicity during degradation of N-nitrosamines by advanced oxidation processes. Water Research, 66, 399-410. https://doi.org/10.1016/j.watres.2014.08.012
Ozonation of iodide-containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs
Allard, S., Nottle, C. E., Chan, A., Joll, C., & von Gunten, U. (2013). Ozonation of iodide-containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs. Water Research, 47(6), 1953-1960. https://doi.org/10.1016/j.watres.2012.12.002
Process control for ozonation systems: a novel real-time approach
Kaiser, H. P., Köster, O., Gresch, M., Périsset, P. M. J., Jäggi, P., Salhi, E., & von Gunten, U. (2013). Process control for ozonation systems: a novel real-time approach. Ozone: Science and Engineering, 35(3), 168-185. https://doi.org/10.1080/01919512.2013.772007
Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon?
Margot, J., Kienle, C., Magnet, A., Weil, M., Rossi, L., de Alencastro, L. F., … Barry, D. A. (2013). Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Science of the Total Environment, 461-462, 480-498. https://doi.org/10.1016/j.scitotenv.2013.05.034
Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation
Gerrity, D., Gamage, S., Jones, D., Korshin, G. V., Lee, Y., Pisarenko, A., … Snyder, S. A. (2012). Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. Water Research, 46(19), 6257-6272. https://doi.org/10.1016/j.watres.2012.08.037
Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment
Lee, Y., & von Gunten, U. (2012). Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Research, 46(19), 6177-6195. https://doi.org/10.1016/j.watres.2012.06.006
Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes
Mestankova, H., Schirmer, K., Escher, B. I., von Gunten, U., & Canonica, S. (2012). Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes. Environmental Pollution, 161, 30-35. https://doi.org/10.1016/j.envpol.2011.09.018
Can pollution bias peatland paleoclimate reconstruction?
Payne, R. J., Mitchell, E. A. D., Nguyen-Viet, H., & Gilbert, D. (2012). Can pollution bias peatland paleoclimate reconstruction? Quaternary Research, 78(2), 170-173. https://doi.org/10.1016/j.yqres.2012.05.004
 

Pages