Active Filters

  • (-) Keywords = reactive oxygen species
Search Results 1 - 7 of 7
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
<em>In vitro</em> toxicology of ambient particulate matter: correlation of cellular effects with particle size and components
Kroll, A., Gietl, J. K., Wiesmüller, G. A., Günsel, A., Wohlleben, W., Schnekenburger, J., & Klemm, O. (2013). In vitro toxicology of ambient particulate matter: correlation of cellular effects with particle size and components. Environmental Toxicology, 28(2), 76-86. https://doi.org/10.1002/tox.20699
<em>SINGLET OXYGEN RESISTANT 1</em> links reactive electrophile signaling to singlet oxygen acclimation in <em>Chlamydomonas reinhardtii</em>
Fischer, B. B., Ledford, H. K., Wakao, S., Huang, S. Y. G., Casero, D., Pellegrini, M., … Niyogi, K. K. (2012). SINGLET OXYGEN RESISTANT 1 links reactive electrophile signaling to singlet oxygen acclimation in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America PNAS, 109(20), E1302-E1311. https://doi.org/10.1073/pnas.1116843109
Growth condition-dependent sensitivity, photodamage and stress response of <I>Chlamydomonas reinhardtii</I> exposed to high light conditions
Fischer, B. B., Wiesendanger, M., & Eggen, R. I. L. (2006). Growth condition-dependent sensitivity, photodamage and stress response of Chlamydomonas reinhardtii exposed to high light conditions. Plant and Cell Physiology, 47(8), 1135-1145. https://doi.org/10.1093/pcp/pcj085
Impact of photochemical processes in the hydrosphere
Blough, N. V., & Sulzberger, B. (2003). Impact of photochemical processes in the hydrosphere. Aquatic Sciences, 65(4), 317-319. https://doi.org/10.1007/s00027-003-0003-z
Quantitative structure-activity relationships for oxidation reactions of organic chemicals in water
Canonica, S., & Tratnyek, P. G. (2003). Quantitative structure-activity relationships for oxidation reactions of organic chemicals in water. Environmental Toxicology and Chemistry, 22(8), 1743-1754. https://doi.org/10.1897/01-237
DNA degradation by the mixture of copper and catechol is caused by DNA-copper-hydroperoxo complexes, probably DNA-Cu(I)OOH
Schweigert, N., Acero, J. L., von Gunten, U., Canonica, S., Zehnder, A. J. B., & Eggen, R. I. L. (2000). DNA degradation by the mixture of copper and catechol is caused by DNA-copper-hydroperoxo complexes, probably DNA-Cu(I)OOH. Environmental and Molecular Mutagenesis, 36(1), 5-12. https://doi.org/10.1002/1098-2280(2000)36:1<5::Aid-Em2>3.0.Co;2-4
Combinations of chlorocatechols and heavy metals cause DNA degradation in vitro but must not result in increased mutation rates in vivo
Schweigert, N., Belkin, S., Leong-Morgenthaler, P., Zehnder, A. J. B., & Eggen, R. I. L. (1999). Combinations of chlorocatechols and heavy metals cause DNA degradation in vitro but must not result in increased mutation rates in vivo. Environmental and Molecular Mutagenesis, 33(3), 202-210. https://doi.org/10.1002/(SICI)1098-2280(1999)33:3<202::AID-EM4>3.0.CO;2-C