Active Filters

  • (-) Keywords = toxicity
Search Results 1 - 20 of 24
Select Page
What is the role of fish intestine as environment-organism barrier? Mechanistic investigations using fish intestinal cells on a chip
Drieschner, C. (2018). What is the role of fish intestine as environment-organism barrier? Mechanistic investigations using fish intestinal cells on a chip [Doctoral dissertation]. EPFL Lausanne.
Corrosion protection products as a source of bisphenol A and toxicity to the aquatic environment
Vermeirssen, E. L. M., Dietschweiler, C., Werner, I., & Burkhardt, M. (2017). Corrosion protection products as a source of bisphenol A and toxicity to the aquatic environment. Water Research, 123, 586-593. https://doi.org/10.1016/j.watres.2017.07.006
Amphibians and plant-protection products: what research and action is needed?
Aldrich, A., Junghans, M., Aeberli, C., Brühl, C. A., Streissl, F., & Schmidt, B. R. (2016). Amphibians and plant-protection products: what research and action is needed? Environmental Sciences Europe, 28(1), 17 (8 pp.). https://doi.org/10.1186/s12302-016-0085-6
Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation
Garg, N., Lata, P., Jit, S., Sangwan, N., Singh, A. K., Dwivedi, V., … Lal, R. (2016). Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation, 27(2), 179-193. https://doi.org/10.1007/s10532-016-9765-6
Mercury tissue residue approach in <I>Chironomus riparius</I>: involvement of toxicokinetics and comparison of subcellular fractionation methods
Gimbert, F., Geffard, A., Guédron, S., Dominik, J., & Ferrari, B. J. D. (2016). Mercury tissue residue approach in Chironomus riparius: involvement of toxicokinetics and comparison of subcellular fractionation methods. Aquatic Toxicology, 171, 1-8. https://doi.org/10.1016/j.aquatox.2015.11.027
An interlaboratory comparison of nanosilver characterisation and hazard identification: harmonising techniques for high quality data
Jemec, A., Kahru, A., Potthoff, A., Drobne, D., Heinlaan, M., Böhme, S., … Kühnel, D. (2016). An interlaboratory comparison of nanosilver characterisation and hazard identification: harmonising techniques for high quality data. Environment International, 87, 20-32. https://doi.org/10.1016/j.envint.2015.10.014
Colloidal stability and toxicity of gold nanoparticles and gold chloride on &lt;em&gt;Chlamydomonas reinhardtii&lt;/em&gt;
Behra, R., Wagner, B., Sgier, L., & Kistler, D. (2015). Colloidal stability and toxicity of gold nanoparticles and gold chloride on Chlamydomonas reinhardtii. Aquatic Geochemistry, 21(2), 331-342. https://doi.org/10.1007/s10498-015-9255-1
Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies
Prasse, C., Stalter, D., Schulte-Oehlmann, U., Oehlmann, J., & Ternes, T. A. (2015). Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Research, 87, 237-270. https://doi.org/10.1016/j.watres.2015.09.023
Challenges in effect-directed analysis with a focus on biological samples
Simon, E., Lamoree, M. H., Hamers, T., & de Boer, J. (2015). Challenges in effect-directed analysis with a focus on biological samples. Trends in Analytical Chemistry, 67, 179-191. https://doi.org/10.1016/j.trac.2015.01.006
Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale
Malaj, E., von der Ohe, P. C., Grote, M., Kühne, R., Mondy, C. P., Usseglio-Polatera, P., … Schäfer, R. B. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences of the United States of America PNAS, 111(26), 9549-9554. https://doi.org/10.1073/pnas.1321082111
Testing nanomaterial toxicity in unicellular eukaryotic algae and fish cell lines
Kroll, A., Kühnel, D., & Schirmer, K. (2013). Testing nanomaterial toxicity in unicellular eukaryotic algae and fish cell lines. In D. Armstrong & D. J. Bharali (Eds.), Methods in Molecular Biology: Vol. 1028. Oxidative Stress and Nanotechnology: Methods and Protocols (pp. 165-195). https://doi.org/10.1007/978-1-62703-475-3_11
Toxicokinetic-toxicodynamic modeling of quantal and graded sublethal endpoints: a brief discussion of concepts
Ashauer, R., Agatz, A., Albert, C., Ducrot, V., Galic, N., Hendriks, J., … Preuss, T. G. (2011). Toxicokinetic-toxicodynamic modeling of quantal and graded sublethal endpoints: a brief discussion of concepts. Environmental Toxicology and Chemistry, 30(11), 2519-2524. https://doi.org/10.1002/etc.639
The pH-dependent toxicity of basic pharmaceuticals in the green algae <i>Scenedesmus vacuolatus</i> can be explained with a toxicokinetic ion-trapping model
Neuwoehner, J., & Escher, B. I. (2011). The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model. Aquatic Toxicology, 101(1), 266-275. https://doi.org/10.1016/j.aquatox.2010.10.008
Physical-chemical characterization of tungsten carbide nanoparticles as a basis for toxicological investigations
Meißner, T., Kühnel, D., Busch, W., Oswald, S., Richter, V., Michaelis, A., … Potthoff, A. (2010). Physical-chemical characterization of tungsten carbide nanoparticles as a basis for toxicological investigations. Nanotoxicology, 4(2), 196-206. https://doi.org/10.3109/17435391003605455
Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells <I>in Vitro</I>
Bastian, S., Busch, W., Kühnel, D., Springer, A., Meißner, T., Holke, R., … Schirmer, K. (2009). Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in Vitro. Environmental Health Perspectives, 117(4), 530-536. https://doi.org/10.1289/ehp.0800121
Ammonia-containing industrial effluents, lethal to rainbow trout, induce vacuolisation and neutral red uptake in the rainbow trout gill cell line, RTgill-W1
Dayeh, V. R., Schirmer, K., & Bols, N. C. (2009). Ammonia-containing industrial effluents, lethal to rainbow trout, induce vacuolisation and neutral red uptake in the rainbow trout gill cell line, RTgill-W1. ATLA Alternatives to Laboratory Animals, 37(1), 77-87.
Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line
Kühnel, D., Busch, W., Meißner, T., Springer, A., Potthoff, A., Richter, V., … Schirmer, K. (2009). Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Aquatic Toxicology, 93(2–3), 91-99. https://doi.org/10.1016/j.aquatox.2009.04.003
Neurotoxicity of manganese oxide nanomaterials
Stefanescu, D. M., Khoshnan, A., Patterson, P. H., & Hering, J. G. (2009). Neurotoxicity of manganese oxide nanomaterials. Journal of Nanoparticle Research, 11(8), 1957-1969. https://doi.org/10.1007/s11051-008-9554-1
Toxicodynamic assumptions in ecotoxicological hazard models
Ashauer, R., & Brown, C. D. (2008). Toxicodynamic assumptions in ecotoxicological hazard models. Environmental Toxicology and Chemistry, 27(8), 1817-1821. https://doi.org/10.1897/07-642.1
A new hazard index of complex mixtures integrates bioconcentration and toxicity to refine the environmental risk assessment of effluents
Gutiérrez, S., Fernández, C., Escher, B. I., & Tarazona, J. V. (2008). A new hazard index of complex mixtures integrates bioconcentration and toxicity to refine the environmental risk assessment of effluents. Environment International, 34(6), 773-781. https://doi.org/10.1016/j.envint.2008.01.002