Active Filters

  • (-) Keywords = zinc
Search Results 1 - 12 of 12
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Diatom responses to zinc contamination along a Mediterranean river
Morin, S., Corcoll, N., Bonet, B., Tlili, A., & Guasch, H. (2014). Diatom responses to zinc contamination along a Mediterranean river. Plant Ecology and Evolution, 147(3), 325-332. https://doi.org/10.5091/plecevo.2014.986
Assessing metal bioaccumulation from estuarine sediments: comparative experimental results for the polychaete <I>Arenicola marina</I>
Casado-Martinez, M. C., Smith, B. D., & Rainbow, P. S. (2013). Assessing metal bioaccumulation from estuarine sediments: comparative experimental results for the polychaete Arenicola marina. Journal of Soils and Sediments, 13(2), 429-440. https://doi.org/10.1007/s11368-012-0611-0
Origin of high Zn contents in Jurassic limestone of the Jura mountain range and the Burgundy: evidence from Zn speciation and distribution
Jacquat, O., Rambeau, C., Voegelin, A., Efimenko, N., Villard, A., Föllmi, K. B., & Kretzschmar, R. (2011). Origin of high Zn contents in Jurassic limestone of the Jura mountain range and the Burgundy: evidence from Zn speciation and distribution. Swiss Journal of Geosciences, 104(3), 409-424. https://doi.org/10.1007/s00015-011-0086-9
Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models
Meylan, S., Odzak, N., Behra, R., & Sigg, L. (2004). Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models. Analytica Chimica Acta, 510(1), 91-100. https://doi.org/10.1016/j.aca.2003.12.052
Hydrotalcite-like minerals (<I>M</I><SUB>2</SUB>Al(OH)<SUB>6</SUB>(CO<SUB>3</SUB>)<SUB>0.5</SUB>.<I>X</I>H<SUB>2</SUB>O, where <I>M</I> = Mg, Zn, Co, Ni) in the environment: synthesis, characterization and thermodynamic stability
Johnson, C. A., & Glasser, F. P. (2003). Hydrotalcite-like minerals (M2Al(OH)6(CO3)0.5.XH2O, where M = Mg, Zn, Co, Ni) in the environment: synthesis, characterization and thermodynamic stability. Clays and Clay Minerals, 51(1), 1-8. https://doi.org/10.1346/CCMN.2003.510101
Copper and zinc content of periphyton from two rivers as a function of dissolved metal concentration
Behra, R., Landwehrjohann, R., Vogel, K., Wagner, B., & Sigg, L. (2002). Copper and zinc content of periphyton from two rivers as a function of dissolved metal concentration. Aquatic Sciences, 64(3), 300-306. https://doi.org/10.1007/s00027-002-8074-9
The solubility of calcium zineate (CaZn<SUB>2</SUB>(OH)<SUB>6</SUB>·2H<SUB>2</SUB>O)
Ziegler, F., & Johnson, C. A. (2001). The solubility of calcium zineate (CaZn2(OH)6·2H2O). Cement and Concrete Research, 31(9), 1327-1332. https://doi.org/10.1016/S0008-8846(01)00557-9
Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver
Soldo, D., & Behra, R. (2000). Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquatic Toxicology, 47(3-4), 181-189. https://doi.org/10.1016/S0166-445x(99)00020-X
Effects of free Cu<SUP>2+</SUP> and Zn<SUP>2+</SUP> ions on growth and metal accumulation in freshwater algae
Knauer, K., Behra, R., & Sigg, L. (1997). Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae. Environmental Toxicology and Chemistry, 16(2), 220-229. https://doi.org/10.1002/etc.5620160218
Seasonal variations of zinc in a eutrophic lake
Sigg, L., Kistler, D., & Ulrich, M. M. (1996). Seasonal variations of zinc in a eutrophic lake. Aquatic Geochemistry, 1, 313-328. https://doi.org/10.1007/BF00822495
Zinc speciation in lake waters and its determination by ligand exchange with EDTA and differential pulse anodic stripping voltammetry
Xue, H. B., & Sigg, L. (1994). Zinc speciation in lake waters and its determination by ligand exchange with EDTA and differential pulse anodic stripping voltammetry. Analytica Chimica Acta, 284(3), 505-515. https://doi.org/10.1016/0003-2670(94)85057-7
Interaction of trace metals with natural particle surfaces: comparison between adsorption experiments and field measurements
Müller, B., & Sigg, L. (1990). Interaction of trace metals with natural particle surfaces: comparison between adsorption experiments and field measurements. Aquatic Sciences, 52(1), 75-92. https://doi.org/10.1007/Bf00878242