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Abstract

Adaptive structures are characterized by their ability to reversibly modify their response

to external mechanical stimuli so as to extend their operational space (i.e. the range of

conditions under which they can operate). This feature differentiates adaptive structures

from conventional ones, that are designed to maintain their properties invariant over

time. Typically, adaptive structures are comprised of a host structure, one or more

actuators, sensors to determine the actual state or trajectory of the structure and a

control system. The bulk of the research done in this field focuses on the development

of new transducing materials and systems to be used in material based actuators.

The present work focuses on the development of host structures with variable mechan-

ical properties. The ability to modify the bending stiffness or the damping properties of

a structure can be used to increase the functionality of the actuators in active structures

or to suppress high amplitude vibrations in passive ones. The suppression of vibrations

can be achieved either by shifting the eigenfrequency of the structure, thus avoiding

resonance in the case of narrow band excitation (energy rejection) or by introducing a

higher level of damping (energy dissipation).

The original contribution made by this work lies in the development and description of

a structure that has the ability to adaptively modify its behavior based on a change in

mechanical properties, rather than thanks to the action of one or more actuators. The

change of the structure’s properties is caused by an apparent change of its topology.

Very limited literature on the use of electrostatic forces to modify the interaction be-

tween the layers of a multi-layer structure and thus its bending stiffness is available.

This moderate level of knowledge on the working mechanism of multi-layer structures

with variable bending stiffness, warrants the global approach to the discussion of this

topic taken in this dissertation. After giving an overview on the current state of the art in

variable stiffness structures, this work first describes the working principle at the base

of the modification of the mechanical properties of simple structures, then it proceeds

to confirming the validity of the description with the help of simple models and experi-
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ments. Finally, it shows a practical application of the system in calculations that show

the effect of the electrostatic modification of the mechanical properties of a Glass Fiber

Reinforced Polymer (GFRP) bridge deck on its dynamic properties.

The method proposed for the adaptive modification of the bending stiffness and damp-

ing ratio of simple structures such as beams, consists of preparing structural elements

made of multiple layers. These layers are provided with electrodes coated with a dielec-

tric material at their surfaces. By applying an electrostatic field between adjacent layers,

these are coupled by means of the electrostatic forces that accompany the field. If the

amount of shear stress that can be transferred at the interface is large enough relative

to the external transversal load that bends the structure, the structure will behave as if

no interfaces existed between the layers.

A linear elastic analytical model considering interfaces within the system and a numeri-

cal model considering normal interlaminar stress and implementing contact and friction

at the interfaces of the layers of a multi-layer beam are used to demonstrate the mech-

anism of the electrostatic stiffening of a multi-layer beam. A comparison between the

shear stress distributions calculated with the two models shows that up to the max-

imum shear stress that can be transferred by means of friction at the interfaces, no

difference can be made between true topology switch (i.e. an actual cancellation of the

solid-solid interfaces in the structure) and electrostatic coupling of the layers. Once the

shear stresses at the interface generated by external load exceed this limit, the system

softens and displays high damping due to the friction between the contact surfaces.

For small loads (i.e. below the elastic limit of the system), discrete stiffness states are

predicted. Their number increases rapidly with the increasing number of layers of the

system.

In the experimental section of this work, experiments on two different systems are pre-

sented. Both are sandwich beams with stiff faces and a compliant core. The first system

is used to verify the relationship between normal electrostatic stress, shear stress and

stiffness of the system. The mechanical properties of the second system used for this

work are comparable to the ones of Empa’s cable stayed pedestrian bridge. The effect

of the electrolamination of Carbon Fiber Reinforced Polymer (CFRP) strips on the dy-

namic behavior of a GFRP I-beam are investigated. As expected, the stiffening of the

system can be demonstrated for low vibration amplitudes. At large amplitudes damping

is the dominant effect of the electrolamination of the CFRP elements.

The change in mechanical properties due to the electrolamination of the CFRP ele-

ments onto the GFRP base structure measured in the experimental section is used to

extrapolate the expected behavior of the GFRP deck of the pedestrian bridge that will
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be upgraded to create an adaptive system based on the present work. The main result

shown in the last section of this work is that the damping that is obtained through the

interaction of the elements of the electrostatically tunable system is expected to have

a more beneficial effect in terms of vibration damping than the stiffening of the bridge

deck.
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Zusammenfassung

Adaptive Strukturen zeichnen sich dadurch aus, dass sie die Fähigkeit besitzen, ihre

Eigenschaften in Abhängigkeit von externen Bedingungen so reversibel anzupassen,

dass ihr Betriebsraum erweitert werden kann. Diese Eigenschaft unterscheidet adap-

tive Strukturen von konventionellen, die so konstruiert sind, dass ihre Eigenschaften

zeitinvariant sind. Adaptive Systeme bestehen typischerweise aus einer Struktur, einem

oder mehreren Aktuatoren, einem oder mehreren Sensoren, wodurch der Zustand oder

die Trajektorie der Struktur ermittelt wird, und einem Regelungssystem. Der Schwer-

punkt der Forschung auf diesem Gebiet liegt bei der Entwicklung von neuen Werk-

stoffen und Bauteilen, welche die Fähigkeit aufweisen, Energie von einer Domäne

der Physik in eine andere (z.B. von der elektrischen in die mechanische Domäne)

umzuwandeln und somit als Aktuatoren oder Sensoren eingesetzt werden können.

Die vorliegende Arbeit setzt sich mit der Entwicklung von Strukturen mit veränderbaren

mechanischen Eigenschaften auseinander. Die Fähigkeit, die Biegesteifigkeit oder die

Dämpfungseigenschaften einer Struktur kontrolliert zu verändern, kann dazu verwen-

det werden, die Funktionalität von Aktuatoren in aktiven Strukturen zu verbessern oder

um die Unterdrückung von Schwingungen grosser Amplitude in passiven Strukturen zu

erzielen. Bei engbandiger Anregung kann die Unterdrückung von Schwingungen durch

Verschiebung der Eigenfrequenzen (also durch Vermeidung von Resonanzbedingun-

gen) erreicht werden. Bei breitbandiger Anregung, ist die Erhöhung der Dämpfung und

somit der Energiedissipation von Vorteil.

Der Beitrag dieser Arbeit zum Gebiet der adaptiven Strukturen besteht aus der En-

twicklung und Untersuchung von Strukturen, welche Ihr Verhalten dank einer Modifika-

tion ihrer mechanischen Eingenschaften und nicht durch die Einwirkung von Aktua-

toren ändern können. Die Änderung der mechanischen Eigenschaften wird durch eine

scheinbare Änderung der Topologie der Struktur erziehlt.

Zur Verwendung von elektrostatischen Kräften zur Änderung der Wechselwirkung zwis-

chen Schichten einer Mehrschichten-Struktur ist wenig Literatur verfügbar. Dieser be-
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grenzte Stand des Wissens zum Thema der Mehrschichten-Strukturen mit variabler

Biegesteifigkeit rechtfertigt den umfassenden Umgang in der Diskussion der Materie,

der für diese Dissertation gewählt wurde.

Nach einer Übersicht über die erwarteten Vorteile von adaptiven Strukturen gegenüber

herkömmlich passiven Strukturen wird das vorgeschlagene Funktionsprinzip der Steifig-

keitsänderung vorgestellt. Weiter werden wesentliche Aspekte der postulierten Funk-

tionsweise mittels Modellen und Experimenten bestätigt. Im letzten Kapitel wird eine

praktische Anwendung der elektrostatischen Änderung der Biegesteifigkeit und der

Dämpfungseigenschaften von Biegebalken vorgestellt. Anhand der numerischen Berech-

nung des dynamischen Verhaltens eines aus glasfaserverstärktem Kunststoff (GFK)

gefertigten Brückendecks, dessen Steifigkeit und Dämpfungseigenschaften geändert

werden können, gezeigt.

Die für die Veränderung der Biegesteifigkeit und des Dämpfungskoeffizienten vorgeschla-

gene Methode besteht darin, dass man mehrschichtige Strukturen erstellt, deren Gren-

zflächen jeweils mit einer Elektrode und einem darauf geschichteten Dielektrikum verse-

hen sind. Durch anbringen eines elektrischen Potentials zwischen benachbarten Schich-

ten, werden diese von den entstehenden elektrostatischen Kräften aneinander gekop-

pelt. Wenn die Kopplung im Vergleich zu den auf die Struktur wirkenden äusseren

Kräften ausreichend stark ist, wird sich die Struktur wie eine durchgehende (also nicht

mit Grenzflächen versehene) verhalten.

Der Vorgang, durch den ein Mehrschichten-System mittels elektrostatisch generierter

Normalkräfte versteift wird, wird anhand von numerischen Modellen, welche Kontakt

und Reibung berücksichtigen, und durch analytische linear-elastische Modelle dargestellt.

Die mit den zwei Modellen berechnete Schubspannungsverteilungen wurden verglichen.

Der Vergleich zeigt, dass wenn die maximale Schubspannung, die an den Grenzflächen

übertragen werden kann, nicht überschritten wird, die Schubspannungsverteilung in

einer elektrostatisch gekoppelten Mehrschichtenstruktur sich nicht von der Verteilung

in einer monolithischen Struktur unterscheiden lässt. Wenn die maximale Schubspan-

nung an den Grenzflächen überschritten wird, sinkt die Steifigkeit des Systems und

der Dämpfungskoeffizient steigt aufgrund der Reibung, wodurch Energie an den Gren-

zflächen dissipiert werden kann. Für ausreichend kleine externe Lasten, können durch

Aktivieren der Grenzflächen in unterschiedlichen Mustern zahlreiche, diskrete Steifigkeits-

werte realisiert werden. Die Anzahl der Werte nimmt mit der Anzahl der Grenzflächen

im System rasch zu.

Im experimentellen Teil dieser Arbeit werden zwei Mehrschichten-System untersucht.

In beiden Fällen handelt es sich um Sandwich-Balken mit steifen Aussenschichten
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und einem nachgiebigem Kern. Die erste Struktur wird dazu verwendet, um den Ein-

fluss der Anlegung von Normalspannungen an den Grenzflächen auf die Steifigkeit

des Balkens zu zeigen. Die mechanischen Eigenschaften des zweiten Balkens, der

in dieser Arbeit präsentiert wird, entsprechen denen, der Bestandteile der Fussgänger

Brücke, die an der Empa errichtet wurde. Der Effekt der elektrostatischen Kopplung von

steifen kohlefaserverstärkten Kunststoff (CFK) Elementen an den weichen Kern aus

glasfaserverstärktem Kunststoff (GFK) auf die dynamischen Eigenschaften der Struk-

tur werden untersucht. Wie aufgrund der Modellierungsarbeit erwartet, kann die Ver-

steifung des Systems für kleine Schwingungsamplituden nachgewiesen werden. Bei

grossen Amplituden ist die Erhöhung des Dampungskoeffizient der dominante Effekt.

Zum Abschluss wird die im experimentellen Teil dieser Arbeit ermittelte Änderung der

mechanischen Eigenschaften einer elektrostatisch koppelbaren GFK-CFK Struktur ver-

wendet, um das erwartete Verhalten des GFK Decks einer Fussgängerbrücke zu ex-

trapolieren. Aus den Schätzungen, die mit Hilfe eines numerischen Modells durchgeführt

wurden, geht hervor, die Dämpfung, welche aufgrund der Wechselwirkung an den

Grenzflächen zwischen GFK Struktur und CFK Versteifungselementen zustande kommt,

erwartungsgemäss einen stärkeren Einfluss auf das dynamische Verhalten der Brücke

haben wird, als die Erhöhung der Steifigkeit und somit der Eigenfrequenzen der Struk-

tur.
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List of Symbols

C capacitance of a parallel plate condenser

D bending stiffness of a beam

δ thickness of a dielectric layer

E elastic modulus (in mechanical equations), electric field (in electrostatic equations)

Eb breakdown electric field

G shear modulus

ǫ0 permittivity of vacuum

ǫr dielectric constant of a material

ǫxy shear deformation

η damping ratio

λ logarithmic decrement

P mechanical load

Q shear force

σxy shear stress

σf
xy friction stress at an interface

σi
xy shear stress in the ith layer

σint
xy shear stress at an interface

σyy normal stress in y direction

σel
yy electrostatic normal stress in y direction

U electrostatic potential

Ui interaminar electrostatic potential

v(x) transversal displacement at the position x

W energy
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Chapter 1

Introduction

This chapter gives the rationale for the work presented in this dissertation. First, it

shows where the contribution of structures with variable stiffness presented in this work

is situated in the context of the research on adaptive structures. Furthermore, a brief

overview of the state of the art in the field of variable stiffness host structures is pre-

sented in section 1.2, with a special attention to the energy requirements that are of

paramount importance for most applications of adaptive structures. Finally, an overview

of the goals of the present work is given.

1.1 Adaptive Structures

For a long time, engineering structures have been designed to be, ideally, invariant

over time. Hence, the global properties of the structure were determined with the goal

to satisfy at all times the extreme set of the requirements (marked in red in figure 1.1)

determined by the application. This set is determined based on the conditions that

are likely to be encountered during the service life of the structure, as shown in figure

1.1. Such requirements, that will be referred to as the design space, may include but

not be limited to properties such as high ultimate strength, high stiffness, low weight,

and many more. Some properties of the design space (the axes in figure 1.1) may

be in conflict with others. The development of low density, high strength materials and

composites (e.g. carbon fiber reinforced polymers) is a response to the need to fulfill

such conflicting requirements. In the case of the development of lightweight structures

with a high strength that are made by the use of high strength materials, the dynamic

behavior of the systems represents a limiting factor to their performance.

While covering the complete space of requirements simultaneously is a viable approach
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Requirement 1

Requirement 2

Requirement 3

Requirement 4Requirement 5

Requirement 6

Requirement 7

Use Case a Use Case b

Ideal Design Envelope for Time Invariant Systems

Use 

Case c

Figure 1.1: A time invariant system is designed to fulfill the envelope space of require-

ments at all times. The use cases represent different operational conditions that the

structure will be exposed to during its operational life. Examples of load cases could be

’take off’, ’high altitude cruise’ or ’landing’, in the case of an aircraft.

for a great number of applications, this is not always feasible and is bound not to provide

optimum system properties in all situations. The need for lighter, more energy efficient,

better performing structures calls for an optimization of the covered design space. For

example, in many civil, automotive and aerospace engineering applications, the design

of light, slender structures is necessary to achieve better performance. The use of

high strength materials, such as fiber reinforced polymer composites makes it possi-

ble to satisfy the strength requirements of many such structures. Lightweight, slender

structures tend to be more prone to vibrate with large amplitudes than heavier, mas-

sive ones. Furthermore, operating loads have a more marked effect on the vibratory

properties of a lightweight system than they would have on heavy structures. This sit-

uation makes the implementation of time-invariant vibration mitigating measures more

challenging and constitutes a rationale for the development of adaptive systems for the

reduction of vibrations.

Adaptive structures are characterized by their ability to react to external stimuli (forces)

in a way that allows them to achieve a performance that cannot be achieved using

’passive’ materials, i.e. invariant structures.

A simple adaptive system is generally composed of a host structure, an actuator (more

or less integrated into the structure) and a control system, as schematically shown in

figure 1.2.

Through the action of the actuator, the control system minimizes the deviation of the

12



Controller Actuator
Plant

(Structure)

Sensor

Desired

Trajectory

Actual

Trajectory

Feedback

+

Figure 1.2: Schematic representation of an adaptive mechanical system with its base

components: structure, actuator and controller. Adapted from [5].

actual state of the system from the desired one. The trajectory of the system, i.e. its

position as a function of time (thus the mechanical stress in the system) is one of the

most common examples of state that is controlled using an actuator. The introduction of

a time-dependent (controllable) component to the properties of the system (specifically

to its energy level) allows for new degrees of freedom in the design process.

Apart of the continuous development of powerful control systems that allow for the man-

agement of increasingly fast and complex processes, the introduction of transducer-

based actuators (as opposed to ’traditional’ pneumatic, hydraulic and electrical motor

based actuators, also referred to as geometric actuators) have given a strong stimulus

to the development of smart structures.

1.1.1 Material Based Actuators

Transducer materials are materials that exhibit the ability to transform energy from one

physical form to another by virtue of specific coupling mechanisms [5, 41] and are at

the core of transducer material based actuators. More generalized definitions include

the transformation of energy also within a domain [10]. Figure 1.3 outlines the best

known multi-physical interactions and gives examples of materials and systems that

exploit such couplings. Materials that are used to obtain specific effects thanks to the

coupling between different physical domains (e.g. mechanical and electrical, thermal

and electrical, etc.) are generally defined as ’smart’, ’active’ or ’adaptive’ materials.

Definitions of most of these terms are found in [41] and will be adopted for this work.

actuator An actuator can be seen as a system that establishes a flow of energy be-

tween an input (electrical) port and an output (mechanical) port. The actuator is

13



transducing some sort of input power into mechanical power. [41]

active In active actuators the work exchange can take any positive or negative value,

dW ≷ 0. For practical purposes, this means that active actuators can either

increase or decrease the energy level of the controlled system. [41]

semi-active In semiactive actuators the work exchange can only be negative, dW 6 0.

In practice, this means that semiactive actuators can only dissipate energy as a

consequence of mechanical interaction with the controlled system. [41]

smart A smart structure is comprised of transducers that are used both for sensing and

actuating, thus allowing for the concomitant implementation of two of the functions

needed for adaptive structures.

adaptive The term adaptive refers to structures and systems that are able to change

their properties or behavior in order to adjust themselves to new conditions. Struc-

tures or systems comprising actuators as the ones listed above and control sys-

tems can be expected to be adaptive.

passive adaptive The concept of passive adaptive structure applies to non-actuated

structures (dW = 0 or dW ≈ 0) that can nevertheless adjust their behavior to new

conditions.

In the case of mechanical smart structures, the output required from a transducer is

generally in the mechanical domain and can be expressed in the form of the power

conjugate variable force and velocity or torque and angular velocity [10]. Table 1.1

shows a comparison between transducer material based actuators and traditional actu-

ators. The use of actuators in a structure implies the presence of an appropriate source

of energy. While the nature and properties of such a source are not the subject of this

work, the need to minimize the energy requirements of the ’active’ components of an

adaptive structures is a parameter of paramount importance for any application.

The most noticeable difference between traditional and transduction based actuators

is that in the latter, the transformation of energy between domains takes place at the

material level. In many cases, this leads to a better scalability in the direction of smaller

systems. If the coupling between physical domains is bidirectional, the same device

can be used as both a sensor and an actuator. The use of transducer materials for

sensing and power generation thanks to this fact has also been reported, [4,18,29,42].

The properties that characterize materials-based actuators make new applications that

could not be realized using traditional actuators more practicable or even possible. A
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Figure 1.3: Chart representing the most common forms of interaction between different

physical domains, represented by the symbols in the circles: Q- Thermal energy, hν-

Energy in form of electromagnetic radiation, W - Mechanical energy, µ- Energy in form

of chemical potential, E- Energy stored in an electrical field, H- Energy stored in a

magnetic field.

short list of such applications includes among others the propulsion of vehicles [12],

pumps [51], active prosthetics [6, 27], prestressing of civil engineering structures and

building materials [28,39], the active suppression of vibrations [2,44–46], shape change

[15,36].

Some of the main advantages claimed for the use of active materials based actuators

instead of more conventional electric or hydraulic actuators include lower weight and

better integrability. In perspective given the lower level of mechanical complexity of

transducer material based actuators, one could expect that eventually a high level of

reliability should be achieved.
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Table 1.1: Comparison of traditional vs. material based actuators (adapted from [41])

Traditional actuators Transducer material based actuators

• Based on geometrical transducers† • Based on transducing materials (possi-

bly in combination with geometrical con-

cept)

• Off-the-shelf availability • Designed for the application

• Good performance at normal scale • Good for meeting miniaturization de-

mands

• Lumped approach: discrete compo-

nents in motion control systems. Used

in combination with external sensors

• Integrated and embedded approach:

open to smart structure concepts. Pur-

suit of the smart actuator concept

• Conventional mechanical transmis-

sions for (output) impedance matching

• New transmission designs based on

hinges and friction

† Geometrical transducers are devices that owe their ability to transform energy from one domain to

another to a geometrical feature. For example, a DC motor owes its ability to transform electrical energy

into rotational mechanical energy to the geometry of the interaction between current and magnetic fields.

1.1.2 Host Structure

A considerable effort is put in the development of novel transducer materials and actu-

ator systems for adaptive structures applications. Some of the couplings in figure 1.3

(marked in red) imply the modification of mechanical properties instead of transforma-

tion of energy from a non-mechanical domain into mechanical work and exhibit thus a

passive adaptive or semi-active behavior. These effects are substantially different from

the ones seen in active materials and can be used to develop passive adaptive host

structures. This less intensively investigated aspect of adaptive structures is neverthe-

less a promising approach to the extension of the functionality of adaptive system that

include actuators as well as for the development of purely passive adaptive systems.

In actuated systems, the control over the stiffness (i.e. the mechanical impedance)

of the host structure allows for an improved efficiency in the use of the actuators, as

schematically shown in figure 1.4. Only the selection of an appropriate transmission

ratio makes it possible to lift the weight attached to the pulley. If the ratio is too high for

a given actuator (e.g. an electrical motor), the energy will not flow into the mechanical

system but rather be dissipated in form of heat in the actuator. Similarly, if the stiffness

of a structure is too high, actuators integrated in the structure will not be able to carry
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out their task in an efficient manner.

The schematic representation of an actuated system including a host structure with

tunable mechanical impedance equivalent to figure 1.2 is thus extended as shown in

figure 1.5.

Actuated structures with tunable mechanical impedance can be used for novel applica-

tions, such as the aeroelastically assisted shape change of structures [11]. A compre-

hensive presentation of the use of tunable stiffness elements in adaptive structures can

be found in [20, 35]. The modification of the stiffness of a structure as a method to its

morphing is presented in [25].

Also non-actuated systems can draw benefits from the adaptation of the host structure

(see figure 1.6) as a means to exert control over the flow of energy from the environment

(external perturbations) into the system. The primary goal is then not to change the

energy level of the system (dW ≈ 0) but rather to change its mechanical impedance.

Depending on the method chosen for the modification of the stiffness, a change in the

energy level may be a more or less marked side effect. A few examples of structures

with variable mechanical properties can be found in literature. One example of such

work is found in the development of joints with variable friction parameters reported

in [22–24] where the conditions at the boundaries of beam elements are modified by

modulating the friction in the joints between elements. Also the modification of the

stiffness of structures has been reported [17,21,31].

The coupling of damping devices to a structure such as a cantilever beam or the use of

active systems currently represent the methods of choice for the purpose of reducing

A A

m

m

Q

ba

Figure 1.4: Mechanical impedance matching: (a) the actuator heats up as power is not

transferred to the load and (b) the power can be transmitted to the load after pulley’s

impedance is matched to the actuator. [41].
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Figure 1.5: Schematic representation of an adaptive mechanical system with an ex-

tended set of components: structure, structure controller, actuator and actuator con-

troller.
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Figure 1.6: Schematic representation of a passive adaptive mechanical system con-

sisting of structure and structure controller

the amplitude of its vibrations.

The modification of the mechanical properties of structural elements, such as their

bending stiffness, can be of special interest for vibration mitigation applications. By

modifying the bending stiffness of a structural element it is possible to influence its vi-
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bratory properties, such as the eigenfrequencies. This opens the way to application

of methods for the mitigation of vibrations by suppressing the adsorption of energy at

given frequencies.

The observation that high-amplitude vibrations are often caused by resonance phenom-

ena leads to the conclusion that, while the spectrum of the exciting forces can generally

not be influenced, it is in principle possible to shift the natural frequencies of a system,

so as to avoid the absorption of the high energy components of the exciting spectrum.

While this idea is almost trivial, its realization may be faced with serious technical diffi-

culties.

The vibratory properties of a body depend on its mass and its mechanical properties.

In the case of the bending natural frequencies of a beam, the eigenfrequencies are

described by:

ωk = β2

k ·

√

D

ρ
(1.1)

where ωk is the kth eigenfrequency of the system, βk is the kth solution of the equation

describing the vibration of the system, D is the stiffness of the system and ρ is its

density [52].

For the bending vibrations of a simple beam, the relevant mechanical property is the

bending stiffness D. Two parameters determine the bending stiffness of a structural

element, as shown in (1.2):

D = EIz (1.2)

Where E is the elastic modulus of the material the structure is made of and Iz is the

second moment of area of the structure, a geometric property of the structure. Since

the mass of the system is generally expected to be invariant, the vibratory properties

will be tuned by modifying of the stiffness of the system.
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1.2 Approaches to the Modification of the Mechanical

Properties of the Host Structure, an Overview of the

State of the Art

In the case of structural elements made of one bulk material, such as the simple can-

tilever beam shown in figure 1.7, a modification of the bending stiffness of the system

can be achieved either by a modification of the elastic properties of the constituting

material or by a change of the geometry of the system.

Different approaches to the modification of the bending stiffness of simple structural

elements for passive adaptive structures will be presented and briefly discussed using

hypothetical examples and examples from literature.

As outlined in section 1.1, adaptive structures are chosen over time invariant structures

when the latter cannot fulfill the requirements set by a given number of use cases.

Weight is often one of the most stringent constraints, so that energy storage and thus

energy supply are likely to be among the critical factors that need to be addressed in

the development of adaptive structures.

In the considerations made in this section, we estimated the energy demand needed

to implement the solutions outlined in section 1.2.1 and 1.2.2. The energy to obtain a

t

b

 

F

x

y

l

z

B

Figure 1.7: Simple cantilever beam with cross-section b · h subject to a load F at a

distance l from the origin.
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certain increase in stiffness by modifying the elastic modulus or the second moment of

area is compared to the energy input needed to obtain the maximum possible stiffness

change in a cantilever beam using different methods.

The experiments are thought in comparison with a glass fiber reinforced polymer (GFRP)

I-beam used for the experimental work presented in section 4.3 and shown in figure 4.7.

The beams were thought to have the same initial bending stiffness as the GFRP beam.

The energy needed to achieve the maximum stiffness that can be realized for the de-

scribed stiffening methods was calculated. According to the manufacturer, the bending

stiffness of the reference GFRP beam is D=71.3 · 109 Nmm2 [16].

While the cases presented in this section are purely hypothetical and do not neces-

sarily represent engineering grade solutions to the problem of modifying the bending

stiffness of a structural element, they are meant to show the difficulty of developing

energy efficient passive adaptive host structures for adaptive systems.

1.2.1 Modification of the Elastic Modulus

At a fundamental level, the elastic properties of solids are governed by the electrostatic

attraction and repulsion forces between atoms of a material. The shape of the poten-

tials that determine the elastic properties of the material is mainly determined by the

nature of the bond (metallic, covalent, ionic etc.), the geometric distribution and the

electronic properties of the atoms [33]. For most engineering materials, the options for

a substantial modification of their elastic properties are extremely limited.

Significant changes in the elastic properties of solids are known mainly for certain solid-

solid phase transformations, such as the γ ↔ α′ phase transformation in NiTi shape

memory alloys. In this case, the high temperature (body centered cubic, bcc) γ phase

has an E-modulus of approximately 80 GPa, compared to 35 GPa for the low tempera-

ture (face centered cubic, fcc) α′ phase [7]. The noticeable change in elastic properties

in this case is not due to changes in the interaction potentials at an atomic level but

rather to the activation of twinning/de-twinning mechanisms in the fcc phase that are

not available in the bcc phase.

Also well known is a marked reduction of the shear modulus G of elastomers and par-

tially crystalline thermoplastic polymers in correspondence with an increase of the tem-

perature above the glass transition temperature Tg. Typical changes in shear modulus

G due to this second order transformation are of the order of 10 to 100 times. In both

cases, the change in material properties is due to temperature driven processes and is

thus subject to the laws of heat transfer.
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Energy Considerations

In the case of the γ ↔ α′ phase transformation, the energy necessary to achieve a

stiffness increase of the order of three times can be estimated as follows:

W = Wth + Wpt = m · ∆T · cp + ∆Gpt (1.3)

where Wth is the thermal energy needed to heat the material to the phase transfor-

mation temperature, Wpt is the phase transformation Enthalpy ∆Gpt for γ → α′, m is

the amount of material to be heated and to undergo the phase transformation, T is the

temperature difference between the initial temperature (e.g. room temperature) and the

phase transformation temperature, cp and ∆Gpt are the specific heat capacity and the

phase transformation free enthalpy, respectively. Considering that cp is approximately

0.5 J/g·K [7] for a ∆T of 60 K, Wth is of the order of 30 J/g. Differential scanning

calorimetry measurements show that Wpt is also of the same order of magnitude (ap-

proximately 20 J/g) [7]. Assuming a total energy requirement of approximately 50 J/g,

the change in stiffness is energetically quite expensive and, given the nature of the

phenomenon, it is bound to be limited in speed by heat transfer processes.

A NiTi beam with an I cross-section and (54 mm wide, 108 mm tall, with a thickness

d=5.4 mm, as shown in Figure 1.9) has a cross sectional area of approximately 113.7·

103 mm2 and a bending stiffness D of approximately 71.3·109 Nmm2, in its low temper-

ature phase α′. The volume of such a 2500 mm long beam is 2.843· 106 mm3 and the

weight is approximately 18’340 g. The total energy needed to attain the stiffening of

the beam by a factor of approximately 2.8 thanks to the α′ → γ phase transformation is

thus of the order of 900 kJ.

In the examples outlined in this section, the change in elastic modulus takes place in

connection with a thermodynamic first or second order transition. The occurrence of

such phase transformations is thus mainly temperature controlled, although especially

in the case of the γ ↔ α′ phase transformation in NiTi alloys, mechanical stress also has

an influence. Heat transfer mechanisms limit the rate at which such desired temperature

driven changes in elastic properties can take place and thus the frequency response of

the system.
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1.2.2 Modification of the Moments of Area

Shape Change

For a simple, solid, cantilever beam with a rectangular cross-section, the bending stiff-

ness is given by:

D = E · Iz = E ·
bh3

12
(1.4)

Where E is the elastic modulus of the material and Iz is the second moment of area

of a rectangular cross-section like the one shown in figure 1.7, where b and h are the

width and thickness of the cantilever, respectively.

Given an elastic modulus E for the beam material, the geometry of the cross-section of

a cantilever has a significant influence on its bending stiffness, which has been exten-

sively investigated.

The second moment of area Iz in 1.4 is calculated for an arbitrary cross-sectional ge-
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Figure 1.8: Effect of the morphing of the cross section geometry on the second moment

of area of a beam. A comparison of the second moment of areas for the different cross

sections for a constant area A = a2 is given in (1.6).
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ometry as:

Iz =

∫

A

∫

y2dS (1.5)

with dS = dx · dy and the co-ordinate system with its origin in the center of gravity of the

cross-section, as depicted in figure 1.7. For a given cross-sectional area, an appropriate

selection of the geometry yields an increase in the stiffness of the beam. So, for the

cross-sections shown in figure 1.8 we will obtain using (1.5) that Iz,1 < Iz,2 < Iz,3, while

A1 = A2 = A3 = a2:

Iz,1 =
a4

4π
≈

a4

12.5

Iz,2 =
a4

3

Iz,3 =
5.824a4

6
≈ a4 (1.6)

A modification of the cross-sectional shape from cross-section 1 to cross-section 3

yields an increase in bending stiffness by a factor of approximately 12.5. This cir-

cumstance is well known and widely used to optimize the stiffness of structures while

maintaining their mass constant. Nevertheless the development of a cantilever beam

with variable stiffness based on the morphing of the geometry from cross-section 1 to

cross-section 3 presents a number of practical difficulties if the structure is made of a

commonly used engineering material.

More realistically, a fairly moderate geometry change can be achieved by modifying the

height of the web of an I-beam:

Similarly to (1.6), (1.8) shows the effect of a modification of the geometry on the second

moment of area of the I-beam shown in figure 1.9:

Aundeformed = Adeformed (1.7)

Iz,undeformed = 2bd(
d + hweb

2
)2 +

dh3

web

12
< Iz,deformed = 2bd(

d + khweb

2
)2 +

dk2h3

web

12
(1.8)

The increase of the web height by a factor k leads to an increase in bending stiffness,

as shown in (1.8). Keeping the volume of the web constant, the width of the web will

then be reduced.

If the thickness of the flange is significantly smaller than the height of the web, the effect

can be considered of the order of k2 for both terms of the right hand side of (1.8). The

remarkable material properties of NiTi alloys allow for large (up to approximately 7%)
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Figure 1.9: Effect of the modification of the cross section geometry on the second

moment of area of a beam. A comparison of the areas and second moment of areas

for the different cross sections is given in (1.7) and (1.8).

superelastic (i.e. reversible) deformations, if suitable forces are applied to the flanges.

Assuming k ≈ 1.07, an increase of the stiffness of the order of 15% can be obtained.

[8, 31] report about a method to modify the stiffness of a beam subject to bending by

modifying the geometry of the system, in order to create a tunable vibration absorber.

Energy Considerations

Figure 1.10 shows the stress-strain diagram of a suitably selected alloy. The energy

density needed for the superelastic deformation is approximately 17 MPa, based on

the area under the stress strain curve. The volume of the web is approximately 1.31·

106 mm3 (97 mm x 5.4 mm x 2500 mm). The total energy needed for the geometry

modification is given by the area under the stress-strain curve shown in Figure 1.10 is

then approximately 22 kJ. The obtained increase in bending stiffness is of the order of

14.5%.
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Figure 1.10: Stress strain curve for a NiTi alloy adapted from [7], after [43]

Topology Modification

Considering the properties of multi-layer composite structures reveals immediately that

not only the overall geometry (shape) of a structure but also its topology has a substan-

tial influence on its elastic properties.

The starting point of an example to illustrate the effect of topology change shall be again

an I-beam. In its low stiffness configuration, the beam is divided in three layers (the two

flanges and the web), as shown in the left hand side of figure 1.11.

As long as no interaction between adjacent layers is allowed, the bending stiffness of

the described system can be written as the sum of the stiffness of the components:

Ddisconnected = E · (
b · d3

12
+

d · h3

web

12
+

b · d3

12
) (1.9)

with b, d, h and hweb as shown in figure 1.11.

Assuming the proportions between the measurements of the beam to be the same as
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Figure 1.11: The modification of the topology of an I-beam causes a remarkable in-

crease of the stiffness.

for the one used in section 4.3:

d : b : h : hweb = 1 : 10 : 18 : 20 (1.10)

(1.9) becomes

Ddisconnected = E(
5

6
d + 486d +

5

6
d) = E · 487.7 · d4 (1.11)

Once the components are connected at the interfaces (highlighted in red in figure 1.11),

the contribution of the flanges becomes.

Dflanges = E · d · b · (
hweb

2
)2 = E · 1805d4 (1.12)

Thus the stiffness of the connected I-beam (on the righthand side of figure 1.11) is:

Dconnected = E · 2291d4 (1.13)

The ratio of the stiffness of the beam in the two states (disconnected and connected)

is:

Dconnected

Ddisconnected

=
2291

487.7
≈ 4.7 (1.14)

The difference between the two described cases is given by the ability of the interfaces

between layers of a laminated beam to transmit shear stresses from one layer to the

next.
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The effect of topology on the stiffness of mechanical systems has already been re-

ported in [49]. Also, reports of an equivalent system to what previously described by

the authors can be found in [48], although the observed modification of the behavior of

the system is attributed entirely to dissipative friction processes, rather than the mod-

ification of the topology of the system, from a mechanical point of view. The results

reported in [3] indicate that the effects obtained by coupling layers of a beam exceed

the dissipative effects in [48].

Energy Considerations

The modification of the topology of a multi-layer system is achieved by creating or can-

celing the interfaces between layers of the system. The creation of new interfaces

requires energy, while the cancellation is an exothermal process. The order of magni-

tude of the energy needed for or released by the topology switching process equals, in

theory, the surface energy of the material (e.g. 1.5-2 Jm−2 for transition metals like Iron

or Titanium, [1]). The thickness d of the beam shown in figure 1.11 can be calculated

for the low stiffness state using (1.9). In the case of a steel beam (E = 210GPa) with

the proportions discussed in section 1.2.2 and the aforementioned stiffness of 71.3 ·

109 Nmm2 the thickness d will be 5.13 mm.

The energy needed or released for a connectivity change is then given by:

Econnectivity = 2 · A · esurf = 4 · 2.5m · 0.00513m · 1.5Jm−2 = 0.077J (1.15)

Where esurf is the surface energy of the material, A is the surface area of the interfaces

that are created or canceled.

Based on this estimate, only approximately 0.08 J would be needed to create new

surfaces and the same amount of energy would be released upon their cancellation.

A comparison with other methods for the modification of the mechanical properties

of structural elements, such as the ones outlined in this section shows that in theory

the topology switch promises a very high pay-off in terms of amplitude of the stiffness

variation in comparison with the energy needed to obtain it.

In reality, only upon cleavage of the material, new surfaces can be created at so lit-

tle energy expense. Similarly, the cancellation of surfaces is in reality a process that

requires a considerable amount of energy due to the need to provide the activation en-

ergy necessary to bond the surfaces. The energy necessary to bond metallic structural

elements is either provided in form of thermal energy (in the case of welding soldering

or brazing) or in form of chemical energy, if adhesive bonding is used. The separation

of the bonded layers is technically achieved by machining the structure or by other high

energy mechanical or thermal processes. These methods for the creation or cancella-
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tion of interfaces are not compatible with the goal to adaptively modify the bending or

torsional stiffness of a structure.

1.2.3 Summary

The modification of the mechanical properties of the host structure offers an additional

degree of freedom in the design of adaptive systems. Structures with tunable me-

chanical properties can be used as such for vibration suppression applications or in

combination with actuators for enhanced shape control applications.

The previous sections have described possible ways to obtain a modification of the

bending stiffness of a simple structure.

Adaptive structures find often their application in systems where performance and weight

are of paramount importance. The energy demand to obtain a given effect (in this case

a modification of the stiffness) plays thus a central role in the assessment of the overall

effectiveness of a new system.

Table 1.2 gives an overview of the two main parameters that were calculated for the

presented examples: The increase in stiffness that can be achieved with each method

and the energy needed to achieve it, under ideal circumstances.

The parameters listed in the table clearly show the potential of topology switching as a

low energy approach to the modification of the bending of structural elements. Given its

sensitivity to the distribution of the cross-sectional area in space, the torsional stiffness

Table 1.2: Comparison of energy demand of the presented stiffening strategies

Method Obtained increase in stiffness Required energy [kJ]

Modification of the elastic

modulus of NiTi (section

1.2.1)

2.7 900

Modification of the height of

the web of a NiTi beam (sec-

tion 1.2.2)

1.15 22

Modification of the topology

of a steel beam (section

1.2.2)

4.7 80 * 10−6
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of the structure can be modified according to the same principle, but is not discussed

here. The axial stiffness of structural elements cannot be modified using approaches

that leverage on a change of the area distribution, since this property only depends on

the cross-sectional area.

1.3 Goals and Structure of the Present Work

The primary goal of the present work is to present a method to realize the modification

of the bending stiffness of simple adaptive host structures based on the topology switch

approach.

The challenge of this work is to overcome the difficulties posed by the energy require-

ments set by the creation and cancellation of the interfaces within the system.

A method for the implementation of the stiffness modification equivalent to topology

switching will be presented in chapter 2.

In order to appreciate the limits and possibilities of the method devised for the modi-

fication of the bending stiffness, a quantitative understanding of the mechanisms that

govern it is necessary. The use of the analytical and numerical models presented in

chapter 3 allows for such understanding without the experimental difficulties posed by

the use of physical models.

The experiments described in chapter 4 will substantiate most of the aspects addressed

in the two previous, with special attention for the demonstration of the modification of the

vibrational properties of simple structures, and highlight the technical problems encoun-

tered in the implementation of the electrostatic modification of the bending stiffness.

An example of the application of multi-layer structures for vibration suppression will be

presented in chapter 5.

Finally, the meaning of the present work will be summarized and discussed in chapter

6.
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Chapter 2

Working Principle of the Electrostatic

Tuning of the Stiffness

While true topology switching (i.e. the creation or cancellation of interfaces) cannot be

realized without the use of large amounts of energy per unit interface area, the mod-

ulation of the contact stress at the interfaces, and thus of the shear stress transfer by

means of friction, can yield an equivalent effect. In this chapter similarities between the

shear stress transfer at the atomic level and at the meso-level are outlined at first. Then,

the chapter shows how the application of electrostatic fields across the interfaces of a

multi-layer structure will be used to mimic the creation and cancellation of interfaces.

2.1 Connectivity, Interfaces and Shear Stress Transfer

The previous section outlined how a change in the connectivity (or topology) of a multi-

layer system can lead to a remarkably high change in mechanical properties for a nomi-

nally low energy input. In the context of this work, the term connectivity (of areas) refers

to the presence or absence of interfaces within a cross section. 1 In reality, the energy

needed to divide a structure in many layers or join the layers of a structure to a monolith

is much greater than the surface energy of the material the structure is made of. The

main obstacle to the use of topology switching for the modification of the mechanical

properties of a structural element is thus that there is no simple method to realize it

while fulfilling following requirements:

1The connectedness of a space is a concept of topology. In this context the terms ’connectivity’ and

’topology’ of a section will be used interchangeably.
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• Limited energy requirements

• Small weight penalty

• Short reaction time

These requirements are central to the application of adaptive systems in high perfor-

mance structures, as outlined in chapter 1.

In this chapter we will examine in more detail how the connectivity of a simple multi-

layer system influences its mechanical properties. An alternative approach to a true

topology switch for the modification of the properties of a structure will be presented.

2.2 Shear Stress Transfer and Stiffness

A closer look at the shear stress distribution in a multi-layer system shows that a change

in connectivity of the system essentially influences the transmission of shear stresses

at the interfaces between layers, as shown in figure 2.1.
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Figure 2.1: Effect of connectivity switching on the shear-stress distribution in the cross-

section of a cantilever beam
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In a multi-layer beam subjected to a bending load, as in the top drawing of figure 2.1,

the shear stress distribution is expected to have a zero value at the interfaces of the

layers of the beam i.e. at positions y = i · h with i = 1, 2, ...n, as detailed by the σxy

distribution. In the solid beam shown in the bottom figure, the σxy distribution reaches

a zero value only at y = ±n
2
· h, i.e. at the outer faces. The difference between the two

distributions accounts for the different bending behaviors of the two systems. It should

be noticed that if subjected to a tensile stress in the x direction, the global behavior

of the two systems will be the same, independent of the number and position of the

interfaces in the system.

2.3 Shear Stress Transfer in Crystalline solids

The ability to transfer shear stresses across planes of a crystalline body is at the origin

of the shear stiffness of materials such as metals, as shown in figure 2.2.

In order to induce a shear deformation ǫxy in a crystalline structure by applying a shear

stress σxy, the crystal planes have to be shifted along one another as shown in the

sequence (a) → (b) → (c) representing the idealized plastic deformation process2 by

one lattice constant d per plane. In order to do so, the distance d of the planes will be

increased up to d′. The periodic potential shown in the graphic under (b) is given by

the electrostatic interaction between the atoms of the upper plane and the ones of the

lower plane. The system reaches its maximum energy level when the relative position

of neighboring planes is as shown in (b).

Small elastic shear deformations take place in proximity of the equilibrium state (a).

For these deformations, the stress is known to be approximately proportional to the

deformation, as indicated by the red line in the graphic under (b) [33]. Hence, the

stress-deformation relationship for small deformations is linear:

σxy = G · ǫxy (2.1)

Once the distance between the two planes is sufficiently large (D, in (d)), due to the

creation of new surfaces within the material, the electrostatic interaction between the

atoms on originally contiguous planes becomes so small (as indicated by the horizontal

red line in the graphic under (e)) that no shear stress is needed in order to move the

planes past one another.

2In reality the carriers of plastic deformation are dislocations that are activated at significantly lower loads

than would be needed for the homogeneous plastic shearing of the crystal.
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Figure 2.2: The resistance to shear of crystalline solids is given by the energy difference

between the equilibrium state (a) and (c) and the state of maximum deviation of the

crystal lattice parameter d′ (b). Adapted from [33]

2.4 Creation and Cancellation of Interfaces

The amount of energy needed to create new surfaces is in theory very modest [1], as

shown in table 2.1. The reverse process, i.e. the joining of two surfaces is then an

exothermal process.

Table 2.1: Surface energy of some metals used in engineering applications [1]

Metal Atomic Number Surface Energy Surface Energy

Calculated, σc Measured, σexp

[J/m2] [J/m2]

Titanium 22 1.79 1.44

Chromium 24 1.93 1.59

Iron 26 2.22 -

Nickel 28 2.35 1.44

Copper 29 1.66 1.12
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Nevertheless, it is known that in reality much higher amounts of energy are involved

in the switch from the connected to the disconnected state. Also, experience shows

that although the endothermic process in which surfaces are created is in principle

reversible, energy is needed both for dividing and for joining a body.

Observation of the geometric properties of real solid surfaces shown in figures 2.3

and 2.4 yields an insight into the reasons for the inapplicability of topology switching

to engineering grade surfaces. The presence of surface defects hinders the contact

between surface atoms [47] even on the smooth surfaces of cleaved single crystals.

Figure 2.3: At an atomic level, even the smoothest real surfaces present terraces, ad-

atoms, kinks, and other surface defects that make the real contact surface smaller than

shown in the idealization of figure 2.2. Adapted from [47]

Furthermore, almost every surface is known to be rough also on a larger scale than

the one shown in figure 2.3. This means that most parts of the surface are not flat but

form peaks or valleys. For engineering grade surfaces, the typical amplitude between

peaks and valleys is of the order of about 1µm. Under normal conditions, the profile of

the surface is essentially random, irrespective of its source and scale of size, as shown

in figure 2.4. Hence, when two solids contact each other, the actual contact surface is

substantially smaller than the apparent contact surface [47]. For common engineering

materials, the cancellation of an interface cannot be achieved by contact between the

surfaces.

The processes involved in the creation of new surfaces are generally more complex

than the mere cleavage of a single crystal, as they generally involve plastic deformation

of the material. This leads to a much higher energetic expenditure than needed just for

the creation of new surfaces. Generally speaking, a high fracture energy is a desirable

property of engineering materials, since the integrity of structures depends on it.

For the reasons outlined in this section, topology switching cannot be considered for

the stiffness tuning of engineering structures in real applications.
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Figure 2.4: Real surfaces, as the ones found in engineering structures are rough.

The surface profile is generally random and shows features at different scales of size.

Adapted from [47]

2.5 Friction at Real Interfaces and Shear Stress Trans-

fer

The contact interaction between solids is substantially different from the interaction be-

tween crystal planes moving relative to each other. The geometry of the surfaces that

are in contact is random, thus no periodic potential governs the relative displacement

between the surfaces. The actual contact area is generally so small that the electro-

static interactions between atoms of the two surfaces are not sufficient to make any

significant contribution to the transfer of shear stresses across the interface.

The contact between solid surfaces has been studied intensively at different levels of

detail, ranging from empirical observation to modeling of the processes at contact sur-

faces.

From a phenomenological point of view, it is known that when a normal force N is

applied to two solid surfaces that are in contact (see figure 2.5), friction between the

surfaces is experienced. Friction is the force Ff that is opposed to the relative motion

of the surfaces in the direction imposed by an external force F .

Four basic empirical laws of friction have been know for a long time [47]:

1. There is a proportionality between the maximum tangential force before sliding

and the normal force when a static body is subjected to increasing tangential load
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Figure 2.5: A simple representation of the friction between solid surfaces

F .

2. The tangential friction force is proportional to the normal force in sliding

3. Friction force is independent of the apparent contact area

4. Friction is independent of the sliding speed

If the forces shown in figure 2.5 are averaged over the apparent area of contact, points

1. and 2. can be written as:

σf
xy = µ · σyy (2.2)

Where σf
xy is the average shear (friction) stress at the contact surfaces and σyy is the

average normal stress at the contact surfaces.

The development of structures with tunable bending stiffness proposed in this work is

based on the assumption that for the purpose of calculating the bending stiffness of a

structural element, the connectivity of the element can be stated in terms of the ability

to transfer shear stresses across its cross-section independently of the mechanisms

involved in the process.

In this work, the shear stress transfer functionality that in a solid body is guaranteed

within the limits set by the strength of the material is replaced at selected locations
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by shear stress transfer through friction between solid surfaces. Up to the limit set by

the static friction between the surfaces, the shear stress in the cross section of the

component (e.g. a beam) subjected to bending forces can be transferred in full. The

governing parameters are the normal stress and the friction coefficient at the interface.

The application of normal forces at the interfaces of a multi-layer structure can be

achieved in various ways and can be modulated at a fairly high speed. The first two

requirements stated at the beginning of this chapter (low weight penalty and limited

energy consumption) need to be addressed by a suitable choice of the method used to

apply the needed force, as will be described in section 2.6.

2.6 Electrostatic control of the Shear Stress Transfer

For the purpose of the adaptive modification of the bending stiffness, we have seen

that a sufficiently large normal stress needs to be applied at the interfaces between

the layers of a multi-layer structure, in order to enable shear stress transfer at those

locations.

The application of an electrical field between the contact surfaces of adjacent layers is a

practical way to generate the normal stresses needed for this purpose. In order to apply

an electrical field, the two interfaces have to be electrically insulated by a dielectric layer,

as shown in figure 2.6.
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Figure 2.6: The application of an electrostatic field between surfaces of the layers of

a multi-layer structure generates normal stress at the interface. Here, the layers are

assumed to be non-conductive, hence an electrode bonded to the layer is necessary at

the interface.
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The use of strong electrostatic fields to generate normal stresses across thin dielec-

tric layer is known in the field of Dielectric Elastomer Actuators (DEA). One difference

between the system presented in this work and DEAs is that the dielectrics in DEAs

are highly compliant in order to allow for the deformation of the system that leads to

the actuation process. The electrodes have thus also to be compliant in order to fulfill

compatibility requirements with the deformation of the dielectric. [37,38]

The normal stress σel
yy generated by the electrostatic potential Uacross the dielectric is:

σel
yy =

ǫ0ǫrU
2

2δ2
(2.3)

Where ǫ0 is the permittivity of vacuum, ǫr is the dielectric constant of the dielectric layer,

U is the applied potential, and δ is the thickness of the dielectric layer. (2.3) shows that

the stress increases proportionally to 1/2δ2, which indicates that thin dielectric layers

are highly desirable.

When multiple dielectric materials fill the space between the electrodes of a capacitor,

the system can be described as a series of capacitances, each with the thickness δi and

the dielectric constant ǫi
r. The effective dielectric constant of the system is calculated

via the calculation of the capacitance of the system:

1

Ctot

=
∑

i

1

Ci

1

Ctot

=
∑

i

δi

ǫ0ǫi
rA

(2.4)

From (2.4) and the total thickness of the space between the electrodes, the equivalent

dielectric constant ǫr of the system can be obtained:

ǫr =

∑

i δi
∑

i

δi

ǫ0ǫi
rA

ǫ0A

ǫr =

∑

i δi
∑

i
δi

ǫi
r

(2.5)

The stress-potential relationship in a system with multiple dielectric layers can then be

calculated substituting ǫr from (2.5) into (2.3).
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The use of very thin dielectric layers is limited by the breakdown field Eb, a physical

property of the dielectric material indicating the maximum field strength above which

the insulating properties of the material are lost. For a material with a breakdown field

Eb the minimum thickness of the dielectric layer is given by:

δmin(U) =
U

Eb

(2.6)

Where U is the potential across between the electrodes.

Together with the dielectric constant, Eb determines the maximum normal stress that

can be generated across the insulator:

σel
yy,max =

ǫ0ǫrU
2

2δ2
min

=
ǫ0ǫrE

2

b

2
(2.7)

It is noteworthy that (2.7) has the same form as the equation for the specific energy

stored in the electrical field of a capacitor. Using the physical properties of a dielectric

material commonly utilized for the production of capacitors , such as Al2O3, ǫr ≈ 10 and

Eb ≈ 200 − 500kV/mm the maximum normal stress will be of the order of 2-11 MPa.

Assuming a fairly modest coefficient of friction µ of 0.2, the maximum stresses that can

be transferred through friction at the interface will be of the order of 0.4-2.2 MPa. This

compares to approximately 30 MPa shear strength for Aluminum or approximately 190

MPa for common stainless steel.

The energy needed to generate the estimated normal and friction stresses in the dielec-

tric material between load bearing layers is of the order of 2-11 mJ/mm3 . Thus, from

an energetic standpoint the use of electrostatic fields as a means to adaptively couple

the layers of a multi-layer structure is an appealing approach. In the following chapters,

numerical models and experiments will be used to show the potential and the limits of

this type of tunable stiffness structures.
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Chapter 3

Modeling of Structures with Tunable

Stiffness

This chapter will deal with two aspects of the modeling of structures with tunable stiff-

ness. In the first part, the effect of the interfaces of a multi-layer system on the shear

stress distribution will be considered for bending loads. The system considered is a sim-

ple, homogeneous four-layer beam in which the shear stresses at all three interfaces

are transferred by means of friction. The results obtained are especially interesting

to show how friction-based shear stress transfer compares with shear stress transfer

within a solid material. The calculations performed with a numerical model will show

that once the maximum transferable shear stress at the interfaces is reached, the sys-

tem softens considerably and then behaves linearly again. In this second part of the

force displacement curve, the layers slip on one another. This is at the origin of a hys-

teretic behavior shown in the last section devoted to the local behavior of the system.

The second part of this chapter presents the global behavior of the system within the

elastic domain, i.e. before interface slipping starts occurring in a significant way. The

effect of the virtual cancellation or creation of interfaces on the stiffness of a homoge-

neous multi-layer beam is shown: As a result of different interface activation patterns,

the stiffness can be changed in discrete increments. The number of different stiffness

values that can be realized increases with the number of layers in the system.
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3.1 Local Behavior: Shear Stress Transfer by Means of

Friction vs. Shear Stress Transfer in Solids

In this section, we present a numerical model of a homogeneous tunable multi-layer

beam that considers contact and friction to describe the behavior of the studied struc-

tures. We will consider beams with a homogeneous cross-section, in which all layers

are made of the same material and have the same width. The layers are the smallest

unit of the system. They can be connected to a bundle of multiple layers by removing

interfaces between them. The thickness of bundles is always a whole multiple of the

thickness of a layer. This choice makes the modeling work more clear and the results

more readily understood. The model is compared with analytical solutions for an equiv-

alent system in which the connectivity of the layers is switched. In the analytical model,

the layers are regarded as independent bodies that are subjected to loads such, that

their deflection lines are identical.

The obtained model is used to better understand the processes taking place at the

interfaces between layers, demonstrate the existence of discrete stiffness states and

as a base for the selection of suitable dielectric materials for the generation of the

electrostatic normal stresses needed for the shear stress transfer at the interface.
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Figure 3.1: Two cross sections with the same geometry and different topologies. The

topologically connected cross section (right) has one neutral axis (n.a.), while the dis-

connected one (left) has four (n.a.1...n.a.4). On the bottom left the local coordinates for

layer i are shown.

3.1.1 Deflection and Shear Stress Distribution in a Multi-layer Beam

For the analytical description of the bending behavior of a multi-layer beam with rect-

angular cross section of total height N · h and width b, consisting of k bundles of height
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ni · h, following assumptions are made:

• The layers and the complete beam are modeled as Euler-Bernoulli beams, i.e.

no shear deformation is considered. This is justified by the slenderness of the

elements and the assumption that beams of an isotropic materials are considered.

Shear compliant beams will be considered in chapter 4.

• The bending stiffness Di of the ith layer is given by:

Di = E · Iz,i =
E · b

12
· (ni · h)3 (3.1)

• The total stiffness of the beam is given by:

Dtot = E · Iz,tot =
E · b

12
·

k
∑

i=1

(ni · h)3 (3.2)

• The transversal displacement v(x) of the system is:

v(x) =
P

Dtot

· f(x) (3.3)

Where f(x) is a function, typically a polynomial, that describes the shape of the

deflected beam and P is a load scaling factor.

• The transversal displacement vi(x) is the same for each layer:

v1(x) = ... = vi(x) = ... = vk(x) (3.4)

From the previous assumptions, Pi, the load scaling factor used in the calculation of the

loads acting on each layer, can be obtained:

Pi = P ·
Di

Dtot

= P ·
n3

i
∑k

i=1
ni

3
· (3.5)

The system bends like an array of k parallel beams, each subject to a load proportional

to the cube of their height, where the sum of the loads acting on each layer corresponds

to the load applied to the component.

Using the shear force function Qi:

Qi(x) = Di · v
′′′(x) = Pi · f

′′′(x) (3.6)
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The shear stresses in each layer become then:

σxy,i(x, yi) =
Qi(x) · ((nih

2
)2 − y2

i )

2Iz,i

=
6P · f ′′′(x) · ((nih

2
)2 − y2

i )

bh3
∑k

i=1
ni

3
(3.7)

yi is a local coordinate in each layer representing the distance in y-direction from the

neutral axis of each layer of k layers. The maximum shear stresses in each layer of the

multi-layer beam (σxy(x, yi = 0)) is given by:

σxy,i(x, yi = 0) =
3

2
P

n2
i · f

′′′(x)

b · h ·
∑k

i=1
ni

3
(3.8)

If all bundles in the system have the same thickness of n layers, then the sum in the

denominator of (3.8) can be written as s · n3, where s is an integer thus yielding:

σxy,i(x, yi = 0) =
3

2
P

f ′′′(x)

b · h · s · n
(3.9)

s · n · h is the total height H of the multi-layer beam. For a given load pattern, the

maximum shear stress in a multi-layer beam in which all bundles have the same height,

is independent of the height and number of the individual bundles.

The relations presented in this section are valid for a homogeneous multi-layer beam

composed of n layers of thickness h that interact only by transferring transversal forces

by contact. No other interaction (e.g. friction at the contact surface) is considered.

3.1.2 Numerical model of the friction based shear stress transfer

at interfaces

The analytical model presented in the previous section describes how the system be-

haves when full or no shear stress transfer is provided at the interfaces between layers.

A comparison between the electrostatically generated normal stresses (and the asso-

ciated maximum transferable shear stresses) and the shear stresses at the position of

the interfaces in a solid beam gives an indication whether the shear stress transfer de-

mand at the interface between layers can be satisfied or not. In this section, a numerical

model of the system is used to model the behavior of the system for the cases, where

the shear stress exceeds the maximum friction stress transfer capability σxy,max made

available through the application of normal stresses at the interface.
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Figure 3.2: Model considered for the numerical calculation of the effect of shear stress

transfer control

For the purpose of investigating the bending behavior of a multi-layer system, a four

layer beam was modelled using the COMSOL 3.4 Multiphysics modeling package. The

modeled system shown in figure 3.2 had the properties listed in table 3.1.

Table 3.1: Main properties of the modeled system

Property Value

Number of layers 4

Material steel (E=205 GPa)

Friction coefficient µ between surfaces 0.2

Layer dimensions lxbxh [mm] 70x10x1

Load q distributed: 100Nm−1...500Nm−1

(i.e. 10 kPa...50 kPa) on the top face

Boundary conditions fixed on the left side of each layer,

free otherwise

Additionally, a positive normal stress σyy,el of 0 MPa or 3 MPa was applied to the contact

surface pairs to couple them in a way to simulate the effect of the electrostatic normal

stresses described above. A normal stress of 3 MPa corresponds to an electric potential

of approximately 75 V over a 400 nm thick Al2O3 layer, i.e. a field of approximately 185

MV/m.

The system has 3 pairs of contact surfaces. Each of the pairs can be activated (σyy =
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3MPa) or inactivated (σyy =0 MPa). The possible configurations of active and inactive

interfaces are summarized in table 3.2, where a ’0’ in the left hand column means that

the interface is not activated (i.e. no stress is applied to it) and a ’1’ means it is. In the

second column, the thickness of each bundle, expressed in number of layers.

The contact forces were modeled based on a penalty barrier approach [40]:

σyy,contact =

{

Tn − bn · g if g≤0

Tn · e−
bng
Tn otherwise

(3.10)

Where σyy,contact is the calculated contact pressure, g is the distance between the two

surfaces, and Tn and bn are, respectively, the initial contact pressure and the barrier

parameter with following values:

• Tn = 1MPa

• bn ≈ 1014Pa/m

The stress described by the penalty barrier function is represented graphically in figure

3.3
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Figure 3.3: Contact stress σyy,contact as a function of the gap size as calculated using

the penalty barrier approach described in (3.10)

The resulting contact stress was used to calculate the friction stresses. As for the
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analytical model, no cohesion (i.e. friction at zero normal stress) was assumed for this

model.

Table 3.2 shows the convention used to describe the connection pattern of the inter-

faces of a 4 layer beam.

Table 3.2: Interface activation configurations and bundle thicknesses ni

Configuration ni

000 1,1,1,1

001,010,100 1,1,2 1,2,1 or 2,1,1

011,110 1,3 or 3,1

101 2,2

111 4

For the ’111’ beam (i.e. with fully connected layers), the behavior of the system was

calculated for loads increasing from q = 1N/m to q = 500N/m in several increments, in

order to investigate the slip behavior at the interface between layers.

3.1.3 Linear vs. Non-linear Behavior

Better understanding of the behavior of tunable multi-layer structures is obtained by

observing the load displacement diagram for a beam in ’111’ configuration. The dia-

grams shown in figure 3.4 were obtained using the analytical model (solid line) and the

numerical model presented in section 3.1.2 (markers).

The analytical model only describes the linear behavior of the system, since no slip at

the interfaces between layers is allowed for. Its validity is limited to the load ranges

where the shear stresses at the interfaces between layers of the beam are smaller than

the maximum transferable shear stress, as defined in (3.8). The main advantage of the

analytical model is that it gives a better understanding of the system and that it can

be easily adapted to different geometries and load cases. The described numerical

model accounts for slipping at the interfaces, as will be shown. This is a considerable

advantage, compared to the analytical model. The disadvantage is that new instances

of the model have to be set up, each time a new system is considered. The analytical

model is used to verify the reliability of the output of the numerical model in the linear

domain of the system.
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For the analytical calculation of the deformation function v(x) = P ·f(x) in the load case

described in the previous sections, the deformed shape of the beam is given by:

f(x) = (x4 − 4lx3 + 6l2x2) (3.11)

The load scaling factor P is q/24.
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Figure 3.4: Transversal displacement at x=l, as calculated using the linear (analytical)

model and the non-linear (numerical) model, as a function of the applied load q

The displacement calculated using the numerical model of the friction based system(’+’

symbol in figure 3.4) shows an offset compared to the linear calculation. This is inter-

preted as an effect of the singularity of the transversal load at the fixation point of the

cantilever at x=0 that leads to very high shear stresses in that region. If this offset is

subtracted from the results (’x’ symbol in figure 3.4), a very good agreement between

numerical and analytical model is found until values of q of approximately 300 N/m. For

loads exceeding this value, the deviation between results obtained from analytical and

the numerical behavior increases markedly.
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The shear stress distributions σxy(x, y, q) calculated using the linear and the non-linear

models are shown in figures 3.5 to 3.9. A comparison of the distributions for different

levels of q confirms that the onset of the non-linear behavior of the beam coincides

with a marked deviation of the shear stress distribution in the numerical calculation

from the linear model at q ≈ 320N/m. The numerical calculations show that the shear

stress in the beam never exceed the value µ · σyy,int at the interfaces, even for values

of q exceeding 320N/m. As the load increases, the portion of each interface where

the actual shear stress deviates from the shear stress calculated with the linear model

increases, as seen comparing figures 3.8 and 3.9.
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Figure 3.5: Shear stress distribution in the cross section at different positions along the

length of the beam with a 111 interface activation pattern, for a load q=280 N/m. The

numerically calculated distribution (markers) at x=0.01 m shows a slight deviation from

the linear model (solid lines).

In figure 3.9 can also be noticed how the shear stress obtained from numerical calcu-

lations at x = 0.05m exceeds the one obtained from the analytical model calculations.

This is explained as a result of the redistribution of shear stresses along the interface

between the two central layers: The shear stress transfer demand near the fixation

point exceeds the stresses that can be transferred by the friction at the interface. Such

stresses are redistributed to locations at the interface where the demand is below the

critical value σxy,max = µ · σyy,el.

Figure 3.4 clearly shows that once the load q exceeds 320 N/m, the stiffness of the

system no longer is a constant. A comparison of the shear stress distributions shown

in figure 3.6 and 3.7 shows that the transition from full shear stress transfer to slipping
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Figure 3.6: Shear stress distribution in the cross section at different positions along the

length of the beam with a 111 interface activation pattern, for a load q=320 N/m. The

numerically calculated distribution at x=0.01 m (markers) shows a minor deviation from

the linear model (solid lines).
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Figure 3.7: Shear stress distribution in the cross section at different positions along the

length of the beam with a 111 interface activation pattern, for a load q=360 N/m. The

numerically calculated distributions at both x=0.01 m and x=0.02 m (markers) show a

clear deviation from the linear model (solid lines).
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Figure 3.8: Shear stress distribution in the cross section at different positions along the

length of the beam with a 111 interface activation pattern, for a load q=400 N/m. The

numerically calculated distributions at x=0.01 m and x=0.02 m (markers) show a re-

markable deviation from the linear model (solid lines). Also at x=0.04 m the distribution

does not correspond to the linear behavior .
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Figure 3.9: Shear stress distribution in the cross section at different positions along

the length of the beam with a 111 interface activation pattern, for a load q=500 N/m.

None of the shear stress distributions calculated numerically (markers) coincides with

the linear model (solid lines), although the results for x=0.04 m and x=0.05 m do not

exceed σxy,max.
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is at the origin of the softening of the system. While this transition is not desirable for

a system that is required to work in an elastic manner, the ability to dissipate energy

through friction may be of interest for damping applications.

In order to show the hysteretic behavior of multi-layer systems when subjected to loads

exceeding its elastic limit, a cyclic force-displacement diagram for stresses larger than

shown in figures 3.5 to 3.9 was calculated using the numerical model and is shown in

figure 3.10.
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Figure 3.10: The cyclic load-displacement diagrams calculated for three different levels

of interfacial stress (3 MPa, 6 MPa and 9 MPa) show different amounts of hysteresis in

the system. The load displacement diagram of the un-coupled system is drawn in black,

for comparison. The uncoupled system does not have hysteresis, since no interaction

between layers is allowed for.

As expected, the higher the interfacial stress, the higher is the average stiffness of the

system. Nevertheless it should be noted that the stiffness of the system in the first

section of the diagram (the new curve starting at the origin of the coordinates system)

is the same in all three cases. The onset of the softening is found at increasingly higher

loads as the interfacial stress increases, since the higher shear transfer rate at the
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interfaces allows for an extended linear domain.

An additional effect of the modification of the interfacial stress on the behavior of the

change in the area contained within the hysteresis curves calculated for different levels

of interfacial stress. As the average stiffness of the system increases, the deformation at

the maximum load (q =1600 N/m) is substantially reduced, thus the ability to dissipate

energy by relative motion of the layers is limited.

3.2 Global Behavior: Discrete Stiffness States in Ho-

mogeneous Multi-Layer Beams

Section 3.1.3 showed that the amount of shear stress at the interfaces determines

the linearity of the behavior of the system. The activation of the interfaces (i.e. the

application of an electrical potential between two neighboring layers) determines the

amount of shear stress that can be transferred at the interface. In this section the effect

of different activation patterns on the stiffness of the system is presented, under the

assumption that the shear stresses do not exceed the maximum transferable stress

σxy,max = µ · σyy,el

Figures 3.11 to 3.16 show the transversal deformations and the shear stress distri-

butions in beams with different interface activation patterns in the linear domain. As

expected, with an increasing number of activated interfaces, the deformations of the

beam decrease. A quantitative description of the decrease in deformation as a function

of the interface activation pattern is contained in the ratio of the stiffness of the acti-

vated beam to the stiffness of the completely inactive beam (D/D000), shown in table

3.3. The indices used in the table and in the rest of this section indicate whether at an

interface shear stress transfer is permitted (’1’) or not (’0’). So, for example the index

’111’ indicates that all three interfaces of the four layer system are locked, whereas the

index ’100’) indicates that only one is locked. More examples are shown in figure 3.17.

For the numerical model results shown in table 3.3, the stiffness ratios are calculated

based on the displacement of the tip of the beams.

As expected, the shear stresses tend to zero in proximity of the non-active interfaces,

since no stress transfer is possible there. At the active interfaces, the shear stress is

given by the distribution calculated over a beam of the corresponding height, as if no

interface were present. Once the maximum transferable shear stress is reached at the

interface, the parabolic function described in (3.7) no longer applies.
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Figure 3.11: Transversal deformation functions for the beams with different interface ac-

tivation patterns and a load q=100 N/m, as calculated analytically (line) and numerically

(markers)
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Figure 3.12: Shear stress distribution in the cross section at x=0.01 m,... 0.07 m for

the beams with ’000’ interface activation pattern and a load q=100 N/m, as calculated

analytically (line) and numerically (markers)

A comparison between the numerical and the analytical results shows a very good level

of agreement between the two models for the shear stress distribution as well as for the

transversal deformation, within the limit given by (2.7).
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Figure 3.13: Shear stress distribution in the cross section at x=0.01 m,... 0.07 m for

the beams with ’010’ interface activation pattern and a load q=100 N/m, as calculated

analytically (line) and numerically (markers)
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Figure 3.14: Shear stress distribution in the cross section at x=0.01 m,... 0.07 m for

the beams with ’101’ interface activation pattern and a load q=100 N/m, as calculated

analytically (line) and numerically (markers)

The values for Dtot, Di, σxy,i(x, y) can be calculated using (3.1)...(3.7) under the as-

sumptions listed in section 3.1.1. The values for the maximum shear stress σxy,i(x, yi =

0) are calculated using f ′′′(x) = 24(x − l).

As long as no slipping at the interfaces takes place, that is as long as the shear stress
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Figure 3.15: Shear stress distribution in the cross section at x=0.01 m,... 0.07 m for

the beams with ’011’ interface activation pattern and a load q=100 N/m, as calculated

analytically (line) and numerically (markers)
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Figure 3.16: Shear stress distribution in the cross section at x=0.01 m,... 0.07 m for

the beams with ’111’ interface activation pattern and a load q=100 N/m, as calculated

analytically (line) and numerically (markers)

transfer demand is satisfied by means of the friction at the interfaces, the stiffness of

the system is varied in a discrete manner, as shown in table 3.3.

According to the analytical model calculations, when the system is divided in bundles

of equal thickness, the maximum shear stress in each layer stays constant, as shown
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by figures 3.12, 3.14 and 3.16. An uneven distribution of the bundle thickness across

the beam leads to an increase in the maximum value of σxy, as shown in figures 3.13

and 3.15.

Table 3.3: Interface activation configurations, stiffness increase compared to the 000

configuration, comparison between analytical and numerical results for q=100 N/m

Configuration D/D000 analytical D/D000 numerical

000 1 1

001, 100, 010 2.5 2.5

101 4 3.9

011, 110 7 6.7

111 16 14.3

Within the limits set by the ability of the interfaces to transfer the shear stress, each

bundle of layers that are coupled electrostatically can be considered as a solid beam of

thickness ni · h where ni is the number of layers in the bundle and h is the height of a

layer.
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Figure 3.17: The stiffness of the beams with each connectivity pattern can be repre-

sented by an equivalent parallel connection of springs The stiffness D of each beam is

expressed in multiples of k, where k is the stiffness of one layer.

A total of 8 connectivity patterns can be obtained for the 4 layers beam in Figure 3.17.

The figure shows that only 5 different stiffness values can be realized. Patterns ’100’,
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’010’ and ’001’ can be considered equivalent. Patterns ’110’ and ’011’ also correspond

to the same stiffness value.

If the shear stress transfer capability of each interface can be switched between 0 and 1,

the number N of different connectivity patterns that can be obtained for a given number

of layers n in the system is:

N = 2n−1 (3.12)

For a system with 4 layers, as the one shown in figure 3.17 there are 23 possible con-

nectivity combinations. The different stiffness levels for a 4 layers system is shown in

figure 3.17. The number of different stiffness values that can be achieved is smaller

than the number of connectivity patterns given by (3.12).

As outlined previously, the stiffness D of a multi-layer system can be varied in discrete

steps by modifying its connectivity pattern. The knowledge of the stiffness levels that

can be realized with a given multi-layer system is useful for the design of variable stiff-

ness devices. As shown in Figure 3.17, the achievable stiffness values can be calcu-

lated considering each bundle of layers as a spring connected in parallel with the other

bundles in the system. A bundle is a set of connected layers between two interfaces

with no shear stress transfer capability. The stiffness of each bundle is proportional to

its height cubed. The total stiffness is thus proportional the sum of the third power of

the bundle heights.

These assumptions are realistic for small transversal loads, for which the shear stress

at the interface, does not exceed σxy,max. Under such conditions, it is justified to assume

that a bundle of electrostatically coupled layers behaves as a solid bundle, as outlined

in the previous section.

The computational effort needed to calculate the distribution of stiffness values in-

creases with 2n.

Figure 3.18 shows the stiffness values that can be realized with a 20 layers system and

the frequency of each stiffness value. The diagram on the left hand side of the figure

shows the stiffness calculated for each of the 524288 (219) connectivity patterns that can

be realized in a system with 20 layers. If the state of the interface is represented with

’0’ for a non connecting interface (no stress transfer) and ’1’ for a connecting interface,

each connectivity pattern can be identified by a 19 bit binary number. The pattern

number on the x-axis of the diagram is the decimal equivalent of said binary number.

The diagram on the right hand side of Figure 3.18 shows how many patterns in a 20

layer system realize a particular stiffness value. While the points in this may intuitively

be interpolated to a curve somewhat resembling a normal distribution, it should be
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Figure 3.18: Stiffness distribution (left) and stiffness density (right) for n=20

noted that the number of patterns with stiffness values in between points drawn in the

graph is effectively zero. For the high and the low stiffness values, gaps are present in

which no connectivity pattern realizes certain values. For the high stiffness domain the

gaps span over very large number of values that are not represented in the set stiffness

states that can be realized by the system.

Figure 3.19 shows the stiffness value distributions of systems with 5, 10, 15, 20 and

25 layers, respectively. In order to make a comparison between the distributions for

different n-values possible, the number of patterns possible a double logarithmic repre-

sentation was chosen. The distributions show that the range over which the stiffness

can be modified increases very rapidly with n. From a 25-fold increase in stiffness for

n=5 the range grows to a 625-fold increase in stiffness for n=25. Also the number of

possible states increases remarkably (approximately as n3/30). The high and low ends

of the distribution are more sparsely populated, both in terms number of patterns (y-

axis of the graph) and in terms of distance between stiffness states that can be realized

(x-axis of the graph).
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Figure 3.19: Stiffness states distributions for n=5, 10, 15, 20 and 25.

3.3 Conclusions

The goal of this section was to present simple analytical and numerical models to de-

scribe and understand various aspects of the behavior of tunable multi-layer beams.

The models provide useful information concerning the distribution of stresses in the

structure. The understanding of the local behavior of the system can be used to es-

timate the limits within which such a structure behaves approximately like an elastic

structure, without yielding due to slipping at the interfaces between layers. This can

be of special interest for applications in which the suppression of large amplitude vibra-

tions due to resonance phenomena is to be obtained by modifying the bending stiffness

and hence the natural frequencies of the system. In such cases, the primary goal of

the adaptation of the properties of a structure is to control its mechanical impedance,

rather than introducing high damping. Conversely, for other applications, such as the

harvesting of energy from structural vibrations, resonance effects are desirable, while

dissipation due to friction at the interfaces is not.

The behavior of the system is hysteretic when the loads it is subjected to exceed the
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ability of the interfaces to transfer the shear stresses in full. The numerical model shows

that next to modifying the stiffness of the system, increasing the transfer of shear stress

at the interfaces also has an effect on the area enclosed by the hysteretic curve and thus

on the ability of the system to dissipate energy. This means that next to a modification

of the stiffness, also a tuning of the damping behavior is possible in multi-layer systems.

The models also give some insight into the effect of the homogeneity of the thickness of

the bundles of coupled layers on the value of the maximum shear stress in each cross

section of the system. This knowledge is valuable for the design of multi-layer systems.

The shear stresses that can be transferred at the interface between layers are limited by

the maximum energy density that can be stored in the used dielectric material. Hence,

interface activation patterns that lead to higher shear stress values for a given applied

load, are more likely to cause the interfaces to yield than others.

Both, the analytical and numerical models confirm that a finite number of discrete stiff-

ness levels can be achieved for each system. The number of stiffness levels increases

with the number of layers in the system. This prediction does not account for dissipative

effects such as inter-layer friction, that would lead to the coalescence of close states in

systems with a large number of layers. The softening predicted by the non-linear cal-

culations is expected to reduce the quality factor of the system and lead to a reduced

tuning effect for the natural frequencies.

The calculations of section 2.6 show that using commonly available dielectric materials,

such as alumina, titania and zirconia, the generated stresses are of a sufficient magni-

tude to effectively stiffen even in steel structures. Nevertheless the achievable interface

stresses are far below the shear strength of typical engineering materials. Hence, sim-

ple models as the ones presented here, can be useful tools to help users make suitable

design choices to obtain useful effects based on the electrostatic tuning of their bending

stiffness.
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Chapter 4

Experimental Work

This chapter presents the experimental work performed on structures with variable stiff-

ness and variable damping. The examples chosen to demonstrate the effect of the

electrostatic coupling of elements of a structure are two sandwich structures. The first

structure considered in this chapter is a sandwich beam consisting of a highly compli-

ant core and stiff faces. This structure has mainly a proof of concept value, and is used

to show the similarity between the effect of lamination and electrostatic coupling on

the stiffness of the beam. The second structure investigated in this chapter is a sand-

wich beam made of a GFRP I-beam as the core of the sandwich and two unidirectional

CFRP bands as faces. The structure is used to demonstrate the effect of electrostatic

coupling on the eigenfrequency and the damping ratio of a sandwich beam. Except for

its size, this system is the same as the components that will be considered for the full

scale demonstrator described in the last chapter of this work.

In the models presented in the previous chapter, the contact surfaces are assumed to

be ’perfectly planar’ which means that the apparent contact area between two adjacent

layers extends to the whole length of the beam. This is possible if the individual lay-

ers do not present any curvature or other geometrical imperfections. In reality, most

commercially available sheet materials, such as the metal sheet that would be used to

prepare a set-up that replicates the modeled experiments present some level of curva-

ture. Typically, sheets and bands are wound on coils after production and do present

different amounts of curvature. The curvature is sufficient to create air gaps of the order

of several tenths of a millimeter between two layers that are fixed at one end so as to

create a cantilever beam. Under these conditions, the electrostatic stress between ad-

jacent layers is not sufficient to close the gap between layers, as the attraction between

electrodes decays in proportion to the square of the distance between them. Attempts

to eliminate the curvature by means of a stress relaxation thermal treatment were not
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successful. The use of extremely thin, compliant layers were faced with the problem that

force needed to deform the structure in low stiffness state would be extremely small and

thus quite difficult to apply and measure in a reliable way.

To obviate these problems, the experiments presented in this chapters will demon-

strate the electrostatic coupling of the elements of a multi-layer structure using sand-

wich structures. These structures lend themselves for the demonstration of electro-

lamination for following reasons:

• Sandwich structures typically consist of 3 layers: 1 core and two faces. The limited

number of interfaces reduces the complexity of the experimental set-up and the

risk of electrical failure at the interfaces.

• The faces of a sandwich structure have generally a high tensile stiffness (thanks

to the high modulus of the materials they are made of) and a negligible bending

stiffness due to their very small thickness. This allows them to better conform to

the topography of the core surfaces.

• Based on the sandwich theory, the difference in bending stiffness between the

laminated and unlaminated sandwich structure is normally very large. Hence,

even if the irregular surface topography reduces the effectiveness of the electro-

lamination, an effect on the global properties of the structures can be clearly de-

tected.

In the following section the effect of electrolamination with respect to the global me-

chanical properties of sandwich beams are summarized. The experiments performed

on two different sandwich structures are then described in sections 4.2 and 4.3.

4.1 Inhomogeneous Tunable Structures: Sandwich Beams

4.1.1 Mechanical properties of fully bonded sandwich structures

The above considerations lead to the the idea to perform all experiments on sandwich

structures, a well known example of stiff, lightweight structural elements. In such struc-

tures, thin, axially stiff faces (typically made of CFRP or another high strength, high

modulus material) are glued on a lightweight, low modulus thick core to obtain a com-

posite structure with a high bending stiffness. The practical advantage of performing
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the experiments on tunable stiffness sandwich structures is that the individual compo-

nents can be very compliant in bending direction, thus obviating the problem described

above.

The behavior of such structures has been extensively investigated. Some of the most

important relations describing the properties of such structures in relation to the con-

nectivity of the faces and the core are summarized in the following section. For common

engineering applications it is a requirement that the stiff faces be properly bonded to the

core, that means that a complete transfer of stresses between layers of the sandwich

structure takes places. The flexural rigidity of a sandwich structure is given by:

Dsandwich =

∫

Ez2dS = 2 ∗
Efbf t

3

f

12
+

Efbf tfd
2

2
+

Ecbct
3
c

12
= 2Df + D0 + Dc (4.1)

Where Ef and Ec are the Young’s moduli of the faces and core, respectively, tf and tc
are the thicknesses of the faces and core, respectively and bf and bc the corresponding

widths, and d = tf + tc. [4] Under certain conditions, often met in sandwich structures,

the first and the third term in (4.1) can be considered negligible and the stiffness can be

approximated as:

Dsandwich ≈
Efbf tfd

2

2
(4.2)

The first term in (4.1) can be neglected (i.e. is less than 0.01 times the second term) if :

3(
d

tf
)3 > 100 (4.3)

The third term is less than 0.01 times the second term in (4.1) if

6Ef tfd
2

Ect3c
> 100 (4.4)

Additionally, if the core of the sandwich is ’soft’, a shear contribution to the transversal

deformation has to be considered. With a shear stiffness S

S =
Gcbcd

2

tc
(4.5)

the total deformation can be written as a sum of bending and shear deformation. In the

case of a discrete transversal force P acting on the beam at a distance l from the origin,

the total deformation vsandwich can be written as:
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vsandwich = vbending + vshear

=
Pl3

6Dsandwich

[3(
x

l
)2 −

x

l
)3] +

Px

S
(4.6)

The shear stress between faces and core is found to be

σint
xy =

Tx

bfDsandwich

·
Efbf tfd

2
(4.7)

with Tx = dMx/dx, where Mx is the bending moment acting on the structure. Combina-

tion with (4.1) yields

σint
xy ≈

P

bfd
(4.8)

Local de-bonding between core and faces has also been studied as well as other modes

of failure that are common for sandwich panels [53]. For practical purposes, de-bonding

is regarded as a confined defect for which there is no adhesion between skin and core

only in delimited areas, hence σint
xy = 0. If the delamination area increases it has been

shown that the flexural stiffness of the sandwich will decrease [32].

4.1.2 Complete debonding

The extreme case of de-bonding is given when no shear stress transfer takes place be-

tween core and faces. Simple considerations and inclusion of the boundary conditions

show that for a loose bundle composed of the same faces and core as considered in

(4.1) and (4.2) the stiffness is

Dbundle =
2Efbf t

3

f

12
+

Ecbct
3
c

12
(4.9)

Again, for a core with a sufficiently low bending stiffness compared to the faces, i.e.

Ect
3

c ≪ 2Ef t
3

f (4.10)

the second term can be neglected in a first approximation, so that the ratio between the

stiffness of a sandwich and the stiffness of a loose bundle can be estimated as
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Dsandwich

Dbundle

=
6Efbf tfd

2

2Efbf t3f + Ecbct3c
≈ 3(

tc
tf

+ 1)2 (4.11)

Taking the shear contribution to the displacement into account, the ratio of the displace-

ments becomes a function of the position x:

vsandwich

vbundle

=
vbending,sandwich + vshear

vbending,bundle

=
Dbundle

Dsandwich

(1 +
Dsandwich

S

6

3lx − x2
) (4.12)

and for x = l follows:

vsandwich

vbundle

=
Dbundle

Dsandwich

(1 +
3Dsandwich

Sl2
) (4.13)

Depending on the measurements and elastic properties of the individual components,

ratios Dsandwich/Dbundle of the order of 1000 can very easily be achieved, for the fully

bonded in comparison with the fully de-bonded sandwich layers.

4.2 Proof of Concept with a 140 mm Cantilever Beam

4.2.1 Experimental

The goal of the experiments presented in this section is to provide a demonstration

of the electrostatic stiffening of a simple structure in static tests. For this purpose a

sandwich beam (shown in figure 4.1) consisting of:

• two unidirectional (UD) carbon fiber reinforced polymer (CFRP) layers, coated on

one side with a ∼0.05 mm thick Poly(vinylidene fluoride) (PVDF) film, ǫr = 8

• one electrically conductive, carbon-filled silicone elastomer core, , coated on both

sides with a 0.05 mm thick Poly(tetrafluoroethylene) (PTFE) film, ǫr = 2

was chosen as a testing object.

From a mechanical point of view, the choice of the core and face materials was dictated

by the need to design a system in which the effect of changes in the shear stress trans-

fer at the interfaces between core and faces of the sandwich beam would be observed
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unequivocally. Hence, the choice of a very low modulus material such as a silicone

elastomer for the core of the sandwich was made. UD CFRP bands as the ones utilized

for these experiment, have a high tensile stiffness and a very modest bending stiffness,

due to their very small thickness. This combination of mechanical properties is expected

to yield a markedly different behavior of the system in the bonded and unbonded state.

The main mechanical properties of the sandwich beam are listed in table 4.1.

Table 4.1: Properties of the mechanical components of the ’proof of concept’ sandwich

beam

Property Faces Core

Material Carbon Fiber Reinforced

Polymer

Carbon particle filled sili-

cone elastomer

Thickness [mm] 0.15 2.3

Width [mm] 12 10

Young’s Modulus [GPa] 120 ∼0.004

Free Length [mm] 140 140

From an electrical point of view, the use of electrically conductive structural elements

simplified the set-up of the experiment. The material originally chosen as the sole

dielectric between the structural elements was the ∼0.05 mm thick PVDF film. Due

to the tendency of the silicone elastomer to adhere to the PVDF film layers, additional

PTFE layers were applied to the surfaces of the core to obviate the problem. The thin

dielectric layers were considered to have a negligible contribution to the stiffness of the

system, due to their low elastic moduli.

With this configuration, an effective dielectric constant of ǫr = 3.2 and an effective

dielectric layer thickness δ = 0.1 mm (sum of the thicknesses of the two layers) are

obtained, as calculated in (2.4) and (2.5).

The beam was positioned vertically and fixed 140 mm from the bottom end, where

two small FeNdB permanent magnets were positioned. Their function was to make it

possible to apply a transversal force by means of a time-variable magnetic field B(I(t)),

generated by a current I(t) that circulated in the coils. The coils were approximately in

a Helmholtz configuration, which means that the distance between the coils was equal

to their radius. In this configuration, a very homogeneous field in axial direction can be

obtained. The current I(t) was supplied by a Kepco bipolar operational power amplifier

BOP 20-20 M driven by the analog output tension of a National Instruments 6036 E
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Figure 4.1: Test set-up for the measurement of force-displacement diagrams of the

electrostatically tunable sandwich beam (left: schematic representation, right: photo-

graph).

DAQ board. The transversal displacement of the composite beam was measured at

two by means of two Micro-Epsilon optoNCDT laser displacement sensors (marked as

LDT in figure 4.1). The displacement was measured with a sampling frequency of 64

Hz. The components of the sandwich beam were connected to a high voltage power

supply (Stanford Research Systems PS 350), so that the necessary electrical potential

Ui could be applied between faces and core. The complete test setup was controlled

from a PC via a LabView interface developed for this purpose.

4.2.2 Measurement Technique

The behavior of the sandwich beam was observed in a step-wise quasi static cantilever

bending test. The force was applied at one position of the cantilever beam, 140 mm

from its fixation point. The force exerted on the magnets by the magnetic field B(I)

as a function of the coil current I(t) was measured by means of a load cell calibrated

in a separate experiment. The lateral displacement of the beam was measured in a

cantilever bending test, as a function of the position x along its main axis, the force P (I)

and of the high voltage setting Ui for the potential across the dielectric layer between

faces and core. After the initial loading to Pmax several cycles Pmax → −Pmax → Pmax

were measured. In addition, the transversal displacement of a similar beam with glued

faces was measured for comparison.
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4.2.3 Results and Discussion

Behavior of the system

Figure 4.2 shows the force-displacement diagrams measured at a distance of x=125

mm from the fixation point of the cantilever beam for Ui settings between 0 V and 3000

V.

At lower voltage settings (0 V-1500 V) the curves can be roughly divided in three sec-

tions. The beam exhibits initially a high stiffness, while the force displacement behav-

ior of the beam shows a considerably lower stiffness for larger forces. Between the

high and the low stiffness portions, a transition domain can be observed. The transi-

tion between high and low stiffness becomes more diffuse with increasing voltage Ui.

The measurement at 500 V does not show a remarkable effect on the behavior of the

system. The slight reduction of the extension of the high stiffness portion of the force-
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Figure 4.2: Force-displacement curves for the initial loading as a function of the elec-

trical potential across the face-core interface. Measured and calculated displacements

for the fully bonded sandwich are in good agreement and show higher stiffness than an

electrostatically stiffened bundle at high voltage (3000 V). The 2500 V measurement is

not shown as it is practically identical with the 3000 V measurement.
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displacement curve should rather attributed to experimental artifacts. The extension

of the higher stiffness domain (between P = 0mN and the begin of the softening) in-

creases with further increasing voltage Ui. For the higher voltage curves (2000 V and

3000 V) only very limited softening is visible, starting approximately at 5 mN load. The

application of high voltage (3000 V) to the sandwich components, leads to an 18-fold

decrease in lateral displacement at x=125 mm and P = Pmax=9.2 mN in comparison

to the same system without the application of any electrical potential. The increase

in voltage does not change the slope of the high stiffness section of the curve but in-

creases the load at which softening can be observed. At each potential level Ui, after

the initial loading (shown in figure 4.2) two load cycles (from Pmax to −Pmax and back)

were performed.

Figure 4.3 shows an example of such a cycling procedure for Ui =1000 V. For better

clarity, a comparison of the central portions of such measurements (from −Pmax to Pmax

and back to −Pmax) is shown in figure 4.4. As observed for the curves shown in figure

4.2, an approximately bi-linear behavior of the force-displacement curves is visible. The

approximated slopes ∆P
∆v

for the two sections of each curve are shown in each plot. The

intercept between the high stiffness branch and the low stiffness branch of the curves

(marked with a dot in figure 4.4) was calculated as the intersecting point of the linear

interpolation of the values measured for the two sections of the curves, hence com-
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Figure 4.3: Behavior of the system for two complete cycles (after the initial loading) at

potential Ui=1000 V.
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pensating for the transition zone between high and low stiffness and providing an ideal

intersection point of the two lines. The linear interpolations were calculated assuming

that the slopes of the two branches (high and low stiffness) are approximately constant

over different Ui values. This could be confirmed for the slope of the upper branches

of the curves, where a ∆P
∆v

value of 3.1 Nm−1 could be calculated independently and

with good confidence for Ui values ranging from 0 V to 1500 V. The top section of the

2000 V curve seems to still be part of the transition to a lower stiffness value, which is

assumed to explain the higher ∆P
∆v

value.

The ∆P
∆v

value for the bottom section of the curves (70 Nm−1) could be calculated inde-

pendently for the 2500 V (not shown here as it is practically identical with the 3000 V
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Figure 4.4: Behavior of the system as a function of the electrical potential across the

face-core interface. After the initial loading, the force-displacement diagrams show a

hysteretic behavior. The stiffness of the system increases with increasing potential Ui.
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measurement) and 3000 V measurements. At lower voltages, this value is considered

to provide a reasonable interpolation of the bottom branch, but could not be confirmed

independently, due to the shortness of the interval on which the parameters for a re-

gression could be calculated. The calculated force difference ∆Ps between −Pmax and

the intersection point of the two interpolation lines described in the previous section is

plotted against the voltage Ui in figure 4.5. The magnitude of ∆Ps is interpreted as the

load at which the shear stresses between faces and core exceed the maximum shear

stress σint
xy,max that can be transferred across the face-core interface due to the electro-

static normal stress σint
yy . The corresponding shear stresses at the core-face interface

are calculated using (4.6).

According to (2.2) and (2.3), the shear stress at the face core interface is a quadratic

function in Ui. The measured force-displacement diagrams in figure 4.4clearly show a

hysteretic behavior in measurements at lower voltages. The force displacement curves

no longer pass through the origin of the coordinates, as shown in figure 4.4. This

behavior is attributed to friction related processes. The area contained within each

curve represents the energy dissipated by the friction processes in one load cycle. At

first, the area slowly increases from 18.8 J to 24.7 J with increasing Ui (0 V-1000 V)

and then it decreases rapidly to 0.6 J at 3000 V as shown in table 4.3.

Comparison with models

In addition to the force-displacement curves measured for the varying parameter Ui,

figure 4.2 shows also the force displacement diagram for the case in which the faces

of the sandwich were glued to the core using epoxy resin. For comparison, the force

displacement curve for the glued sandwich calculated using (4.6) is also plotted. In this

case measured and calculated data are in good agreement. The displacements mea-

sured at 0 V are approximately 4 times smaller than predicted by (4.9), thus indicating

Table 4.2: Shear stresses calculated based on the sandwich theory

σint
xy,max as calculated using

Ui [V] ∆Ps [mN] ∆Ps for P in (4.8) [Pa]

0 5.1 209

500 6.2 254

1000 8.6 352

1500 12.3 504
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Table 4.3: Energy dissipated by the sandwich beam in one loading cycle.

Tension across the Area of the

dielectric layer Ui[V] hysteresis curve [J]

0 18.8

500 21.1

1000 24.7

1500 22.3

2000 6.9

2500 0.8

3000 0.6

a higher stiffness than expected. The hysteresis in the curve indicates that already for

Ui=0 V, a certain level of interaction between faces and core is present, in spite of the

lack of an electrostatic normal force. To some extent, the difference can be explained by

the stiffer behavior observed at both ends of the force displacement diagrams (∆P > 0

in figure 4.4. Nevertheless, from the slope of the top section of the Ui=0 curve a bend-

ing stiffness of approximately 2.4*10−3 Nm2 was obtained, compared to 8.5*10−4 Nm2

as predicted by the model.

This difference between measured and calculated behavior can thus be partly explained

by an inaccuracy in the assumption that no interaction between faces and core takes

place for Ui=0 V. Even a small contribution of the bending of the faces about the neutral

axis of the sandwich would have a remarkable effect on the stiffness of the faces and

core bundle.

Figure 4.6 shows the normalized (i.e. divided by the value measured or calculated

at x=140 mm)displacements and fitted displacement functions for measurements per-

formed at Ui values of 0 V and 3000 V, respectively. For the measurements at 0 V,

the displacement function for a bundle was used to approximate the v(x) displace-

ment function (lateral displacement as a function of the position along the main axis),

whereas at 3000 V a sandwich behavior (i.e. also considering shear deformations) was

assumed. The displacement functions v(x) shown in figure 4.6 confirm an increase in

the contribution of shear to the displacement for the high voltage measurement, as the

reduced curvature of the beam indicates. With increasing voltage the overall stiffness

of the system increases. The maximum displacement of the sandwich subjected to high

voltage (3000 V) is approximately 0.12 mm at x = 125 mm, compared to 0.046 mm as

predicted by the model (4.6) and measured for the fully bonded sandwich. A stiffness of
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agreement with the value of 3.45·10−6 mN V−2 calculated on the basis of electrostatic

attraction forces using (4.8), (2.3) and (4.14).

approximately 1/3 of the maximum possible value for the described system could thus

be achieved. Ideally no interaction between faces and core (i.e. σint
xy = σint

yy = 0Pa) is

expected to take place at Ui=0. Nevertheless observation has shown that this does not

correspond to reality. The net contribution of electrostatic forces to the shear interaction

between faces and core was calculated by subtracting the ∆P offset at Ui=0 from ∆P :

∆P ′
s(Ui) = ∆Ps(Ui) − ∆Ps(0V ) (4.14)

Table 4.4 lists values for σint
yy and an estimate of σint

xy based on the electrostatic attrac-

tion at different voltages using (2.2) and (2.3), respectively, as well as the σint
xy values

obtained by using the ∆P ′
s values from figure 4.4 in (4.8). A good degree of agreement

between σint
xy , as calculated based on the electrostatic forces between faces and core

and σint
xy , as obtained from the mechanical behavior of the system can be assumed.
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(linear in x) to the displacement at higher voltages, as expected considering (4.6).

Table 4.4: Normal and shear stresses calculated using electrostatic attraction and sand-

wich theory.

0 0 σint
xy , as calculated σint

xy , as calculated

Ui σint
yy , as calculated in (2.2), using ∆P ′

s for P

(V) in (2.3) (Pa) assuming µ=0.1, (Pa) in (4.8), (Pa)

0 0 0 0

500 354 35 45

1000 1417 142 143

1500 3187 319 295

4.3 Characterization of a Large (>2m) Tunable Glass

Fiber Reinforced Beam

The system presented in the previous section served the purpose of demonstrating the

effect of the electrostatic coupling of the faces and the core of a sandwich beam, but

can hardly be of any practical use, due to its low stiffness.

The application example that will be presented in the next chapter calls for the mod-

ification of the mechanical properties of the lightweight glass fiber reinforced polymer

(GFRP) elements that compose the deck of a cable stayed pedestrian bridge built in

Empa’s Structural Engineering Research Laboratory. The adaptive upgrade of the com-
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plete bridge deck is expected to be a labor intensive and expensive undertaking. The

development of an intermediate size sample of tunable structural element deemed a

reasonable way to prepare for the construction of the full-size demonstrator. In addition

to characterizing the behavior of the tunable element, materials and methods for the

upgrading were tested.

4.3.1 Experimental

In the set up used for the experiments, the bond between additional stiffening elements

(CFRP plates, CarboDur M614, Sika, CH) and the core of the sandwich beam (GFRP

I-beam, Fiberline Composites, DK) is given by electrostatic forces generated by an elec-

trical field built up across a 12µm thick polyethyleneterephtalate (PET, ǫr ≈ 1, Amcor

Flexibles, Burgdorf, CH) film that was coated with a thin aluminum film on one side

(coating thickness unknown). The PET film was applied to the flanges of the GFRP

beam using epoxide resin (Araldit Standard, Vantico AG, Basel, CH). The CFRP plates

served at the same time as second pair of electrodes and stiffening member. This setup

was chosen in order to optimize the electrostatic forces that could be obtained per unit

voltage.

The multi-layer beam was fixed on one end and excited at the free end by means of the

electromagnetic fields generated by a coil, acting on a 40 mm x 40 mm x 20 mm FeNdB

permanent magnet that was attached to the end of the beam, 2240 mm from its fixation

point. The brackets visible in the left hand side of Figure 4.7 were only used to keep the

loose CFRP plates in place when the electrostatic field was turned off, ideally without

exerting any normal forces. Two additional masses (1050 g each) were placed 2090

mm (position of the center of gravity) from the fixed end of the beam to help separate

the first bending and torsion modes of the beam.

The currents necessary to induce the exciting alternate magnetic field, were generated

by a bipolar operational power amplifier (BOP 20-20 M, Kepco, USA) driven in its current

controlled mode by an arbitrary signal generator (33120 A, Agilent, USA).

The transversal accelerations at the end of the composite beam were measured by

means of two accelerometers (PCB Piezotronic, Mod. 3701 G3 FA3 G, with a sensitiv-

ity of 1 V/g) positioned at the left and the right edges at the free end of the beam (sensor

1 and sensor 2, respectively). The current circulating through the coil was measured

using a shunt resistor connected in series with the coil. The shunt had a resistivity of

0.01Ω (60 mV/6 A). The acceleration and the current circulating through the coil were

measured with a sampling frequency of 512 Hz using an OROS 38 data acquisition sys-
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Figure 4.7: Overview of the test set-up and cross section of a GFRP I beam as used in

the experiments described in section 4.3.2

tem. The components of the sandwich beam were connected to a high voltage power

supply (PS 350, Stanford Research Systems, USA), so that the necessary electrical

potential Ui could be applied between faces and core.

The set-up could be prepared in a very short time. The application of the aluminized

PET film, that served at the same time as electrode and dielectric layer, required only

approximately half a day of the work of two people. The preparation of the electrical

set-up (contacting the elements, setting up the elements, etc.) also required approxi-

mately half a day of work by two people. The mechanical set-up (fixation of the beam,

preparation of the retaining brackets for the bottom CFRP UD band) was probably the

most labor intensive part of the preparation work.

4.3.2 Shift of the Natural Frequency

The beam was excited with a 7-17 Hz linear chirp signal at six different current ampli-

tudes (I0 =0.5 A ... 3 A). The vertical accelerations of the beam end and the coil current

(assumed to be directly proportional to the generated electromagnetic-field, hence to

the force exerted on the magnet at the end of the beam) were recorded as a function of

time.
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Figure 4.8 shows the typical acceleration amplitudes measured for Ui=0 V. The curves

show that in the 7-17 Hz range the first bending and torsion modes are excited and are

fairly close. In order to simplify the interpretation of the measurements, the torsional

motion was filtered from the results, by averaging the signals of sensor 1 and sensor

2. As shown in the figure, this procedure effectively reduces the intensity of the tor-

sion signal. In the following sections, only the bending behavior of the system will be

discussed.

From the current and the acceleration data (average of sensor 1 and sensor 2), transfer

functions of the system were calculated for different excitation current I0 and potential

levels Ui, as shown in the plots of figure 4.9.

Figure 4.9 shows the behavior of the system at six excitation levels (I0 =0.5 A ... 3 A) for

different interlaminar potentials Ui. In the series of measurements performed at I0=0.5

A, quite remarkable reduction of the vibration amplitudes of the beam (up to a factor

of 5 in the transfer function for Ui=300 V) is recorded when the electrostatic coupling

of stiffening elements to the core of the beam is activated. A widening of the transfer

function peak is also observed for intermediate levels of Ui (200 V and 300 V), while

the tendency is reversed for higher potential values, where the maximum value of the

transfer function also increases.

A similar pattern is observed in the spectra recorded at higher excitation amplitudes.

The most remarkable difference between the measurement series performed at differ-
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ent I0 values is that at higher I0 values, the peak values of the transfer functions |G|for

the activated beam are significantly lower than at low I0 values, as summarized in figure

4.10. At the same time the reversal of the trend, as observed in the series measured at

I0=0.5 A is not observed for the highest excitation amplitudes.

Also, the maximum frequency shift for a given interlaminar voltage U tends to decrease

with increasing amplitude of the exciting force. This is caused by the softening of the

system due to the interlaminar slip at higher transversal loads. The transfer function

plots also show a clear difference between the lower and the higher excitation regimes

in terms of peak value of the transfer function |G|, as summarized in the right hand plot

of figure 4.10, where max(|G|) values are plotted as a function of interlaminar potential

Ui and excitation current amplitude. The resonance frequencies of the electrostatically

system are summarized for the measurement series at all excitation levels in the left

hand plot of figure 4.10.

The transfer function drawn in black in the I0=1.0 A plot of figure 4.9 shows the behav-

ior of an equivalent GFRP-CFRP beam, in which the coupling between the elements

was achieved using an epoxy-type adhesive. This curve represents the behavior of

a system in which full shear stress transfer between the elements is obtained. The

transfer function is characterized by a well formed, sharp resonance peak, indicating

low energy loss due to damping and friction and by the significantly higher first bending

resonance frequency than the electrostatically coupled system. The considerably lower

eigenfrequencies registered in the electrostatically coupled system, compared to the

system with glued CFRP elements indicate that a large potential for the improvement of

the electrostatic coupling of the components of the beam is given. Ideally, it should be

possible to attain the same level of stiffening of the beam using electrostatic coupling

as with adhesive coupling. The reduction of the maximum values of the transfer func-

tions and thus of the energy content of the system are explained by losses due to the

damping behavior of the system, as detailed in the next section.

4.3.3 Damping

Section 4.3.2 shows that the application of an electrostatic field at the interface between

the GFRP core beam and the CFRP stiffening UD bands has an effect on the first

bending natural frequency of the structure. This property can be used to avoid the onset

of resonance situations if the average frequency of a narrow band excitation coincided

with the natural frequency of the unstiffened beam.

Figure 4.9 shows that due to the ability of the system to provide full shear stress trans-
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Figure 4.10: Overview of the eigenfrequency values of the system at different interlam-

inar voltage levels and current amplitudes (left) and of the maximum values max(|G|)

(right). For low excitation currents the lowest value of max(|G|) is at intermediate voltage

levels, while for high excitation currents, the minimum value coincides with the highest

voltage levels that could be applied.

fer at the interfaces only within a small range, an approximately elastic behavior of

the stiffened structure is observed at only high tensions and low excitation amplitudes.

Specifically, only in the measurements with the lowest excitation amplitude (0.5 A) at the

highest interlaminar potential, the shape of the resonance peak (with a higher maximum

and sharper features) indicates a predominantly elastic behavior.

The energy dissipation in the system is due to material damping as well as to the friction

that occurs at the interfaces between the layers. Since the normal stress is proportional

to the square of the electrostatic field U2 and the shear stress occurring at the interfaces

depends on the amplitude of the vibration, the damping of the system is expected to

vary depending on the amplitude of the excitation as well as on the voltage applied

between faces and core of the sandwich.

Variable damping systems based on the use of magneto-rheological fluids are in use

and under development for a variety of applications ranging from so called smart shock

absorbers in cars to the damping of stay cable vibrations [50]. The development of opti-

mal damping strategies using magneto-rheological dampers for stay cables is based on

the observation that a setting of the damper that is too stiff will reduce the effectiveness

of the device, while a setting that is too soft will not dissipate as much energy as would

be possible for a given vibration velocity and amplitude.

The damping behavior of the system was investigated in experiments in which the sys-

tem was excited with a given current amplitude I0 (varying between 0.5 A and 3.0 A) at
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its measured eigenfrequency for that excitation level. The excitation was then switched

off and the acceleration at the free end of the cantilever was measured as it subsided.

The set up for the experiments was the same as shown in figure 4.7.

The plots in figure 4.11 show the displacement at the free end of the beam and the

envelope of the displacement curve for four of the experiments performed to investigate

the damping behavior of the beam. The envelope of the curve corresponds to the

instantaneous amplitude of the harmonic oscillation of the system. The envelope of

the time displacement curve is calculated as the absolute value of the Hilbert transform

H(v(t)) of the curve v(t). In figure 4.11 it is plotted against the time t. The portion

of the curve shown in the figure is the one used to study the damping behavior of the

system. In the experiments, the excitation current was switched off immediately before

the beginning of the shown plots.

The envelope of the amplitude-decay portion of the data was calculated for all the mea-

sured curves and is shown in figure 4.12, in its logarithmic form as a function of the

number of cycles, to compensate for the different frequencies at which the measure-

ment were performed. As expected based on the results shown previously, the curves

measured with no interlaminar stress (0 V curves) present the highest displacement

amplitudes. In figure 4.12 can be noticed how in the first graph on the top left (exci-

tation current amplitude 0.5 A) the displacement amplitudes of the curves with low to

intermediate interlaminar voltage (Ui=0 V ... Ui=300 V) show a faster decay than the

high voltage curves.
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Figure 4.11: Displacement as a function of time and in red its envelope (top) and ex-

citation current as a function of time for a weakly excited beam and no interlaminar

potential.
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For the intermediate voltage values (Ui=200 V and Ui=300 V), the absolute value of

the amplitude at the beginning of the decay curve is only marginally higher than the

amplitude of the high voltage curves. Due to the higher slope of the former, the dis-

placement amplitudes drop to lower values than for the high voltage levels (Ui=400 V ...

Ui=800 V), within a few cycles from the beginning of the measurement. It follows that

for small excitation amplitudes, the system displays a more efficient damping behavior

at intermediate voltages than at the highest and lowest settings. At higher amplitudes,

this behavior changes and the high voltage curves gradually (as the excitation ampli-

tude grows) show a better performance in terms of overall reduction of the displacement

amplitude than the low voltage curves.

In order to quantify the amount of damping present in a structure, it is customary to

calculate the logarithmic decrement of the amplitude decaying vibration curve. This

parameter is calculated under the assumption that the envelope of the curve has an

exponential form, which is the commonly observed behavior for material damping. The

logarithmic decrement λ of a decaying vibration is given by quotient of the amplitude v0

of the vibration at any given cycle and the amplitude vn n cycles later as in (4.15).

λ =
1

n
ln

v0

vn

(4.15)

In the plots shown in figure 4.12, an exponential decay of the vibration would be repre-

sented as a straight line with slope −λ. Figure 4.13 shows the effect of the interlaminar

voltage Ui on the shape of the decay curves. An exponential decay (plotted in red) rep-

resents the commonly measured material viscous damping behavior. A linear decay

(plotted in green) describes a system in which energy is dissipated by coulomb friction.

As it can be seen in examples shown in figure 4.13, the exponential decay curves

are in general a better approximation of the measured behavior than the linear decay.

However, for the higher ratios of exciting current amplitudes to interlaminar voltage

(namely I0=0.5 A with Ui=0 V, I0=3.0 A with Ui=0 V and I0=3.0 A with Ui=300 V) it

can be seen that there is a higher level of disagreement between the exponential decay

approximation and the measured decay than for lower ratios. This points to a higher

contribution of friction damping to the overall damping of the system. Here, neither

a linear decay model nor an exponential decay model correctly describe the behavior

of the system. Nevertheless, there is a need to describe the damping behavior of

the presented structures in order to be able to calculate its dynamic behavior. Most

numerical packages for the mechanical modeling of structures support the calculation

of the damping in structures based on an exponential decay, so a global logarithmic

decrement will be calculated over a representative portion of the decay curves for use
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in numerical models.

The relationship equivalent to 4.15, expressed for the continuously calculated envelope

(H(v(c))) is :

λ =
∆(ln(H(v(c))))

∆(cycles)
(4.16)

Using the continuous envelope of the decay curves, it is possible to calculate a con-

tinuous logarithmic decrement curve that gives us more detailed information about the

damping behavior of the system, which is especially useful given the difficulty fitting the

decay curves with the commonly used approaches.

The logarithmic decrement λ was calculated for the beam in all test conditions (coil

current amplitude varying between 0.5 A and 3.0 A and interlaminar voltage varying

between 0 V and 800 V). The results are presented in figure 4.14, where λ is plotted

as a function of the number of cycles after the excitation current was switched off. The

circles at the right edge of each plot represent the global logarithmic decrement, for

comparison. The continuous logarithmic decrement curves shown in the figure are cal-

culated for the same portion of the decay curves used to calculate the global decrement

values. As it can be seen, the spread of the values increases remarkably for the higher

excitation current values.

Finally, figure 4.15 gives an overview of the effect of electrostatic coupling on the two

mechanical properties that are most relevant to the vibration behavior of the described

GFRP-CFRP beam. The figure shows how the eigenfrequency values display a low

domain, for the non activated system and after a fairly steep increase that begins at

Ui values between 200 V and 400 V they reach a high plateau value. Correspondingly

roughly at Ui values that mark the beginning of the increase in eigenfrequency, the

logarithmic decrement values show a maximum. This picture is compatible with the

general idea that the maximum damping is obtained when a good level of coupling

between the components of the system is given, but not sufficient shear stress transfer

is possible to obtain a full bond between them.

The values shown in figure 4.15 will be used as a base for the numerical calculations

of the behavior of a single GFRP-CFRP beam and of a GFRP-CFRP bridge deck pre-

sented in chapter 5.
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Figure 4.14: The graphs show the calculated instantaneous logarithmic decrement as

a function of the number of cycles after the begin of the amplitude decay. Results

for different excitation amplitudes I0 and interlaminar potentials Ui are shown. The

circles on the right hand side of the graphs represent the global logarithmic decrements

calculated based on the whole decay curves.
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Figure 4.15: The effect of electrostatic coupling on the first bending eigenfrequency

and the logarithmic decrement of the described beam is a function of the interlaminar

potential Ui and the excitation amplitude I0, as shown in the two plots of this figure.

4.4 The Effect of the Interface Topography

Sections 2.4 and 2.5 showed that the deviation of the surface topography from a per-

fect plane at an atomic level and at a microscopic level have noticeable consequences

on the interaction between interfaces. At a macroscopic level, the observation of the

interfaces of a GFRP-CFRP beam used for preliminary tests, showed that after several

million load cycles at varying amplitudes and interlaminar stress levels signs of wear

of the dielectric layer applied to the GFRP structures were very localized, as shown in

figure 4.16. In this section an estimation of the effect of the unevenness of the surfaces

of the GFRP base structure on the ability of the CFRP stiffening elements to conform

to the beam is made.

The beam shown in the figure was manufactured using a different technique than the

one used for the beam presented in the previous sections. The dielectric layer was a

0.08 mm thick Polyvinylidene Fluoride (PVDF) film that was chosen for its higher dielec-

tric constant (ǫ ≈ 2...8, depending on the polarization of the film). Since no metallized

film was available, a separate electrode layer had to be applied between the GFRP host

structure and the PVDF film to obtain the desired experimental set up. In order to op-

timize the electrostatic performance of the system, an electrically conductive adhesive

was chosen to serve both as electrode and adhesive. This choice made it possible to

nominally reduce the gap between the electrode applied to the GFRP beam and the

CFRP elements to the thickness of the PVDF film. Due to the high viscosity of the sil-

ver particle loaded adhesive, it was not possible to obtain a sufficiently planar interface

89



Figure 4.16: A view of the top flange of a GFRP beam , used in a tunable GFRP CFRP

structure as described in the previous sections, after approximately two years of (non-

continuous) operation. The areas marked in black presented clear signs of wear due to

friction between the surface of the dielectric layer with the CFRP bands. All other areas

appeared to be in pristine condition.

between the elements of the structures.

As a consequence of this situation, only a small fraction of the apparent area of contact

(i.e the length of the beam × the width of the flange) was in the condition to transfer

shear stress between the components. The localization of the wear signs on the PVDF

film surface points to the lack of planarity as a likely cause of decreased performance

of the electrostatic coupling between the GFRP beam and the CFRP elements.

The ability of the CFRP elements to conform to the topography of the GFRP beam

surface depends on their bending stiffness and on the radius of curvature of the topo-

graphical surface features. Although for the purpose of calculating the global stiffness

of the structure, the bending stiffness of the CFRP elements can be neglected, this

property is of interest in the local scale.
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Peaks and valleys over a short distance (e.g. a few centimeters) are thus more likely to

reduce the area of contact between the GFRP beam and the CFRP stiffening elements.

The above observations indicate that local unevenness of the surface in this scale may

represent a major source of loss in contact area, as shown in figure 4.16: Due to its

stiffness, the CFRP elements cannot conform to such topographical features over a

short distance, while ’long wave’ features can be compensated for, as shown in figure

4.17.

In order to quantify the adverse effect of uneven surfaces on the contact stress between

elements of a multi-layer stiffness, we shall consider a simple situation, as the one

depicted in figure 4.18.

In figure 4.18, a CFRP element with bending stiffness EICFRP is bent to conform to a

local feature with radius ρ. The bending moment necessary to obtain the curvature κ of

the CFRP elements is given by the well known moment/curvature relation (4.17) [9]:

κ(x) =
1

ρ(x)
=

Mb(x)

EICFRP

(4.17)

Where Mb is the bending moment acting on the element and EICFRP is the bending

Figure 4.17: Local unevenness vs. long range unevenness of the surface

91



r(x)

F
r F

r

σ
yy

y

xz

CFRP stiffening

element

GFRP host

structure
w

max

L

Dielectric layer

el

Figure 4.18: The CFRP stiffening element must adapt to the topography of the host

structure, so that contact at the interfaces is possible and shear stress can be trans-

ferred between the two components by means of friction.

stiffness of the element and ρ is the radius of the curve described by the neutral axis

of the CFRP element. (4.17) means that for a given stiffness of the CFRP element, the

bending moment needed for it to conform to a feature is proportional to the curvature of

the feature.

From (4.17) and the situation depicted in figure 4.18, the order of magnitude of the

distributed load that is necessary to maintain the curvature κ can be easily calculated

as Mb = EICFRP /ρ. The load applied to the CFRP elements, so that they conform to the

surface of the GFRP beam and are pressed against it, is generated by the electrostatic

field applied between the electrodes of the system. In the following calculations it will be

assumed that the CFRP bands have already been deformed to conform to the surface

of the structure. The distributed force needed to keep the bands in their deformed state

is then calculated as a function of the bending stiffness of the CFRP elements and the

length of the topographic feature the band is adapting to, for a fixed depth of the feature

of 0.01 mm. Also, in order to eliminate unnecessary complexity, it is assumed that the

profile of the topographic feature is described by the equation:

y(x) = c · (x4 − 2Lx3 + L2x2) (4.18)

which corresponds to the bending line of a homogeneously loaded beam fixed at both
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ends, as is the case for the CFRP band. Specifically, the deformed shape of the CFRP

band subjected to distributed load σel
yy is given by:

v(x) =
σel

yy

24 · EICFRP

· (x4 − 2Lx3 + L2x2) (4.19)

A few transformations of (4.19) yield the relationship between the distributed load σel
yy

necessary to keep the CFRP element deformed so as to conform to the surface profile,

the length L of the feature and the stiffness EICFRP of the CFRP element, for a given

maximum depth of the feature:

σel
yy = 384wmax

EICFRP

L4
(4.20)

Figure 4.19 shows the load needed to maintain the contact between a CFRP element

with an indentation described by (4.18) and a depth vmax = 0.1mm, as described in

figure 4.18.

The above considerations show that topography of the contact surfaces is thus an

important parameter for the successful design of electrostatically coupled multi-layer

structures. In order to increase the smoothness of the contact surfaces following mea-

sures should be adopted:

• The use of more refined methods such as autoclave curing to temporarily reduce

the viscosity of the epoxide adhesive during curing (or the use of lower viscosity

materials at room temperature).

• The application of smooth molds to the surface during curing will improve the

quality of the surfaces, while applying a vacuum to remove excess resin.

• The use of metallized polymer films instead of a combination of plain polymer

film and a metal particle loaded adhesive, would eliminate the need of such high

viscosity adhesives.

4.5 Conclusions

The experiments presented in this chapter were designed so as to demonstrate the

most remarkable properties that were predicted by the models of multi-layer systems.
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Figure 4.19: The distributed load needed for the CFRP element to conform to the to-

pographical features of the GFRP beam for a given feature depth increases steeply for

short length features. The red line shows the approximate electrostatic stress that can

be generated across an 80µm thick PVDF film applying a potential of 3000 V or across

a 12µm thick PET film applying a potential of 800 V.

In the first set of experiments (section 4.2 proof of concept), the ability to stiffen a simple

structure by coupling stiffening elements electrostatically was proven using a structure

with extreme properties (very compliant core and faces with very high axial stiffness).

Also, the hysteretic behavior of the system, when loads are applied beyond the ability

of the interfaces to transfer shear stresses was shown. This is of one of the properties

that were predicted by the numerical model of a multi-layer beam. Furthermore it was

possible to demonstrate the relationship that exists between maximum external load

under which the system behaves linearly and the interlaminar stress.

The experiments described in section 4.3 served various purposes:

The preparation of the test set-up was an opportunity to improve the techniques for the

manufacturing of electrostatically tunable devices. Next to the selection of appropriate

materials, The procedure showed some of the difficulties that are encountered in the
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manufacturing of electrostatically coupled multi-layer beams. The main difficulty in the

fabrication by hand is to obtain a sufficiently planar surface of the interfaces. In the

case of the first beam prototype, an electrode needed to be applied to the surface of

the insulating GFRP beam. In order to minimize the thickness of the insulating layer

between the electrodes, a silver epoxide was chosen as an electrode that would serve

also as an adhesive to mount the dielectric layer on the beam (see figure 4.7). The

electrode was applied by hand, then the PVDF film was laid on it and pressed using a

rubber roller to remove air inclusions.

This procedure yielded a fairly smooth electrode/insulator layer, but the topography of

the electrode was still sufficiently pronounced. So, after about two years of operation it

became clear from the wear marks that only one relatively small portion of the area of

the dielectric layers was in contact with the CFRP elements, as shown in figure 4.16.

The second beam prototype that was used for the bulk of the presented experiments

was manufactured using a metallized PET film and epoxide resin. While no autoclaving

was used in the process, a qualitative improvement of the surface could be observed.

Quantitative methods to measure the topography of the surface have yet to be applied.

Two aspects of practical relevance were studied in the presented experiments:

• At sufficiently small excitation amplitudes, a modification of the natural frequency

of the element could be obtained while maintaining a similar quality factor as in

the case of the unstiffened beam. This indicates that the effect of dissipative

processes under these conditions is modest, as shown in figure 4.9.

• The dissipative effects suggested by the hysteretic behavior observed in the nu-

merical simulations and in the experiments presented in section 4.2 could be con-

firmed by the observation of the dynamic behavior of the CFRP-GFRP beam at

high excitation amplitude/interlaminar potential ratios. The measurements of the

decay of the vibration amplitude presented in section 4.3.3 showed the electro-

static coupling of the CFRP elements to the beam also leads to a remarkably

high damping of the system, under appropriate conditions. The effect of the fric-

tion damping is optimal only within a quite narrow window of vibration amplitudes,

appropriate control systems will be necessary to optimize the energy dissipation

over a wider window of amplitude, as shown by the results presented in figure

4.15.

The main goal of the experiments carried out on the CFRP-GFRP system was to

demonstrate that the successful use of electrostatic coupling to suppress vibrations
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is possible on elements that are used in real structures, such as the beam presented

in the section. Based on the acquired information, the scaling up of this method will be

performed on Empa’s GFRP pedestrian bridge deck, as described in the next section.

96



Chapter 5

A Practical Application of Elements

with Tunable Mechanical Properties

The stiffness change and the damping properties determined for the CFRP-GFRP

sandwich beam in the previous chapter are at the basis of the estimation of the proper-

ties of a composite bridge deck presented in this chapter. The goal of the application of

electrostatic coupling of CFRP stiffening elements to the GFRP structure of a footbridge

deck is the reduction of the amplitude of the vibrations that such lightweight structures

are prone to. In the first section of this chapter, a homogenized finite element model of

the beam discussed in the previous chapter is set up. The elastic and damping prop-

erties of the orthotropic beam are set so that the frequency response of the modeled

beam corresponds to the measured frequency response. The second part of this chap-

ter shows, based on calculations performed using a numerical model of the bridge in

question, the effect that the modification of the elastic and damping is expected to have

on the frequency response calculated for the bridge deck.

5.1 Suppression of the Vibrations of a GFRP Footbridge

Deck

Light weight, slender bridges are prone to high amplitude vibrations due to their reduced

mass and high degree of slenderness. A full scale pedestrian cable stayed bridge with

a bridge deck composed of GFRP beams similar to the one described in section 4.3

was designed and built so as to recreate the conditions that are typically the origin of

considerable vibration problems in pedestrian bridges. The structure shown in figure
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5.1 is described in detail in [26] and is intended as a research platform that can be

used in the investigation of vibration damping strategies and structural health monitoring

systems.

The experiments described in the previous chapter have demonstrated that a combi-

nation of stiffening and increased damping is achieved when an electric field is built

up between the interfaces. Under such conditions the system is stiffened. When the

interfacial shear stresses between layers exceed the maximum shear stress that can

be transmitted by means of friction, increased damping can be observed, as shown

by the plots of figure 4.9. Under these conditions, interfacial slip occurs and energy is

dissipated by Coulomb friction at the locations where high relative displacements are

found.

This combined approach to the reduction of structural vibrations presents a few interest-

ing advantages over traditional systems based on discrete devices such as conventional

viscous dampers or tuned mass dampers:

• Depending on the nature of the excitation, vibrations can be suppressed either by

a change of stiffness of the system (i.e. no energy transfer to or from the structure

is allowed for) or by the introduction of friction damping into the system.

• Since the electrostatically coupled elements can be distributed over the whole

length of the structure, a more efficient energy extraction is possible. The dis-

tributed nature of the system allows for a robust approach to damping that is less

sensitive to the location of the nodes of vibration modes.

Figure 5.1: Empa’s full scale lightweight pedestrian bridge is used as a test platform for

structural health monitoring and vibration mitigation developments. Left, general view.

Right, detail from the bottom
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• Damping is only introduced as needed and the amount of damping can be con-

trolled, if an appropriate control system is implemented.

The application of electrolaminated stiffening elements for the damping of lightweight

structures such as the Empa laboratory footbridge is thus an appealing method for the

suppression of their vibrations.

The implementation of this method for the damping of the deck of the footbridge is

planned as a follow up to the work presented here. The plan is to embed the stiffening

CFRP elements into the flange of the longitudinal GFRP beams shown in the right hand

side picture of figure 5.1, as shown in the sketch of figure 5.2. Next to considerations

made in the previous chapters, practical issues need to be addressed in order to put

the plan into practice.

Electrode

Dielectric

CFRP UD Element

b

d
c

b
c

h

d

d

CFRP UD Element

Figure 5.2: Embedded, electrostatically couplable CFRP elements for the stiffening and

damping of the GFRP bridge deck
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The experience gathered with the adaptive retrofitting of the GFRP beam shows that

the quality of the interface between the host structure (GFRP beams with laminated

electrodes and dielectric layer) is of great importance, especially in terms of the local

planarity of the contact surfaces. Appropriate machining of the surfaces and lamination

of the electrodes and dielectric materials will be necessary to obtain the maximal con-

tact area (i.e. as close as possible to 100% of the apparent area of contact) between

GFRP beam and CFRP stiffening elements. All joining details of the GFRP host struc-

ture (e.g. the screw connections in the flanges highlighted in the righthand photograph

of figure 5.1) will have to be adapted to the new geometry of the beams (shown in figure

5.2), because of the space requirements set by the embedded CFRP elements.

In this pilot phase, the adaptive retrofitting of the bridge is expected to be labor intensive

(and thus expensive), because all modifications to the existing structural elements will

have to be performed by hand. Hence, it is necessary to estimate the benefits of the

stiffening and damping on the vibratory behavior of the bridge obtained through the

proposed retrofit prior to beginning its construction. A numerical model of the system is

a viable way to obtain this information. In a first step, a model of the beam presented

in the previous chapter is set up and used to estimate the mechanical parameters by

comparing the measured and calculated values for the first bending eigenfrequency

and adapting the mechanical parameters of the model accordingly. In a second step

the behavior of the bridge is calculated by applying the estimated parameters to the

numerical bridge model.

5.2 Models

As in section 3.1.2, the models presented in this section were calculated using Comsol

3.4. The package used for this work is not specialized for mechanical applications

and thus only offers limited freedom in the selection of element types and mechanical

material models. Since only the bending behavior will be considered for the calculations

presented in this work, two dimensional models are sufficient to investigate the behavior

of the structures under consideration. Given the geometry of the systems, plain strain

is assumed for the calculations.

In order to reduce the complexity of the model and hence the computing time, homog-

enized models are used. In order to render the shear compliance of the structure that

is derived from the shape of the cross section as well as the inherent properties of

the materials, an orthotropic material model had to be used, so that independent input
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Figure 5.3: Mechanical components of the switchable stiffness beam used in the ex-

periments (left) and homogenized equivalent used for the numerical model (right).

for the tensile and shear properties could be given. The essential properties of the

structures are given by two geometrical quantities (cross-sectional area A and second

moment of area I), their weight, and material properties of the orthotropic structure:

Ex, Ey, Ez and G (Gxy), the elastic modulus in the direction of main axis of the beam,

the two moduli perpendicular to the axis and the shear modulus, respectively. Given

the bi-dimensional nature of the model, Gxz and Gyz are not considered in the model.

The model is hardly sensitive to changes in Ey, Ez for the load case considered here.

The Poisson ratios νxy, νxz, νyz were assumed to be 0.33.

5.2.1 Undamped Behavior of the Beam

In this section a numerical model of the beam presented in section 4.3 is described.

The model is meant to represent the dynamic behavior of the structure in its two ex-

treme states, i.e. when the stiffening CFRP elements are not bonded to the beam (low

stiffness state) and when they are laminated to the beam using epoxide adhesive (high

stiffness state). Additionally, in section 5.2.2 the effect of damping will be considered

based on the properties calculated in section 4.3.3.

The homogenized model of the beam has the same bending stiffness Ex ·Iz, core shear

stiffness G ·Acore, outer dimensions and weight per unit length as the beam used in the

experiments, as shown in figure 5.3.

The eigenfrequencies calculated with this model are compared to the ones obtained

in the presented experiments. The discrepancies between the results of the numerical
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calculation and the experiment are resolved by a simple model updating [19] procedure,

by which the elastic constants used in the model are modified so as to bring the model

results to coincide with the experimental results (see figure 4.9, I0 = 1A). Using this ap-

proach, the deviations of the behavior of the tested system from the expected behavior

are thus ’packed’ into the properties of the material defined in the model.

Additionally to the density of the beam, two discrete masses have to be considered in

the model:

• The permanent magnet attached to the free end of the beam, used to obtain the

excitation force in combination with the current coil placed under it (see figure 4.7).

• Two additional masses positioned near the web, 2090 mm from the fixation of the

beam, used to separate the first bending mode from the first torsional mode of the

beam, as explained in section 4.3.1.

At its fixation, the beam was clamped between two steel plates on a length of 250 mm.

In order to guarantee the electrical insulation of the system from the environment, two

thin PVC plates (2 mm thickness) were inserted between the beam and the clamping

plates. The low stiffness of the PVC plates increased the compliance of the system

thus contributing to the reduction of its bending eigenfrequencies. This property of the

experimental set-up was accounted for in the numerical model by introducing two thin

low stiffness plates (EPV C = 1GPa) in correspondence to the clamped area and setting

the appropriate boundary conditions, as shown in figure 5.4.

The updated model will subsequently be scaled up and extended to estimate the be-

havior of Empa’s footbridge after the planned adaptive upgrade, as described in the

previous section.

PVC Plates

Homogenized Beam

Discrete Masses

2000mm

2240mm

Figure 5.4: Geometry and boundary conditions of the homogenized beam model. The

mechanical properties assumed for the model components are listed in tables 5.1 and

5.2
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The properties of the homogenized beam are rendered in the model as shown in ta-

ble 5.1. The measured and the calculated first bending eigenfrequencies f1bending are

shown at the bottom of the table the columns for the I-beam and the homogenized

beam, respectively.

The eigenfrequency of the system is initially calculated using the parameters shown

in table 5.1. The discrepancies between the calculated and the measured values for

the first bending eigenfrequencies in the low (non laminated) and the high stiffness

(laminated) states were resolved by updating the elastic constants (Eh
x and Gxyh) in

the model until an acceptable agreement between the measured and the calculated

eigenfrequencies was obtained. Both elastic constants were scaled by the same fac-

tor for the low stiffness state of the beam. To describe the stiffened state, only Eh
x

was modified, as the shear compliance of the beam is concentrated in the web. The

updated mechanical properties are listed in table 5.2. The corresponding calculated

first bending eigenfrequencies after the updating of the material properties are in good

agreement with the measured ones. Higher eigenfrequencies could not be determined

experimentally, so that no comparison was possible. The updated model is therefore

an acceptable representation of the actual beam.

The contribution of the beam and the CFRP elements to the overall stiffness of the

system is calculated as follows: In the low stiffness state, the contribution of the CFRP

elements is considered to be negligible, due to their very small second moment of area.

The stiffness of the system in this state is considered exclusively due to the GFRP host

structure. The difference between the frequency response in the low stiffness state and

in the high stiffness state is attributed to the contribution of the CFRP elements. The

updated elastic modulus of the CFRP bands is calculated dividing the stiffness change

by the second moment of area of the laminated bands.

For both stiffness states, the elastic properties are lower than the ones assumed initially.

In the low stiffness state, the difference between the elastic modulus stated by the man-

ufacturer and the updated modulus is in proportion smaller (approximately 13%) than

in the case of the CFRP bands (approximately 36%). In general, the deviations can be

attributed to the short length of the fixation of the cantilever, leading to a higher compli-

ance of the system, the inaccuracy of the stated material properties, and measurement

inaccuracies.

Finally, it is possible to estimate a ratio between the stiffening obtained by electro-

lamination of the CFRP elements and the maximum attainable stiffening based on the

homogenized model and the results shown in table 5.2. The maximal attainable eigen-

frequency by electrolamination is 12.30 Hz, this corresponds to an increase of only 31%
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Table 5.1: Properties of the mechanical components of the investigated sandwich

beam, in the main axis, as declared by the suppliers and properties assumed in the

numerical model, also in the main axis. The elastic moduli in the transversal directions

(Eh
y and Eh

z were assumed to be 1/3 of the modulus in the main axis). f1bending is the first

bending eigenfrequency measured or calculated, for the I-beam or for the homogenized

beam, respectively.

Property I-beam, faces

not laminated

Model Beam,

faces not lami-

nated

I-beam, lami-

nated faces

Model Beam,

laminated

faces

Length [m] 2.24 2.24 2.24 2.24

Height [m] 0.123 0.123 0.123 0.123

Width [m] 0.06 0.06 0.06 0.06

Efaces
x [Pa] 210·109 - 210·109 -

Ebeam
x [Pa] 23·109 - 23·109 -

Gweb
xy [Pa] 3·109 - 3·109 -

Ifaces[m
4]1 2×1.37·10−11 - 2×3.10·10−7 -

Ibeam [m4] 3.1·10−6 - 3.1·10−6 -

Aweb [m2] 6.48·10−4 - 6.48·10−4 -

EItotal [N m2] 7.13·104 7.13·104 2.01·105 2.01·105

GAtotal[N] 1.95·106 1.95·106 1.95·106 1.95·106

Ih [m4] - 9.3·10−6 * 9.3·10−6

Ah [m2] - 7.38·10−3 - 7.38·10−3

Eh
x [Pa] - 7.7·109 * 21.6·109

Gh
x [Pa] - 263.4·106 - 263.4·106

Weight/unit

length[kg/m]

2.92 2.92 2.92 2.92

f1bending[Hz] 10.40(I0 = 1A) 11.36 15.33(I0 = 1A) 17.92
1The contribution of the faces to the overall moment of area depends on the location of the neutral axis

(within the faces, in the inactive state or coinciding with the neutral axis of the beam in the activated

state.)
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Table 5.2: Properties of the mechanical components of the investigated sandwich

beam, as calculated from the updated numerical model. The elastic moduli in the

transversal directions (Eh
y and Eh

z were assumed to be 1/3 of the modulus in the main

axis). f1bending is the first bending eigenfrequency measured or calculated, for the I-

beam or for the homogenized beam, respectively.

Property I-beam, faces

not laminated

Model Beam,

faces not lami-

nated

I-beam, lami-

nated faces

Model Beam,

laminated

faces

Length [m] 2.24 2.24 2.24 2.24

Height [m] 0.123 0.123 0.123 0.123

Width [m] 0.06 0.06 0.06 0.06

Eh
x [Pa] - 6.6·109 * 15.6·109

Gh
xy [Pa] - 223.9·106 - 223.9·106

Ih [m4] - 9.3·10−6 * 9.3·10−6

Ah [m2] - 7.38·10−3 - 7.38·10−3

EItotal [N m2] 6.14·104 6.14·104 1.45·105 1.45·105

GAtotal[N] 1.65·106 1.65·106 1.65·106 1.65·106

Ibeam [m4] 3.1·10−6 - 3.1·10−6 -

Aweb [m2] 6.48·10−4 - 6.48·10−4 -

Ifaces[m
4]1 2×1.37·10−11 - 2×3.1·10−7 -

Ebeam
x [Pa] 19.8·109 - 19.8·109 -

Gweb
xy [Pa] 2.6·109 - 2.6·109 -

Efaces
x [Pa] 210·109 - 135·109 -

Weight/unit

length[kg/m]

2.92 2.92 2.92 2.92

f1bending[Hz] 10.40(I0 = 1A) 10.42 15.33(I0 = 1A) 15.43
1The contribution of the faces to the overall moment of area depends on the location of the neutral axis

(within the faces, in the inactive state or coinciding with the neutral axis of the beam in the activated

state.)
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of the difference in stiffness between the beam with non laminated CFRP elements and

the beam with laminated CFRP elements. This level of stiffening was attained at the

lowest level of exciting current (I0 = 0.5A). At high excitation levels, the shear stress

transfer at the interfaces is not sufficiently effective to obtain the same effect as at low

amplitudes. A more modest increase in stiffness is observed, while in return higher

damping levels could be attained.

5.2.2 Damped Behavior of the Beam

The previous section showed how the elastic parameters of the beam were updated in

the model, so as to obtain the same values for the 1st bending eigenfrequency as for the

investigated system. The parameters obtained through this procedure will be used to

estimate the behavior of the GFRP bridge deck in the next section. The previous chap-

ter also showed that the increase in the logarithmic decrement λ that can be achieved

by activating the interfaces is noticeable and that it contributes to the reduction of the

vibration amplitude of the beam in a significant way. The loss factor η is the commonly

used parameter to describe the damping behavior of a structure or material. The loss

factor is calculated from the logarithmic decrement λ as:

η =
λ

π
(5.1)

Figure 4.9 shows that the strongest attenuation due to the application of the potential

Ui is observed for the highest excitation current I0, with U0 = 500V . In this section, the

η and the stiffening values in the numerical model for an acceptable fit of the calculated

frequency response curves to the frequency responses measured at I0 = 3A with in-

terlaminar voltages U0 = 0V and U0 = 500V will be determined. These data will then

be used for calculating the effect of the activation of the GFRP-CFRP interfaces on the

behavior of the bridge deck.

The maximal attainable eigenfrequency by electrolamination at I0 = 3.0A is 11.35 Hz,

this corresponds to an increase of 17% of the difference in stiffness obtained by lami-

nation. Based on the estimates shown in figure 4.15, the loss factor of the GFRP-CFRP

beam can be varied approximately between 0.03 and 0.08, for I0 = 3.0A. These values

were used as a starting point for the calculation of the frequency response of the beam

at Ui = 0V and Ui = 500V , taking damping into account. The actual force acting on the

beam at the position of the coil/permanent magnet assembly used to excite the beam

is not known, as the system was not calibrated. This additional parameter was also
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updated in a manual procedure. Figure 5.5 shows the frequency response curves cal-

culated based on the η values estimated in the previous section and an exciting force

amplitude F0 of 1 N. Based on the height and width of the low stiffess/low damping

curve the loss factor for the low stiffness system was reduced to η = 0.02 and the excit-

ing force to F0 = 0.53N . The resulting η value used to approximate the measurement

performed at Ui = 500V was 0.16.

As can be seen in figure 5.5, the frequency response curve calculated for the low

stiffness system is a quite good approximation for the system at Ui = 0V . Instead,

the high stiffness/high damping system is only partially approximated by the calculated

frequency response curve, because the overall shape of the measured frequency re-

sponse is non-linear. The reason for this behavior can be found in the onset of inter-

laminar slip once a certain amplitude is reached.

Nevertheless, the values for the increase in stiffness and the loss factor values found

with the described procedure give satisfactory approximations of the behavior of the

system at two different interlaminar voltage levels.

The values that will be used for the calculation of the frequency response of the GFRP

bridge deck described in the next section are listed in table 5.3.
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(right) updating of the exciting force and damping parameters, compared to the mea-

sured frequency response curves (solid lines)
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Table 5.3: Properties of the mechanical components of the investigated sandwich

beam, as calculated from the updated numerical model considering damping.

Ui = 0V Ui = 500V Laminated CFRP

∆EI 0% 17% 100%

η 0.02 0.16 0.02

5.2.3 Bridge

The goal of the present work is to devise a method to effectively attenuate the vibration

of structures by means of the electrolamination of stiffening elements. The numerical

calculations presented in this section will show the effect that the vibration suppres-

sion method is expected to have on the dynamic behavior of the bridge deck. Since

the calculations discussed in this section are meant as a preparation for the actual

experiments, it is necessary to make a prediction of the expected behavior based on

the experiments performed on the GFRP-CFRP beam. The extrapolations are based

on the assumption that the same scaling factors for the material properties that were

obtained through the model updating procedure used for the individual beam can be

applied to the bridge deck. The increase in bending stiffness that can be obtained by

laminating the CFRP elements to the GFRP structure is expected to have a smaller

impact on the dynamic behavior of the deck than it had on the behavior of the single

beam, due to the larger number of constraints given by the bearings and stay cables.

Figure 5.6 shows the simplified geometry used in the numerical model of Empa’s bridge.

The geometrical model captures the most important features of the structure such as

the overall size of the deck, the presence of three pairs of stays on the main span, the

angles between the stays and the deck and the pylon respectively. Other features were

rendered using equivalent properties, such as in the case of the three pairs of back

stays that were replaced by one pair with the triple stiffness. The pylon was modeled

only above the bridge deck, due to the limitations imposed by the two dimensional

character of the model. Also, details like the pivoting anchorages of the stays in the

bridge deck where disregarded. Especially the reduced length of the pylon and the

stiff connection of the stays to the bridge deck lead to a stiffer overall behavior of the

structure. The model is two-dimensional, since only the bending behavior of the bridge

deck is considered. Accordingly, the geometry was discretized using triangular and

rectangular 2D elements, as indicated in figure 5.6.

The bridge deck is made of two sets of longitudinal GFRP I-profiles similar to the beam
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Figure 5.6: Simplified geometry used for the numerical modeling of Empa’s cable stayed

pedestrian bridge. The red arrow marks the position at which the displacement is sam-

pled to calculate the frequency response of the structure. In the red circles are exam-

ples of the 2D elements used to discretize the structures. Triangular and rectangular

2D elements were used.

described above and two sets longitudinal GFRP U-profiles. The joints along the lon-

gitudinal axis are not considered in the model, although they are expected to reduce

the overall stiffness of the deck. The total length of the deck is 19.2 m. The height

of the profiles is 200 mm and the width 100 mm for the I-profiles and 60 mm for the

U-profiles. The thickness of all profiles is 10 mm. Unlike the beam described in the

previous sections, the 1.4 mm thick CFRP elements are assumed to be embedded in

the GFRP profiles as shown in figure 5.2. The width of the CFRP elements is assumed

to be 60 mm. The homogenized bridge deck is assumed to be 1.6 m wide.

The mechanical properties of the GFRP bridge deck are summarized in table 5.4. The

total bending and shear stiffness values of the beams, calculated based on the me-

chanical properties stated by the manufacturers of the GFRP beams and CFRP bands

or found in literature are listed as Eth and Gth, respectively.

The homogenized values for E-moduli and G-modulus used for the calculations take

the updating factors calculated in sections 5.2.1 and 5.2.2 into account and are listed
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Figure 5.7: Cross-section of the load bearing elements of the bridge deck

in the table as Eupd. and Gupd., respectively. The row marked as ∆ EI shows the change

in bending stiffness in relationship to the maximum increase that could be obtained by

laminating the CFRP bands: the stiffness of the deck with unlaminated CFRP elements

is defined as the base stiffness with a ∆ EI of 0%. 100% corresponds to the value calcu-

lated for the laminated elements. The stiffness for the deck with electrolaminated CFRP

elements is calculated as the base stiffness plus 17% of the difference between the two

extreme stiffness values, based on the results shown in section5.2.2. Additionally, the

loss factors used for the calculations are listed at the bottom of the table.

Figure 5.8 shows the frequency response functions calculated for the bridge deck (at

the position marked in figure 5.6)in three different states: unstiffened, with laminated

CFRP elements and with CFRP elements electrolaminated at Ui = 500V , based on

the properties extrapolated as per table 5.4. As expected, the frequency shift achieved

by the increase in bending stiffness is quite modest, due to the constraints set by the

bearings and the stay cables. A shift of the eigenfrequency of approximately 0.4 Hz

obtained by laminating the CFRP elements could only be an effective instrument for the

reduction of the vibration amplitude of the bridge deck, if the spectrum of the exciting

force is quite narrowly distributed.

While the response of the electrolaminated system shows an even more modest shift

of the eigenfrequency (0.2 Hz) than the laminated system, the maximum acceleration

amplitude is greatly reduced (by a factor of six to eight, compared to the other frequency

response curves). As expected, the introduction of a significantly higher damping has

a marked effect also on the highly constrained structure.
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Table 5.4: Properties of the mechanical components of the investigated sandwich

beam, as calculated from the updated numerical model The elastic moduli in the

transversal directions (Ey and Ez were assumed to be 1/3 of the modulus in the main

axis). f1bending is the first bending eigenfrequency calculated, for the homogenized

bridge deck at different stiffness states.

Property Profiles,

faces not

laminated

Model

Deck,

faces not

laminated

Profiles,

laminated

faces

Model

Deck,

laminated

faces

Model

Deck,

electrolami-

nated faces

(Ui500 V)

Iprofiles [m4] 7.9·10−5 - 7.9·10−5 - -

Awebs [m2] 7.2·10−3 - 7.2·10−3 - -

Ifaces[m
4]1 1.1·10−10 - 6.9·10−6 - -

Eprofiles [Pa] 28·109 - 28·109 - -

Gwebs [Pa] 3·109 - 3·109 - -

Efaces [Pa] 210·109 - 210·109 - -

EIth. [N m2] 2.22·106 2.22·106 3.63·106 3.63·106 -

GAth.[N] 2.16·107 2.16·107 2.16·107 2.16·107 -

EIupd. [N m2] - 1.88·106 - 2.80·106 2.04·106

GAupd.[N] - 1.8·106 - 1.8·106 1.8·106

Ih [m4] - 1.07·10−3 - 1.07·10−3 1.07·10−3

Ah [m2] - 0.32 - 0.32 0.32

Eh [Pa] - 1.78·109 - 2.63·109 1.91·109

Gh [Pa] - 5.74·107 - 5.74·107 5.74·107

Weight/unit

length[kg/m]

66.6 66.6 66.6 66.6 66.6

∆ EI [ ] - 0% - 100% 17%

η [ ] - 0.02 - 0.02 0.16

f1bending [Hz] - 7.34 - 7.78 7.54

a0,max

[ms−2]

- 13.6 - 15.8 1.9

1The contribution of the faces to the overall moment of area depends on the location of the neutral axis

(within the faces, in the inactive state or coinciding with the neutral axis of the beam in the activated

state.)
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Figure 5.8: Frequency response functions calculated based on the properties listed in

table 5.4, for the bridge deck with unlaminated, electrolaminated and laminated CFRP

stiffening elements, respectively. For the laminated and unlaminated cases, the loss

factor η was assumed to be 0.02 while for the electrolaminated case, the loss factor

was assumed to be 0.16, as determined in the previous section.

5.3 Conclusions

In this chapter, two simple numerical models of the GFRP-CFRP cantilever beam in-

vestigated in chapter 4 and of Empa’s pedestrian bridge, respectively were presented.

By comparing the response of the modeled beam with the measured response, the rel-

evant mechanical properties of the materials implemented in the numerical model were

adapted so as to obtain a good agreement between model and experiment. Subse-

quently, the properties were extrapolated for the GFRP bridge deck. The calculated first

bending eigenfrequency for the unstiffened system (7.34 Hz) is in fairly good agreement
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with the value of 6.59 Hz stated in literature [26], especially considered the simplifica-

tions made in the model that are expected to lead to a stiffer behavior than in the real

structure.

As with any extrapolation, the correctness of the predicted behavior can only be con-

firmed by experiments. Nevertheless, the results shown in figure 5.8 are in agreement

with the expectation that the frequency shift obtained by lamination of the CFRP el-

ements would be modest. The results obtained from the calculations for the system

equivalent to the electrolaminated structure give reason to expect that the damping

introduced by the interaction between the GFRP structure and the CFRP stiffening el-

ements will have a substantial and beneficial effect on the dynamic behavior of the

bridge.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

The development of low density, high strength materials and composites (such as car-

bon fiber reinforced polymers) has made the design and construction of structures with

increasingly high performance possible. Due to their reduced mass and intrinsic damp-

ing, such systems are more prone to vibrations than before, thus making their dynamic

behavior likely to be an important limiting factor for their operations. The goal of the

present work was to demonstrate the use of electrostatic forces between layers of a

multi-layer structure as a means to modify its mechanical properties and thus its dy-

namic behavior.

Very limited work has been published on the topic of multi-layer system with variable

mechanical properties, to date. At the time when the present project was being de-

fined, only the work of Tabata [48] explicitly mentioned the use of electrostatic fields in

a multi-layer system as a method to modify its mechanical properties. Later, the work

of Kornbluh [35] generally described the possibilities that might be opened by the de-

velopment of materials or structures with variable mechanical properties. Only through

personal communication with the author was it possible to confirm that work in the same

direction as what is described in this report was at the base of the published report. At a

later stage in the project two patents by the same authors were found, describing some

practical aspects of the modification of the mechanical properties of structures [30,34].

Lately, some additional work in the field of the modification of the bending stiffness of

simple structures, typically based on the modification of the elastic modulus of this poly-

mer layers intercalated between the stiffer load bearing layers of a structure [25] has

been published.
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The lack of any substantial information about the function of the electrostatic modifica-

tion of the mechanical properties of multi-layers and experiments to support it, as well

as of any description of a practical application of such systems, warrants the investi-

gation described in this work. The main points of the work are addressed in the four

central chapters:

• Working Principle of the Electrostatic Tuning of the Stiffness:

In this chapter, a method for the modification of the mechanical properties of adap-

tive structures based on the electrostatic coupling of the layers of a multi-layer

system is described.

• Modeling of Structures with Tunable Stiffness:

In this chapter, an explanation of how the system works is given based on calcu-

lations made with analytical and numerical models.

• Experimental Work:

In this chapter proof of the functionality of the electrostatic modification of the me-

chanical properties of a structure is given. Indirect confirmation of the predictions

made based on the numerical and analytical models is given.

• A Practical Application of Elements with Tunable Mechanical Properties:

Finally, in this chapter an outlook on the applications of the described method is

given by making an estimate of the benefits that could be obtained thanks to the

retrofitting of the GFRP deck of a pedestrian cable stayed bridge.

In chapter 2 the fundamental idea is presented, that if it were possible to introduce

or remove interfaces in the cross section of a simple structure subjected to a bending

load, it would be possible to obtain a marked change of the bending stiffness of the

structure itself. This procedure would be equivalent to laminating the layers of a multi-

layer structure and vice versa. If only the energy needed for the creation of new surfaces

is considered, with surface energies of the order of 1 or 2 J/m2 the process is also

energetically very inexpensive. Furthermore, the reverse process (cancellation of the

interfaces) is in principle exothermic. The amplitude of the range of stiffness values that

can be realized by the switching of the topology can easily range in the order of a factor

of 102. The reality is that processes that involve the creation or cancellation of interfaces

in a solid have generally an endothermic global balance and are ill suited for the kind

of adaptive applications envisioned in this work. The modulation of the shear stress

transfer at the interface of a multi-layer system is proposed as an alternative to true

topology switching. This assumption means that under ideal conditions it is possible
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to replicate the behavior of a system in which interfaces are created and canceled

by switching the normal stress across interfaces on or off. The use of electrostatic

fields for the generation of the necessary normal stresses is a logical choice thanks to

the very limited weight penalty that has to be accepted and the ease of interfacing an

electrostatic system with a control system. This formulation of the working principle of

a structure with adaptable mechanical properties is the result obtained within this work

and represent the starting point for the work presented in the other chapters.

The calculations described in chapter 3 are primarily meant to demonstrate, without the

interference of unwanted effects that experimental data are inevitably affected by, that

the modulation of the shear stress transfer at the interfaces of a multi-layer structure

is equivalent to the switching of the topology of the structure from monolithic to multi-

layer and vice versa. A numerical model is used to take the effect of normal and shear

stresses at the interfaces into account. An analytical model shows the effect of the

interfaces on the shear stress distribution in the structure. A comparison of the calcu-

lated shear stress distributions shows that as long as the shear stress at the interfaces

is smaller than maximum transferable shear stress σxy,max = µ · σyy,el, the behavior of

the interfaces at which a normal stress is applied is equivalent to the behavior of a sys-

tem in which no interfaces are present. Hence, the hypothesis that the modification of

shear stress transfer is mechanically equivalent to a modification of the topology of the

system is confirmed.

At higher load levels, the presence of an interface subjected to a normal stress can be

seen again, in terms of shear stress distribution as the shear stress cannot be trans-

ferred in full and slipping at the interfaces starts occurring. This situation is at the origin

of the force-displacement hysteretic behavior of the system that causes energy dissi-

pation to take place. The system chosen to show the effect of topology switching on

the global and local behavior of a structure was the simplest possible in terms of geom-

etry and selection of materials, since all layers of the system had the same geometry

and were made of the same material. Electrostatically couple multi-layer structures are

thus expected to display two interesting properties: the ability to modify their bending

stiffness and, at high load levels, the ability to increase the damping ratio of the system.

The experimental verification of the proposed method for the modification of the me-

chanical properties of structural elements was focused on the investigation of sandwich

beams due their higher sensitivity to the shear stress transfer between the core and the

faces of the structure. Also, the high length to stiffness ratio of the faces makes the

system fairly insensitive to the adverse effect of the lack of planarity of the interfaces

presented in section 4.4. While it was not possible to determine directly the effect of the
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face-core coupling on the shear deformation field, the results of the experiments per-

formed on the CFRP-Silicone-CFRP sandwich could confirm the relationship between

the applied potential Ui and the external load P (and thus the interfacial shear stress

σxy,int) at which a softening of the system could be observed. This is interpreted as

a reasonable indirect confirmation of the mechanism and calculation presented in the

previous sections. The second set of experiments, performed on a fairly large CFRP-

GFRP-CFRP sandwich beam, were geared towards the estimation of the impact of the

electrolamination of stiffening elements onto a fairly rigid structure on its dynamic be-

havior. Additionally, this portion of the work yielded a useful base for the estimation

of the range in stiffness and damping ratio that can reasonably be achieved with the

chosen combination of core and face materials.

The system properties determined in the experimental part of this work, is finally used in

the last part of this work that describes a real application of the developed method: the

implementation of a novel vibration suppression method for the GFRP deck of Empa’s

pedestrian bridge. In the first place, the stiffness and damping properties determined in

the experiments performed on the CFRP-GFRP-CFRP beam were used in a homoge-

nized numerical model to estimate the frequency response of the beam. Subsequently

they were updated so as to resolve the discrepancies between the measured system

and the original numerical model. Finally based on the updated properties of the model

beam, the properties of the bridge deck model were calculated for three conditions of

the target system: the unstiffened bridge deck, the bridge deck stiffened by laminating

CFRP bands to it and finally the bridge deck with electrolaminated CFRP bands at con-

ditions that yield the highest damping factor. Due to the fairly high level of constraint

of the deck, the frequency shift obtained by laminating the CFRP bands is very limited.

Depending on the band width of the exciting spectrum, the predicted frequency shift of

approximately 0.5 Hz is likely not to be sufficient to suppress a high amplitude reso-

nant vibration by disrupting the resonance situation. The ability of the system to realize

quite high levels of damping represents a more viable approach to the suppression of

structural vibrations.

The use of a coulomb friction based damping system leaves the method open to wear

related issues, especially in view of the fact that the element subject to dry friction is

also subject to a considerable electrostatic load. The danger of damaging the dielectric

layer by the combined action of mechanical and electrostatic loads should be carefully

considered, especially if thin dielectric layers are used to optimize the normal stress

generated by the electrostatic field. The durability of the system, the effect of heat de-

velopment as a consequence of the friction on the reversibility of the property changes

of the interface system shall be taken in serious consideration in view of real life applica-
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tions. Nevertheless, the behavior of the first of the two CFRP-GFRP-CFRP beams was

operated for several months under fairly severe conditions and gave only marginal signs

of deterioration, in spite of the unfavorable surface topography that lead to non-uniform

contact between the elements. Furthermore, the planarity of the contact surfaces of the

elements of the system is a property that has a strong influence on its performance.

In summary, the present work showed the development of a novel method for the mod-

ification of the stiffness and the damping ratio of structural elements. The work spans

from the description of a concept for the modification of the mechanical properties of

simple structures, to its experimental demonstration to the presentation of a real appli-

cation of the system. Its working principle could be explained using simple models that

describe the effect of normal stresses at the interfaces of the system. The performed

experiments indicate that the proposed principle and model can describe the observed

system behavior. Calculations performed to estimate the behavior of a structure that

makes use of the proposed vibration suppression method show that the obtained in-

crease of the damping ratio is more likely to have a remarkable effect on the vibration

amplitude of the structure than the increase in stiffness, due to the high number of

constraints in the structure.

6.2 Outlook

The present work has shown that the electrostatic modification of the stiffness and the

damping properties of adaptive structures has the potential to become an effective,

robust and relatively inexpensive method for the suppression of structural vibrations.

Next to the use of polymeric films as dielectric layers, as in this work, there are many

different materials and methods to exploit electrostatic stress for the implementation of

this method. This leaves a great deal of freedom in the optimization of performance

and costs for the realization of adaptive structures with variable stiffness and damping.

The issues that will need to be addressed in the development of electrostatically tunable

structures span from materials optimization to the design of tunable structures on the

macro scale.

At the smallest end of the scale is the optimization of dielectric layers for high energy

density (and thus high normal stress) and resistance to wear. Possible approaches will

include the use of particle toughening (e.g. with diamond particles that also have good

dielectric properties or with layered alumino-silicate nanoparticles).

The micro- and nanostructuring of the contact surfaces promises to make a significant
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contribution to the ’conversion’ of normal stress into transferrable shear stress. Here the

hope is that by obtaining mechanical interlocking of surface features such as ridges, an

increased amount of shear stress can be transferred per unit normal stress. This will

extend the amount of external load under which the system can be expected to behave

elastically, when the interfaces are activated. Also in this case, both the mechanical

and dielectric properties of the materials used to structure the surfaces will determine

the usability and reliability of the system.

On a larger scale, the planarity of the contact surfaces has a strong influence on the

effective area of contact between the surfaces of the system. The requirements set

to the planarity of the interfaces increase as the stiffness of the layers increases. The

use of more refined manufacturing processes and of dielectric materials specifically

designed for applications with high field strengths will lead to an improved performance

of the system.

The above mentioned steps towards an optimization of the interfaces system used to

implement variable stiffness and damping structures are necessary steps towards a

real life use of this type of novel intrinsically adaptive structures.

Especially for the implementation of the friction damping in connection with the interlam-

inar slip, the performance of the system could probably be enhanced by appropriately

modulating the electrostatic slip so as to maximize the dissipation of energy. A model

describing the quantitative relationship between dissipated energy, interlaminar stress

and deformation of the system will be needed, in order to implement a suitable control

system.

Furthermore, direct confirmation of the influence of the modulation of the interface in-

teractions on the shear stress distribution in the structure will be sought using methods

such as speckle interferometry or other image correlation methods, once the techno-

logical issues limiting the domain within which the multi-layer systems behave as a

monolithic element will be addressed.

Finally, in the field of basic considerations, the investigation of the use of the elec-

trostatic modification of shear stress transfer at a low scale should be considered. If

applied on structures consisting of a large number of layers, each a few µm thick, the

concepts presented in this work are expected to lead to novel devices with interesting

properties. High damping and high stiffness changes are expected from these devices

that could provocatively be called ’matrixless composite materials’. An impression of

the possibilities of such materials is given in figure 6.1.

While these aspects are considered, the design and demonstration of structures that
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Figure 6.1: A proof of concept experiment showing the behavior of a structure made

of approximately 50 layers of polymer film (coated on one side with aluminum) before

and after an electrostatic field is applied. Such structures can potentially be used for

morphing applications.

take advantage of the variable stiffness and variable damping concept can be carried

out, based on currently available materials and processes.

The first step towards the application of the electrostatic modification of the mechanical

properties of structures will be made with the implementation of the method on Empa’s

pedestrian bridge. Within this project, technological aspects of the manufacturing of

electrostatically tunable structures, such as the production of sufficiently planar contact

surfaces and the application of suitable electrode/dielectric assemblies will be of special

interest. It is difficult to predict, how closely related to a real life application this project

is. Nevertheless, the construction of a demonstrator in the scale of Empa’s pedestrian

bridge is a necessary step towards the development of ’real life’ applications.

In the large scale, the use of variable damping to optimize the structural damping of

wind turbine rotorblades is currently being considered. The wind turbine industry is

potentially a good target for this application, as it makes use of technologically very

advanced materials and solutions and is not yet as strictly regulated as, for example,

the aero-space industry. Some efforts have already been made to increase the amount

of structural damping of rotorblades [14] by optimizing the materials used for these

structures. Possibly the additional damping that can be obtained with the method pre-

sented in this work could offer additional advantages in terms of fatigue resistance of

the structure.

At a considerably smaller scale, some considerations have been made about the use

of variable stiffness and variable damping in the cantilevers Atomic Form Microscopes.

Considerations on the effect of variable damping are presented by Chang et. al [13].
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The challenges posed by the fabrication of such devices as multı̂-layer structures will

have to be assessed in the first place and put in relationship to the potential benefits.
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