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Abstract

In modern electronic media, digital images are the major means for image reproduction. Digital
data are being presented on different devices with different color reproduction capabilities. Every
time digital data has to be transformed from one device to another, one has to adapt the color
specification to the output device’s capabilities, called output gamut. This process is called gamut
mapping.

One of the reasons, why designing a gamut mapping algorithm is a complex problem, is the fact that
it is hard to gauge the quality of a gamut mapping algorithm. Traditionally one uses psycho-visual
testing to assess the visual performance of algorithms, but this approach is very time-consuming.
As an alternative, automated models to measure image quality are being researched, though they
cannot precisely reflect human visual preferences.

The thesis consists of two parts. The first part provides theoretical foundations for different aspects
of the evaluation of gamut mapping algorithms. We present statistical methods for the evaluation
of psycho-visual data, namely, Thurstone’s method and conjoint analysis. We describe how to test
underlying assumptions and discuss possible methods of error analysis. In addition to psycho-
visual testing, we present image quality measures that are useful for evaluating gamut mapping
algorithms.

In the second part we present practical applications of the methods introduced in the first part.

We describe a psycho-visual test for the evaluation of parametrized gamut mapping algorithms. In
order to handle a huge amount of possible algorithm variants (in our case 1536), conjoint analysis
is applied. We verify the assumptions that allow us to deal with this large space of parameters.
The results of the conjoint analysis allow us to estimate the importance of different parameters of
the algorithms. We also analyze errors for different tests.

Further, we compare individualized and non-individualized evaluation methods (both based on
psycho-visual data and image quality measures) using hit rates.

Motivated by the higher accuracy obtained by individualized models we design a meta-algorithm
that chooses an optimal (according to the given model) algorithm for every image. We estimate
the quality of the meta-algorithm and show that it performs better than any single algorithm
considered in the test.
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Zusammenfassung

In modernen elektronischen Medien ist die digitale Form von Bildern Standard und bildet die Basis
fiir die Bilderverarbeitung. Da diese Geréte aber sehr verschiedene Farbwiedergabeféhigkeiten be-
sitzen, miissen die digitalen Daten jeweils an den Farbumfang (genannt Gamut) des Ausgabegerates
angepasst werden. Diese Anpassung nennt man Gamut Mapping.

Einer der Griinde, die das Design eines Gamut Mapping Algorithmus zu einer so komplexen An-
gelegenheit machen, ist die Tatsache, dass es sehr schwer ist, die visuelle Qualitiit eines Gamut
Mapping Algorithmus abzuschéitzen. Normalerweise fithrt man psychovisuelle Tests durch, um die
visuelle Qualitidt von Gamut Mapping Algorithmen zu bestimmen. Diese Methode ist aber dusserst
zeitaufwandig. Deshalb wire ein automatisiertes Auswertungsmodell wiinschenswert. Solche Mod-
elle werden momentan erforscht - diese kénnen zwar bislang menschliche visuelle Priferenzen nicht
genau wiedergeben, aber sie zumindest approximieren.

Diese Arbeit gliedert sich in zwei Teile. Der erste Teil ist eine theoretische Grundlage zur Bewer-
tung von Gamut Mapping Algorithmen. Wir prisentieren statistische Methoden zur Auswertung
von psychovisuellen Daten, in Besonderen die Thurstone-Methode und die Conjoint-Analyse. Wir
beschreiben, wie man die Modellannahmen {iberpriifen kann, und diskutieren mogliche Metho-
den fiir die Fehlerrechnung. Als eine Alternative zu psychovisuellen Tests préisentieren wir die
wichtigsten Bildqualitdtsmasse, die fiir die Bewertung von Gamut Mapping Algorithmen niitzlich
sind.

Im zweiten Teil wenden wir die im ersten Teil eingefiihrten Methoden an. Als erstes prisentieren wir
einen psychovisuellen Test von parametrisierten Gamut Mapping Algorithmen und dessen Date-
nauswertung. Wir wenden Conjoint-Analyse an, um die grosse Zahl von mdéglichen Algorithmen (in
unserem Fall 1536) zu beurteilen. Wir untersuchen die Wichtigkeit der verschiedenen Parameter
der Algorithmen und analysieren auch Fehler fiir verschiedene Tests. Des Weiteren vergleichen wir
individualisierte und nicht-individualisierte Bewertungsmethoden (basierend auf psychovisuellen
Daten oder Bildqualititsmassen) mit Hilfe von Hit Rates.

Motiviert durch die héhere Genauigkeit der individualisierten Modelle entwickeln wir einen Meta-
Algorithmus, der einen optimalen Algorithmus (in Bezug auf das gegebene Modell) fiir einzelne
Bilder wahlt. Wir validieren den Meta-Algorithmus und zeigen, dass er besser funktioniert als
jeder einzelne Algorithmus den wir in diesem Test beriicksichtigt haben.
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Chapter 1

Introduction

Artists can color the sky red because they know it’s blue.
Those of us who aren’t artists

must color things the way they really are

or people might think we’re stupid.

Jules Feiffer

1.1 Motivation

The visual system is the dominant component of human perception, and an important part of it
is the ability to discriminate colors. Consequently, visual information in form of color images is a
natural part of modern communication, in particular on the Internet.

In modern electronic media, information is usually processed as digital data. Such data needs a
physical device to become visible. Physical devices have restricted color reproduction capabilities,
and color scientists refer to the set of colors that a device or a process can present (monitor),
reproduce (printer), capture (camera), or store (computer) as the color gamut of the device. For
example, due to device limitations a printer is typically not able to reproduce all the colors visible
on a display.

The transformation of color data from one device specification to another is called gamut mapping.
Typically, the transformation is from an input to an output device specification.

In traditional photo-mechanical reproduction, gamut mapping is implicitly given by the physi-
cal behavior of the devices. However, desktop publishing and digital reproduction changed the
situation fundamentally as the input is given in digital form, namely, a specification by device
independent color coordinates. Gamut mapping is then realized as a colorimetric function in a
device independent color space. Traditionally, only the final result of gamut mapping has been
evaluated by the user, whereas in a completely digital process it is possible to control and evaluate
gamut mappings colorimetrically. Also, gamut mapping is no longer physically determined but has
to be designed mathematically.

Consequently, the ICC color management (ICC-CMS) has been introduced in 19931 This nowa-
days dominating software standard describes how to translate device dependent color coordinates
(e.g., RAW-RGB, CMYK) to device independent color spaces (like CIEXYZ or CIELAB) and vice
versa. The basic tools are interpolation tables, known as lookup tables (LUT), which are stored

Isee wuw.color.org



4 Chapter 1. Introduction

in device characterization files (profiles). This approach works well for all colors reproducible by a
device, but out-of-gamut colors are neglected.

Over the last two decades, gamut mapping research evolved from finding the best treatment of out-
of-gamut colors to searching for the optimal image dependent mapping in specific environments.
Optimality is defined here by visual image quality measures that should keep the mapped image
as similar as possible to the original. However, no simple definitions exist to describe similarity or
image quality, and thus the definition of the goal of gamut mapping is itself a challenge. This can
be addressed by experimental methods assessing human preferences in psycho-visual tests. Human
perception can be roughly modeled by perceptual attributes such as lightness, saturation (colorful-
ness), hue, sharpness, and details (contrast). In his book on psychometric scaling Engeldrum [19]
calls these attributes “Customer Perception-Nesses”. In order to derive an image quality measure
for optimizing gamut mapping algorithms, good approximations of these attributes by physical im-
age parameters (also called ’objective measures’) are needed. Furthermore, an appropriate relative
weighting of the attributes is important.

Consider the following illustrative example: map each in-gamut color onto itself and each out-of-
gamut color to its closest in-gamut color (using an appropriate color space metric). This approach,
called clipping, minimizes the average color difference of all pixels in an image. However, colors
are always seen in their spatial neighborhood as described by perceptual attributes like sharpness
and contrast which are not covered by the colorfulness attribute. Hence, the mapped image is
not optimal with respect to these attributes. In Figure 1.1 this is illustrated by a sample image.
When the perceived color distances are minimized, i.e., colorfulness is maximized, image details
are lost in color saturated regions. On the other hand, details can be preserved by using methods
like linear compression, but then the mapped image usually is desaturated. In general, attributes
like details and colorfulness cannot be optimally preserved simultaneously. Hence, there is always
a trade-off between different attributes involved, and the design of an optimal gamut mapping
algorithm needs (1) good psycho-visual test data, (2) appropriate image quality measures, and (3)
a versatile gamut mapping framework allowing optimization.

ISO 300 ISO 300

Fig. 1.1: The effect of different gamut mapping strategies: original (left), linear compression
(middle), clipping (right).

1.2 Formulation of the present research

Typical gamut mapping studies involve only a few algorithms. However, in order to optimize
the performance of an algorithm, we consider many parameters of the algorithm and try to find
optimal settings. As parametrization introduces much more algorithms to compare, one has to
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choose a method which allows to obtain statistically significant results using a reasonable number
of comparisons. We explored the use of conjoint analysis, which is a popular method in market
research to test preferences of structured products among customers.

Even though conjoint analysis reduces the required number of comparisons, still a lot of data is
needed. Therefore we decided to collect data over the Internet as well. We verified carefully that
this approach yields usable data [56].

In order to have an alternative to the time-consuming psycho-visual tests, one wants to assess the
quality of the mapped images automatically. Moreover, as already shown e.g. by Hardeberg [32]
and what can be extracted from error analysis (compare Section 4.2.2), different algorithms are
optimal for different images. Carrying out a psycho-visual test for each new image is not feasible.
However, one can approximate the quality of the mapped image computing the difference between a
given mapped image and its original using image quality measures (compare Bonnier [3] and Harde-
berg [32]). Asimage quality measures are effective enough to consider individual images in practical
applications, one can optimize gamut mapping algorithms by using image-individualization.

1.3 Outline of the thesis

The thesis consists of two parts. The first one (Chapter 2 and Chapter 3) covers the theoretical
foundation for our research. The second one (Chapter 4 and Chapter 5) presents applications of
the methods described in the first part. The outline of the thesis is as follows:

In Chapter 2 we present in detail methods used to evaluate psycho-visual data: Thurstone’s method
and conjoint analysis, and the models standing behind these methods. Further, we investigate
different methods of computing errors for these models and discuss their appropriateness. We also
present methods for validating the models, both for verifying the assumptions of the models and
for examining the accuracy of the model comparing consistency between the data and the model.
We describe cross validation, which avoids testing the model on the training data.

In Chapter 3 we describe non test-based methods for comparing the quality of gamut mapped
images. Firstly, we summarize the basics of color science. This is a background for presenting a set
of reference image quality measures, i.e., functions of two images giving as a result a value, which
corresponds to the similarity or correlation between these two images.

In Chapter 4 we present a test of parametrized gamut mapping algorithms (GMAs). Thanks to the
parametrization of the algorithms we can use conjoint analysis to evaluate them. We are not only
looking for the optimal algorithm from the whole set, but also discuss the importance of different
parameters and their interactions. We also verify fulfilling of the assumptions and analyze errors.

Triggered by the significant image dependency of the optimal parameter settings, we describe in
Chapter 5 image-individualized models for evaluating GMAs. The models are based either on
psycho-visual data or image quality measures. We test the accuracy of these models using the
hit rate and confirm, that the good individualized models are significantly more accurate than
non-individualized. We also develop an image-individualized meta-algorithm and validate it.
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Theoretical Foundations






Chapter 2

Psychophysics

Man is the measure of all things.
Protagoras

An important topic in this thesis is the measurement of quality of gamut-mapped images in order
to optimize gamut mapping. A possible definition of optimality consists of a visual image quality
measure that describes the similarity of a mapped image to its original. However, there are no
simple definitions describing similarity or quality of images and thus the definition of the objectives
of gamut mapping is itself a challenge. The basic goal of mapping images is that people are not
aware that the image was altered at all. There are no automatic methods or models describing
human preferences exactly. Moreover, preferences can be different within the group of people.
Global evaluation is thus restricted to determine the typical or mean preferences. A traditional
way of evaluating gamut-mapped images are experimental methods assessing human preferences in
psycho-visual tests. Psycho-visual tests are used for subjective evaluation of the quality of images.
The aim of the tests is to compare images with respect to perceived quality.

Such a test is typically conducted in the following way: images mapped differently are shown
to observers, who have to answer a specific question concerning the quality of the images or the
similarity to the reference image. A sample user interface for a test is shown in Figure 2.1.
There are many possible designs of the test which we will summarize further in this chapter. By
evaluating test data one can obtain significant results describing the perceptual quality of the
considered images. Often an interval scale for the images is computed from these comparisons,
where a scale value is a measure for the quality of an image.

A traditional method of evaluating such data uses Thurstone’s Law of Comparative Judgement [57].
However, this method is practical only, if the number of algorithms in consideration is small. For
example, already for 20 algorithms, with 10 comparisons for each pair, one would need 1900
comparisons for each considered image. It is too much for practical application, especially because
in the test there are typically at least 20 images, which would increase a total number of comparisons
to 38000.

Parametrized algorithms usually have more than 20 instances. In this case Thurstone’s method
can be extend to the multiparameter case using conjoint analysis. It allows evaluating the quality
of a high number of structured items (having conjoint structure).

In both these methods it is important to compute errors or confidence intervals, as we have to see if
differences between algorithms are significant. There are a few methods described in the literature
for computing errors for Thurstone’s Law of Comparative Judgement. We recapitulate them and
present an improved method. We compare the accuracy of these methods. Further we describe
how to rescale errors in conjoint analysis.
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Fig. 2.1: An example of a user interface for a paired comparison test. The image in the middle is
the reference (original) image. Two lower images are two gamut-mapped images. The observer is
asked to choose from the mapped images the one more similar to the original.

2.1 Design of psycho-visual tests

In the set up of a psycho-visual test it is important to choose a suitable method. The CIE
guideline for testing gamut mapping algorithms [12] try to standardize the way of conducting
psycho-visual tests for gamut mapping in order to make the results comparable. They provide
specific experimental methods, viewing conditions, and reference algorithms. Three methods of
psycho-visual tests are recommended for evaluating the quality of gamut mapping algorithms:
paired comparison, rank order and category judgement. The most widely used method is paired
comparison. It is the easiest one for observers, especially if differences between estimated images
are small. However, the other methods are also useful for specific problems, in particular they
are typically less time consuming than paired comparisons. In the following we describe these
methods.

2.1.1 Test methods

Paired comparisons

A pair of images from a set A is presented to an observer. He or she is then asked to choose the
one that better fulfills instructions of the test. In the gamut mapping case, the instructions usually
state that one should choose the more aesthetic image, or the image more similar to the original. In
the second case the original image is shown along with the transformed images. Paired comparison
tests have been used for example by Farup [24], Bonnier [3] or Morovic [48]. Typically, the data
are stored in a frequency matrix F' = (fq), where f,p is the number of comparisons where a has
been preferred over b (a = b). In this chapter we focus on processing data obtained using paired
comparisons.
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Rank order

An observer is asked to rank a set of images from the best to the worst along an attribute defined
by instructions, e.g. similarity to the original or aesthetics of the image. FEach ordering can
be interpreted as n(n — 1)/2 paired comparisons (for each pair within compared set we know
the ordering), so ranking is the more effective assessment method than paired comparison. The
gathered data in a rank order test can also be stored in a frequency matrix. Alternative evaluation
methods for rank order data is computing average ranks [19], or distance based models as described
and applied by Millen et al. [45]. The main disadvantage of this method is the fact, that ordering
very similar images can be a difficult task for the observers.

Category judgement

In a category judgement test observers are asked to rate images in categories. Categories can have
descriptive names or just be numbers. If the quality of images is considered, category names can
be for example: 5. Excellent, 4. Good, 3. Fair, 2. Poor, and 1. Bad. Category judgements have
been used for example by Morovic [51]. The main disadvantage of this method is that assigning
an image to a given category depends strongly on the subjective interpretation where the borders
between the categories are. Different observers also use the scale differently. Hence the most
natural evaluation of the data, i.e., taking the mean values, is not reliable. The data must be
further processed.

2.1.2 Experimental design

In each of those methods one has to decide, whether the observer should see a reference image
while doing the test or just see different transformed images. This choice depends mostly on the
aim of the test. In case of gamut mapping the typical task is to find the most similar representation
of the given image within the limitations of the target gamut. Hence a reference image is usually
shown to observers.

Another issue to consider while planning a test is whether ties are accepted or not. If we let
observers state, that there is no difference in quality between images, we can expect the data will
be less noisy, as observers make less random choices in case of very similar images. On the other
hand, if we use hit rates to validate the models (compare Section 2.4), ties are more difficult to
handle, thus they are often omitted.

Experimental design in parametrized tests

When designing a test on multi-parameter items, one has to decide which of the possible items
should be compared. For multi-parameter items comparing each set (or each pair) of items is
usually impractical. A good overview of multi-parameter test design can be found in Chrzan [7].
He discusses which designs allow to investigate different effects. He also describes the effectiveness
of designs, i.e., how many comparisons for different designs result in similar statistical significance.
In our studies we used random design. It allows to investigate all effects with the lowest probability
of a systematic error. On the other hand, it is less effective than other methods. Therefore, if
one is interested only in some basic effect, one should choose a design with a minimum number of
required comparisons.
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2.2 Discrete choice models

In this section we focus on evaluating choice data concerning unstructured items obtained by the
paired comparison method.

Given a set A of n stimuli, e.g., gamut mapping algorithms, and choice data of the form a > b
with a,b € A. We know the frequency f,; (F-matrix) that stimulus a is preferred over stimulus b
(number of times a is preferred over b). We consider the proportion g, that stimulus a is preferred
over stimulus b

fab + J

fab + foa +20°

as an indirect measure for the distance of the “qualities” (scale values) v, of a and vy, of b, respec-
tively?!.

Gab = (21)

Discrete choice models build on the assumption that the observers’ choices are outcomes of random
trials: confronted with the two options a,b € A an observer assigns subjective scale values u, =
Vg + €4 and up = vp + €, respectively, to the stimuli. The error terms €, and ¢, are drawn
independently from the same distribution. The observer then prefers the stimulus with the larger
scale value. Hence the probability p,; that a is preferred over b is given as

pab = Prlug > )
= Prlva+e, > vp+ep] = Privg —uvp > €, — €] . (2.2)
Here we discuss two discrete choice models that differ in the choice of distribution fore,. We con-
sider normal distributions (Thurstone’s (probit) model [57]), and Gumbel distributions (Bradley-
Terry’s (logit) model [5]). In both cases, the scale values v, can be computed by a least squares

approach from the probability p,, which can be estimated by the proportion ¢, that a is preferred
over b.

2.2.1 Thurstone’s Law of Comparative Judgement

In Thurstone’s model [57], the error terms ¢, are drawn from a normal distribution N(0,0?) with
expectation 0 and variance 2. Here we consider Thurstone’s Case V model, where the variances
for all stimuli are assumed to be equal. The difference ¢, — €, is also normally distributed with
expectation 0 and variance 202 and thus

Dab = P’[‘[ua Z ’LLb] = PT[Gb — €q S Va — 'Ub]

_ \/W/%Ub “Erdy = d (f:b> , (2.3)

where ® is the cumulative distribution function of the standard normal distribution

d(z) eV 2y (2.4)

1 K
B v 2T /_oo
This is equivalent to
— vy = V200 (py) . (2.5)

Using the proportion g4, that a is preferred over b, we set z, as an approximation for v, — vy

Zap = V20D qa) [Z — matrix] . (2.6)

1We introduced the bias correction § in order to eliminate numerical problems for pairs of items, which have zero
entries in the frequency matrix. In the data analysis of this thesis we used § = 0.2. For a discussion of different bias
correction formulas see also Engeldrum [19].
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2.2.2 Bradley-Terry’s model

In Bradley-Terry’s model [5] the error terms e, are drawn from a standard Gumbel distribution,
i.e., the Gumbel distribution with location parameter y = 0 and scale parameter 8 = 1. Since the
difference of two independent Gumbel distributed random variables is logistically distributed with
mean 0 and standard deviation v/2/3, we have

Pab = Prlua = w] = Prle, — € < va — ]

Vg —Vp vg

1 e V28 e V26
= (va —vy) = vg —vp = v . (27)

l+e Vv 1+e Vs e + e V35
This implies
e\;gﬂ

= (2.8)

evss 1 —Dap’
which is equivalent to
— v, =V261n < Pab ) (2.9)
— Pab

As we did for Thurstone’s model we set

Zap = V2 ﬂln( dab ) [Z — matrix]. (2.10)
ab

2.2.3 Computing scale values using least squares

From either Thurstone’s or Bradley-Terry’s model we get an estimate z;, for the difference of the
scale values v, and v,. We compute the v,’s as the least square approximation for the z,;’s (all
equally weighted) in a least squares sense. Let 0, be the approximation of v,. We want to minimize

the residual
n

r(va|a € A) = Z (@a — 0y — Zab)2- (211)

a,be Ab#a

A necessary condition for the minimum of the residual is that all partial derivatives vanish, which
gives

D=2 3 (00— zan) = 0. (2.12)

Va beA;b#a
Hence
nba =Y 0+ Y Zap (2.13)
beA beA;b#a
If we normalize by setting
Z o =0, (2.14)
beA

then the values that minimize the residual are given as

1
by = — ab- 2.15
Wl Y 215)
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2.2.4 Generalized evaluation using least squares

We assume that the entries of the Z-matrix z,, are noisy measurements of the true differences
v, — vp. If we assume that the noise term e is independent of the pair (a,b), then we have

Z=Xb+e, (2.16)

where X is the (%) X n-matrix (indexed by the pairs/elements in A) that has the entries

1 i1=a
Tabi = —17=0b (2.17)
0 i#a,b

If we further assume that e is normally distributed with mean 0 and variance o2, then the likelihood
function for the scale values
L(d) = L(9; X, Z) = p[Z]X; 7], (2.18)

has the form

N 1 (Zab - @Tx(x,b )2)
L = € - . 2.19
I 219)
(a,b)E(g)

This function (or the logarithm of it) is maximized at ¢ that minimizes

Z (’[)a - {)b - Z(Lb)Qa (220)

beAsb#a

i.e., the residual function that we maximized in the last subsection (eq. 2.11) under the additional
scaling constraint ), _ , 05 = 0.

The assumption that the variance o2 of the error term is independent of the pair (a,b) may not be
realistic in particular if not all pairs have been compared equally often. We can actually estimate
this variance Ugb for every pair (a,b) using error analysis (compare Section 2.5). We can normalize
the least squares approach to accommodate the difference in variance by multiplying with the

following (5) x (%) diagonal matrix N
wne (D). o

NZ =NXb+e, (2.22)

1
N = diag (
Oab

That is, we assume
where € is normally distributed with mean 0 and variance o2 (independent of the pair (a,b)). The
maximum (log)likelihood solution is then given as

o= ((NX)'NX)"Y(NX)"Z. (2.23)

Again we can translate the scale by setting 0, := 0, — % > e Up resulting D, - 4 0, = 0.

In order to enforce our constraint ) ;. 4 % = 0 we add an additional equation with our constraint.
We define V, X, Z as follows:

Z=1z0" (2.24)
X =[X,[1,1,...1))7 (2.25)
N =[N, i]T (2.26)

Oc
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where o, defines the weight of that equation and can be interpreted as the uncertainty of the
constraint. The resulting equation for ¢ is

b= (NX)TNX)(NX)Z. (2.27)

Let us notice that the solution for ¢ is independent from the choice of o.. The strengths of this
linear regression method is, that it is also valid for incomplete paired comparisons. If unit weights
are used in N the solution corresponds to the incomplete matrix solution to Thurstone’s Case V,
published by Morrissey [52] as well as Gulliksen [31].

2.2.5 Mosteller’s Test

Mosteller’s test is used to verify the assumption that the scale values are uncorrelated, equally
distributed variables (either normally in case of Thurstone’s model, or Gumbel distributed in case
of Bradley-Terry’s model). A description of Mosteller’s test can be found in Engeldrum [19] or
in the original article by Mosteller [53]. The goal of Mosteller’s test is to compare the computed
scale values 0,, or more precisely their differences v, — 05 to the observed proportions q,,. We
use the respective distribution function, i.e., either Equation 2.5 in case of Thurstone’s model, or
Equation 2.9 in case of Bradley-Terry’s model to compute probabilities p,p from the differences
g — Up. Then we transform both g4, and pgyp, into angles 6,;, and éab, respectively, using the arcsine
transformation given by

O, = sin~! (2gap — 1) and O = sin " (2pab — 1) (2.28)

The arcsine transformation converts binomially distributed frequencies into asymptotically nor-
mally distributed variables with variance 1/mgp, where my, is the number of choices between
stimulus @ and stimulus b. Our hypothesis is that 6,; is normally distributed with expectation éab
and variance 1/myg;, for all @ < b. As test statistic we use

X2 = map(Oar — bap)’. (2.29)

a<b

If the hypothesis is true then the test statistic x? is approximately x2-distributed with (")
degrees of freedom. Thus, at level & we have to compare our test statistic to the 1 — o quantile of
the y2-distribution with (”;1) degrees of freedom.

2.3 Conjoint analysis

Conjoint analysis has its origins in mathematical psychology [41] and is typically applied in market
research to investigate customers’ preferences. It can be used to evaluate preferences on any
structured set of items in a psycho-visual test.

2.3.1 Conjoint structure

In the previous part of this chapter we considered a set of unstructured stimuli. Now we assume
that the set A of stimuli is structured, namely we assume it is a parameterized domain. We call a
domain parameterized, if it is given as a Cartesian product A = A; x ... X A,, of parameter sets
A1, ..., An. Every element a of A is a vector a = (a1, ..., amn), where ap € Ag. The elements ay,
are called parameter levels 2, m is the number of parameters.

2For example let considered items be different yogurts. Then possible set of parameters can be as follows:
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One goal of conjoint analysis is to determine how much every parameter level contributes to the
observed outcome of a (preferential) choice measurement—this contribution is called the part-
worth of the parameter level. As for the discrete choice models we assume that we have a set of
choice data on the stimulus set A. We want to estimate the part-worth of all the parameter values
from the choice data.

Giesen [26] extended the least squares approach described for discrete choice models to the multi-
parameter (conjoint) case. The extension entails to apply the least squares method for each
parameter using Thurstone’s model, which provides an initial set of part-worths. Part-worths
are computed independently for each parameter, hence rescaling of these values is needed to make
the scales of the different parameters comparable. The overall value of a stimulus in A is then
obtained by summing up the re-scaled part-worths of the parameter levels present in the object.
In the following, we first provide more details on the re-scaling approach.

2.3.2 Re-scaling for Thurstone’s model

Note that Thurstone’s model has a free parameter o that we (without loss of generality) set to 1.
Now, let v, . .. Vk,,, be the scale values computed by using Thurstone’s model for every parameter
Ay with levels ag,, ...ay, . To get the scale value of a stimulus in A we sum up all the scale values
(part-worth) of the parameter levels present in the stimulus, i.e., we assume a linear model. But
for the linear model to be meaningful, the scale values for different parameters need to be on

comparable scales.

To make the scales for different parameters comparable we normalize them by the following nor-
malization procedure: for any set of parameter’s levels Ay the scale values v, , . .. U, are normally
distributed with variance o7, and expected value 0. The 0%, values are themselves drawn from
another normal distribution with expected value 0 and variance 0%2. Hence, quality values for
the levels of parameter Aj, are drawn from a normal distribution Ny with variance o7, + o7, and
expected value 0 (as the convolution of two normal distributions with expected value 0 and vari-
ances oz, and o3,, respectively). The value o7, is the same for all a, € Aj and will be chosen
such that the quality values for different parameters are comparable. We assume, that Ny are the
same for all kK = 1...m. This assumption is quite reasonable since the scale values for the different
parameters are all computed from the same database.

Hence, the value o7, + o3, is independent of k = 1,...,m. Now we want to find a re-scale value
)\%, such that )\i(ail + 0%2) = const, where the constant does not depend on k. Without loss
of generality we can set the constant to 1 which gives A\?(07, + 03,) = 1 for k = 1,...,m, or

A2+ X202, = 1if we assume 07, = 1. (As mentioned before, for the computation on the parameter
level we had set the value of 07, to 1.) In the following we fix the parameter k and drop it from
the index. We can estimate o; from the scale values computed from Thurstone’s model scaled by
A, i.e., A\v,, where v, is the scale value of level a, as follows®:

> a1 21 (Ve = ) fab (2.30)

20'2 = )\ 0 ) )
22:1:1 Zb:l fab

e SIZE— {0.1751, 0.21, 0.251}
o PACKAGE COLOR— {white, green, blue}
e PRICE = {18, 1.2§, 1.5%}

e TASTE= {Natural, Vanilla, Strawberries}

The profile of the yogurt is then a vector in SIZE x PACKAGE COLOR x PRICE x TASTE, for example (0.1751,
white, 1.5$, Natural).

3Note that ug — up = va — Vp + €a — €3, Where €, — €, is normally distributed with zero mean and variance 205,
n

and also note that we compute the v, setting Ug = 1 normalizing by %Za:l vq = 0.
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where fq; is the frequency the a’th level is preferred over the b’th level. Plugging the resulting
estimate for o7 into A2 + 07\% = 1, we get:

1
A= - E (2.31)
\/1 + Z;:1 ZbL:1 (“a_vb)zfab
23 0—120=1 fab
Now for the fixed parameter k we re-scale the scale values vg, , . . . s Uk, by the value of \i as defined

above. The normalized scale values of the parameter levels are our part-worths that we assume to
contribute linearly to the quality of a stimulus, i.e., the scale value of a stimulus (a3, ...a;,) € 4
is >y, Agvg which is the sum of the part-worths of the parameter levels present in the stimulus.

2.3.3 Linearity assumption in conjoint analysis

Here we describe how to test the linearity assumption that we make for conjoint analysis. Let Ay
and As be two parameters, let C' = A; x Ay be the parameter that results from combining A; and
Ay, and let cq,...,c; be its levels. We compute scale values for the levels of C in two different
ways. First, for every level ¢, = (a1, a;2) with a;; € Ay and a2 € Ay we add up the comparable
scale values for a;; and a;s that we compute as described before. Let vq,..., v, be the resulting
scale values. Second, we apply Thurstone’s method directly to the combined parameter C' and
make the resulting scale values comparable with the scale values of all levels of the parameters
different from A; and A,. This results in scale values v1, . .., v,. If additivity holds, then we expect
that v, = v},. Thus, our hypothesis is that v, = v), for all 1 <a < k. As a test statistic we use

k /
X2 _ Z (Uz _ 'Ua)Q (232)

where o, and ¢/, are computed by error propagation from the errors of the observed frequencies. If
the hypothesis is true then the test statistic x? is approximately x2-distributed with k — 1 degrees
of freedom. The hypothesis is rejected at a significance level of avif x* > x7_, ,_, where x7__, ,
is the 1 — o quantile of the x2-distribution with & — 1 degrees of freedom.

2.3.4 Distribution of scale values in conjoint analysis

For our approach towards conjoint analysis it is important, that there is no dominant parameter.
In this case the assumption that the scale values of the whole set of items follow the normal
distribution would not hold. Hence, our re-scaling method would not be eligible. One possible way
of testing if there is no determining parameter is looking at the ordered scale values. If there is
no dominant parameter the curve should resemble inverse cumulative distribution function of the
normal distribution. In other case we would see separate parts of the curve, compare Figure 2.2.

2.4 Individualized models

We test gamut mapping algorithms in a psycho-visual test by evaluating different images mapped
using these algorithms. The obtained data can be evaluated for the whole groups of images or for
subgroups or even individual images. The same concerns observers —we can evaluate the whole
group together, split them into smaller groups or even evaluate individual persons separately.

We can naturally evaluate any subset of the data in the same way as the whole data set. However,
splitting the data implies reducing the available number of comparisons. To alleviate this issue,



18 Chapter 2. Psychophysics

- Sorted utilities
— Inverse cumulative normal distribution

; _—
L |
T

Quality scale
Quality scale
o

Algorithms sorted by utilities Algorithms sorted by utilities

a b

Fig. 2.2: a) An example of the possible distribution of scale values without a dominating parameter
b) An example of the possible distribution of scale values with a dominating parameter.

we can use a linear combination of group-wise (svinq) and general scale value (svgep ).
SV = SVgen + (1 — @) - 8Ving (2.33)

The « is chosen to maximize the hit rate (compare Section 2.6) on the test set.

2.5 Computing errors for discrete choice models

A good error estimation is needed in order to gauge the statistical significance of differences between
scale values. Even though a thorough treatment of the involved statistical errors is often neglected.
Morovic [48] gives a simple formula to estimate confidence intervals. It basically scales with the
square root, of the number of observations N per pair of stimuli but not with the number of stimuli
n. This methods has been used in many psycho-visual studies on gamut mapping, though only a
few of them cite the used formula explicitly [32]. The CIE-guidelines [12] only give a reference to
Morovic’s thesis [48] concerning confidence intervals for paired comparisons.

In a recent paper, Montag [46] has investigated the dependency on the number of stimulin using
Monte Carlo simulations and has derived an empirical formula where the estimated error scale with
the square root of the product of N and n. Standard books on psycho-visual scaling [2; 14] give
a more detailed description for error estimations, however their results are tied to their specific
data analysis and a direct application to the standard evaluation of Thurstone’s Case V case is not
obvious.

Here we will give a direct derivation of an error estimation for Thurstone’s Case V and its rescaling
for conjoint analysis. It is based on error propagation. We will use Monte Carlo simulations to
compare the results with the other commonly used methods and to find the region of applicability
as a function of the number of observations N, the number of stimuli n, and the z-scale value
range.

2.5.1 Morovic’s error estimation

Morovic [48, Chapter 4] gives the following formula to estimate the 95 percent confidence interval:
o

Cls =1.96
S \/N

(2.34)



2.5. Computing errors for discrete choice models 19

With ¢ = 1/v/2 we can compute the underlying error estimate for the scale values:

(2.35)

2.5.2 Montag’s error estimation

Montag [46] has published an empirical formula based on Monte Carlo simulations. It shows the
expected approximate dependency of the estimated error with the square root of the product of N
and n.

E, =by(n —by)" (N — by)> (2.36)
with by = 1.76, by = —3.08, by = —0.613, by = 2.55 and b = —0.491.

2.5.3 Analytic error estimation

Here we derive an analytic error estimate for Thurstone’s method. The basic approach is to
estimate the error in the image choice process and then propagating the error through the data
evaluation steps: this process of choosing one image from the pair of images can be modeled as
a Bernoulli trial with success probability p.,. The standard deviation for p,; equals the standard
deviation for a Bernoulli variable in N trials

pab(l - pab)

Opap = T (237)

As we approximate pqp by the empirical value gqp the estimated error E,, , for the proportion gqp
can be written as

Qab(l - qab)

fab + fba, + 25 (238)

Equy = 0qap =

To compute the errors of the entries z,;, in the Z matrix, we propagate the error using equation (2.6)

d

E.. =E, V20
ab dab dqab

D (qap). (2.39)

Using equation (2.15) the errors of the scale values v, are computed as

1
By, =~ > EZ. (2.40)
beA;a#b

2.5.4 Approximation of errors

An approximate error estimate can be derived for Thurstone’s Case V if the probabilities p,; are
not far from 1/2. Then their standard deviation is

1
E,,, ~ const = N (2.41)

and the error of the Z-matrix elements z,;, can be approximated as

1 d T
E,. ~ V2% ——® 1 qg=05)=vV204/ — 2.42
. fa,/mdq (g =0.5) \fa,/QN (2.42)
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independent of a and b. Assuming o = 1/+/2 the error for the scale values v, is approximatively

1 /7(n—=1)
E,~ -/ ——~ 2.43
- ~ (2.43)

independent of a.

2.5.5 Experimental error estimation

Experimental error estimation is based on minimal assumptions. It samples the error by dividing
the choice data randomly into two groups. For both groups, scale values are individually computed
and errors are estimated from the differences of the values obtained from both groups. This
process is repeated several times and the results are averaged to increase the accuracy of the error
estimation. If all model assumption are fulfilled, this error estimation should deliver the same
values as obtained from analytic error estimation.

A special option of this method is to test for heterogeneity among the observers (or among the
images). In this case data from individual observers (or individual images) are randomly divided
into two groups and errors are computed from the average difference of the scale values between
the two groups. Hence error estimation using such biased samplings allows us to test whether the
choices depend on individual observers (or images).

2.5.6 Simulation

We used Monte Carlo simulation in order to compare the different error estimates and to investigate
their validity as a function of the number of observations IV, the number of stimuli n and the scale
value range. For all simulations, we assumed a psychological continuous scale that conforms to
Thurstone’s Case V, i.e., the discriminal differences follow a Gaussian distribution of equal width
and no correlation exists between two stimuli @ and b. Furthermore, we assumed no correlation in
the responses of an individual observer nor in responses for an individual image. Thus we assumed
ideal conditions for the simulated experiments.

Simulation for small scale values

In the first experiments we used only stimuli with small scale value differences compared to the
width of the distribution of the discriminal process. We used the following number of stimuli
n = [4,7,10,15] and the number N of observations per pair of stimuli was in the range of [10...60].
The n scale values were assumed to be uniformly distributed in the range [—0.25... + 0.25]. Every
experiment was repeated 10’000 times. The simulated error E of the scale values is calculated
using the standard deviation of the scale values from the experiments. Two different values for the
bias correction §, § = [0.1,0.5], were used in the simulation.

In Figure 2.3, the experimental error is compared to the different error estimates F,, (eq. 2.35),
E. (eq. 2.36) and E, (eq 2.43). The error E,, generally overestimates the simulated error. The
overestimation increases with the number n of stimuli. The error estimates F. and F, are in good
agreement with the simulated error for all investigated combinations of n and N. The differences
between E. and E, get smaller with higher N. For small N, the differences are mainly due to the
use of different bias correction values §. Simulated errors using a bias correction 6 = 0.1 follow
Montag'’s error estimation E., while a use of 6 = 0.5 is in better agreement with F,,.
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Fig. 2.3: Simulated scale value errors Es compared to error error estimate E,, (eq. 2.35), E.
(eq. 2.36) and E, (eq 2.43).

Simulation of individual errors

The estimated error E,, in eq. 2.40 shows a dependency on the scale value. In a second simulation,
this dependency has been investigated. We used an experiment with the following numbers of
stimuli n = [4,8,16]. The n scale values were assumed to be uniformly distributed in the range
[-1.0... + 1.0]. The number of observation was fixed to a rather large number N = 200 to avoid a
significant influence of the bias offset. The results are shown in Figure 2.4. The simulated error F
is increasing with higher scale values. This increase is nicely reproduced by the error estimation
E,, given in eq. 2.40. The error approximation F, gives a lower limit for the simulated error. The
same is true for E, which for this high number N is basically identical to E,,.

2.5.7 Accuracy of error estimation

A third series of simulation experiments has been performed to test the accuracy of the four error
estimates E,,, E., E, and E,, as a function of N, n and the scale value range. For this purpose, we
investigate the relative accuracy in percentage of the error compared to the simulated error. Within
one specific experiment, the maximum relative deviation of an estimated error from the simulated
error was taken as a measure for the accuracy of an estimated error. 40 different scale value ranges
were used up to [—2.0...2.0], N was in the range [2...100] in steps of 2 and the number of stimuli
n was in [3;4;5;8;12; 16]. For every experiment, scale values for n stimuli were selected as follows:
n values x, were randomly chosen in the range [-1.0...+1.0]. Then, these values were scaled such
that the difference between the minimum and maximum scale corresponded to the target scale
value range. For every combination of N, n and scale value ranges, the experiment was repeated
at least 2000 times and simulated errors Ej, average scale value errors E,, , approximate errors
E,, and E, were calculated. In Figure 2.1, we show the results for 3, 5 and 8 stimuli. The error
estimation F,, is accurate in a range of 20% of simulated error only for n = 3. Tt is not accurate
for larger number of stimuli. This confirms, that the error estimation E,, should, if at all, be
used only for a small number of stimuli, i.e., smaller than five. The error estimations F, and F,
have regions with high accuracy for all numbers of stimuli, but only for small and moderate scale
values up to about 1.0. For these scale value ranges, the error estimates for all scale values are
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Fig. 2.4: Simulated scale value errors as a function of z-scale compared to error estimations.

approximately equal and E. (as well as E,,) gives a simple, quick and accurate error estimate. The
best error estimate is given by E,, . The accuracy is better than 10% for all numbers of stimuli n
and numbers of observations N up to a limiting scale value range. The limiting scale value range
basically scales with the square root of N. The limit is reached when one or more expected entries
in the frequency matrix are close to or smaller than one. Interestingly the accuracy of the error
estimations E., E,, and E, depends only marginally on the number of stimuli n.

The simple error estimation given by Morovic [48] generally overestimates the error and is approx-
imately correct only for small numbers of stimuli (n &~ 3). It is not suitable as a general error
estimation method.

In many cases, the approximative error F, as well as the empirical error estimation E, given by
Montag [46] are sufficiently accurate. The advantage of deriving the error approximation analyt-
ically is, that an adaption to other discriminal distributions such as the logistic distribution used
by Bradley-Terry [5] is straight forward. Only the inverse cumulative distribution function ®—!
and its derivative have to be replaced by the appropriate functions. Furthermore note that an
empirical formula is always restricted to the parameter range used in the fitting process. It is not
clear, whether the formula given by Montag can be extended ton < 4 or to large N.

The limiting factor in the error estimation is the expected number of judgements for the least
probable entry in the frequency matrix f,,. This is due to the fact that the entries z,;, in the
Z-matrix are averaged and the error of the entry with the highest error also has the highest
contribution to the error of the scale value v,. A weighted linear regression method such as
described by Bock and Jones [2, Chapter 6] could give more reliable scale values and error estimates
for the case of a large scale value range where the proposed error estimation reaches its limit.

In all our simulations, we assumed the ideal Case V of Thurstone’s Law of Comparative Judge-
ment. Note that besides scale values, also estimation of their errors is valid only if the underlying
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correspond to computed errors within 10% from the real one, gray areas to the computed error
between 10% and 20% off from the real error and black areas to computed error more than 20%

off.



24 Chapter 2. Psychophysics

assumptions hold. If the Mosteller’s test [53] fails or if there are indications of other correlations
in the data, the error estimation must also be questioned.

2.5.8 Re-scaling errors in conjoint analysis

In conjoint analysis, part-worth values v; re-scaled by coefficients A\, for single parameters are
summed up resulting in a scale value for a given item. Errors E,, for those part-worths are scaled
by the respective coefficient A\;. A square root of the squared sum of those errors provides then an
error of a scale value for a given item.

2.6 Cross validation

Each model designed for evaluating image quality requires validation. We want to assess how
accurately a predictive model will perform. Our validation procedure estimates how well a given
model aligns with observers’ ratings which we obtained in psycho-visual tests. As mentioned before,
the psycho-visual test data are of the form: given an original image and two images obtained by
applying different gamut mapping algorithms, a user chooses the one that reproduces the original
image better in his/her opinion. We validate a model by the percentage of correctly predicted
observer choices. This validation measure is known as hit rate. When computing hit rates for
Thurstone’s method we need to be careful that we do not validate the method on the same test
data that we used to derive the model—remember that Thurstone’s method is, in contrast to image
quality measures described in Chapter 3, based on observers’ data. To circumvent this problem,
one uses cross validation, i.e., part of the data is used to derive a model and the remaining part
to validate it. In the following, we provide more details on how to compute hit rates and use cross
validation.

2.6.1 Hit rate

For each paired comparison in a psycho-visual test we know the choice of the observer. In some
tests we allowed ties, i.e., neither of the two options is preferred. We omit such ties from further
analysis. Let C be the set of non-tied observer choices. For an image quality measure or scale
values we always predict the choice with the higher value for this measure on the elements in C.
Let S C C be the subset of correctly predicted choices, then the hit rate is defined as

5]

HR = 2., 2.44
] (2.44)

where |S| and |C| are numbers of elements in the sets S and C, respectively.

2.6.2 Cross validation algorithm

There are a few slightly different methods of applying cross-validation [33]. Here we will discuss
one of them, which we were using in our applications. For that the set C' of non-tied observer
choices is partitioned randomly into N subsets of equal size. Out of the N subsets, each is once
retained for validating the model, and the remaining N — 1 subsets are used as training data. The
whole process is repeated n times. The mean hit rate over all nN validation sets is used as the
validation quality measure.

For the individualized variant of Thurstone’s method (compare Section 2.4), we carried out a
double cross validation, i.e., we use N — 2 of the N subsets as training set, one as optimization
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set, and the remaining one for validation. We compute general and individual scale values by
Thurstone’s method on the training set. Then we optimize the weights for the linear combination
of the population and individualized scale values using the optimizing set. Finally, we use the hit
rate on the validation set. We repeat this process n times and use the mean of the hit rates as
validation quality measure.

2.7 Equivalence of data sets

Note that a y2-test similar to the one used in Mosteller’s test can be used to test for significant
differences between frequency matrices for different viewing scenarios. Let g, and ¢/, be proportion
matrices on different data sets obtained from the same population of observers, m,; and m;b be
the numbers of comparisons between items a and b on different sets. As data sets with different
numbers of judgements are compared, their variances have to be adjusted. The difference of
independent normal distributions with variances % and %, respectively, is a normal distribution

with variance L + L. Our hypothesis is that both distributions have the same mean. As test

m/’

statistic for non-parametrized case we use

’
Map - Mgy

Y2 = Z( )- (sin*1(2qab —1) —sin'(2¢, — 1))2 (2.45)

— @
b<a Mab + Map

In the parametrized case, we apply the similar statistic for all P parmeters together.

P ’
9 Meap =M qb ( - . —1 / 2
2= g E ————— ) - | sinT (2gap — 1) —sinT (2, — 1 ) 2.46

p=1 b<a( Lab+7”/ ab) ( ’ ) ( b ) ( )

It should be noted that now the entries of all P proportion matrices are considered together. The
number of degrees of freedom is the number of elements in the sum.
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Chapter 3

Image quality measures

Models are to be used, not believed.
H. Theil

The psycho-physical methods described in the previous chapter are often used to gather data, from
which a model of human preferences of images (perceptual image quality) can be derived. However,
these methods are very time-consuming. Furthermore, an extrapolation to changed settings and
new images is problematic. Hence it would be helpful if we could approximately predict human
preferences on the basis of a mathematical model. The class of such models is usually called image
quality measures and the development of such models is an active research field [15].

We can distinguish image quality measures based on different criteria. A typical classification is
no-reference and reference models.

Reference (or similarity) measures require an original (reference) image and the goal of the model
is to find the difference between the reference and the transformed image. Hence, these models
are also called image similarity measures, or image quality metrics. In this work, we do not label
these models as metrics, as some of them do not fulfill the mathematical definition of a metric
and the name could be confusing. We will focus here on these models, as the main subject of this
thesis is gamut mapping where one usually aims at producing an image as similar to the original
as possible and not as good (aesthetic, natural) as possible. Within reference measures, one can
also focus on different properties. Typical distortions in gamut mapping are loss of saturation, loss
of details and artifacts (halo, contouring). It would be useful to find a measure, which evaluates
all those distortions and weighs them similarly as human observers would do, but this is far from
easy.

No-reference models try to assess the quality of images on the basis of the considered image only.
Within no-reference models we could try to assess general quality, aesthetics or naturalness. One
can also gauge some more specific properties, e.g. sharpness, noisiness or some other properties of
an image.

In this chapter, we review image quality measures in the context of gamut mapping. Before that,

we summarize basics of human vision, color perception and color spaces, which are important to
understand the objective evaluation of the distance between images.
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3.1 Fundamentals of color science

3.1.1 Human vision

Let us notice first, that color is not a physical parameter but a sensation [54; 55; 59]. If we want to
measure color using an objective, mathematical model, we need a quantitative color specification.
In order to derive a quantitative color specification, it is necessary to correlate a perceived light
stimulus intensity with the magnitude of sensation evoked by it. Some aspects, in particular
lightness, follow general principles like Weber-Fechner’s law or Steven’s power function [62], but
the most interesting one, chroma, does not. Additionally, human sensation is strongly dependent
on the current viewing conditions. For that reason, it is not surprising that the development of
device independent color spaces is a tedious process that cannot be considered completed. However,
before going into details let us briefly discuss the retina and its influence on vision and color spaces.

3.1.2 Color spaces

The retina includes several layers of neural cells, especially two kinds of photo-receptors, the rods
and cones. The rods contribute mostly to vision at low luminance levels (i.e., less than 1 cd/m?)
while the cones serve vision at higher levels. The cones can be subdivided into three types: L (long-
wavelength), M (middle-wavelength), and S (short-wavelength) according to their peak of spectral
responses. Their differences in spectral sensitivity are the basis of color vision and can be modeled
by RGB-color spaces. But this trichromatic approach of color vision, as described by Young [63],
Helmholtz [58], and Maxwell [42], cannot sufficiently explain effects like opponent colors [62, p. 446]
and perceived color differences. To understand these effects, the neuronal structure of retina cells
that are organized into receptive fields needs to be considered. The input signals from the photo-
receptor cells are integrated, concentrated and modified in several neuronal processes and, finally,
transmitted to the brain. The resulting output signal contains a luminance, a red-green and a
yellow-blue component. A color space that reflects this representation is the CIELAB space.

In the following we are going to describe the aforementioned color spaces in more detail. Basis of
their description are quantitative color descriptions that are addressed in colorimetry. Colorimetry
is the branch of color science, which quantifies and describes human color perception, see Wyszecki
and Stiles [62, p. 117], specifying numerically the colors of physically defined visual stimuli at fixed
viewing conditions.

RGB and XYZ color spaces

In 1853, Grassmann [29] showed that empirical color matchings satisfy a mathematical structure
introduced by himself some years earlier [28]. This structure is nowadays known as a vector
space. In case of color, we observe a three-dimensional vector space, accordingly, colors can be
specified as tristimulus values. There is a strong correlation between the mathematical structure
and the underlying physics of light stimuli. A vector can be understood as light source, its length as
intensity and the addition of vectors as the physical mixture of the corresponding light sources. For
fixed viewing conditions, this approach was carefully tested and documented in 1928 by Wright [61]
and 1931 by Guild [30], respectively. This resulted in the introduction of the standardized color
spaces CIERGB and CIEXY?Z [8], for short RGB and XYZ.

Primary colors are the colors of three reference lights by whose additive mixture nearly all other
colors may be produced. The primaries of RGB are defined as colors of monochromatic light at
wavelength A = 435.1 (B), 546.1 (G) and 700 (R) nm. Then, tristimulus values for monochromatic
light at a given wavelength )\ have been determined and documented as the color matching functions
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7()\), g(A), and b()\). These functions allow the calculation of the tristimulus value (R, G, B) of an
arbitrary light stimulus with given spectral power distribution ®()\) as

R—k /(b(/\)f(k) d\, G=k /fb()\)g(A) d\, B=k /@(/\) BOA) dA (3.1)
where k means a normalizing constant. Then, the psychophysical color Q can be represented as

follows: Q = RR + GG + BB.

More popular than RGB is XYZ which is mathematically derived from RGB by a change of the
vector space base, i.e., by a base transformation matrix:

Z(N\) 0.490 0.310 0.200 #(\)
g(A) | =5.6508| 0.177 0.812 0.011 16y (3.2)
Z(\) 0.000 0.010 0.990 b(\)

The choice of the XYZ-base seems arbitrary but optimizes some technical constraints, for instance,
the Y-coordinate is identical to the CIE spectral luminance efficiency function also known as
photopic luminance efficiency function V().

Many other well-known RGB-color spaces like SRGB, Adobe 98-RGB, ECI-RGB are also derived
from RGB and have to be understood as mathematically equivalent. Contrary to these color
spaces, CMYK typically denotes a device dependent specification describing the amount of ink
(cyan, magenta, yellow and black) placed in a print raster cell.

The CIEXYZ-system represents the average ability of humans to discriminate colors in a particular
viewing conditions, sometimes called standard or normal observer.

CIELAB color space

Unfortunately, the Euclidean distance in XYZ-space does not match with perceived color distance,
and thus XYZ is not well suited for gamut mapping. In 1976, two color spaces, CIELUV and
CIELAB, have been recommended by the CIE [9] which approximately correlate with the perceived
lightness, chroma and hue of a stimulus. Although originally both spaces were recommended,
CIELAB is almost universally used today, in particular for reflective color measurements. In
CIELAB the psychometric lightness L* defined as

116 f’/; ~ 16 for 0.008856 < ; <1
L =L (y) & 0 0 (3.3)

903.29 Y f 0< Y < 0.008856
29 — or — <0.
Yy ~ Yy ™

where (X, Yo, Zo) stands for the reference white. This definition agrees with Stevens power func-
tion and also roughly with the Weber-Fechner-law. Then, CIELAB contains the a* (red-green)
and b* (yellow-blue) coordinates:

X Y
a* = 500 {f(fo)_f(?o)} (3.4)
b= 2oo[f(%)—f(2%] (3.5)
where
Yw for w > 0.008856
flw) = (3.6)

7787 w+ % otherwise
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According to the uniformity of CIELAB, color differences are understood as Euclidean distances
and denoted as AE,,. Over the years, some improvements for color differences have been intro-
duced by the CIE, especially AEqgy [10], and AFEyg [11], that are modifications of AFE,;, along with
stricter specifications of the viewing conditions.

A color gamut includes all colors which can be rendered by a device (e.g. a monitor or a printer)
or that are contained in a given image. In CIELAB color space we can visualize different gamuts.
In particular, we can visualize the difference in source and destination gamut quantitatively. In
Figure 3.1 typical printing gamuts are shown as colored objects and compared to a standard SRGB
source gamut (as it is typical for a monitor). We can also compute the differences between colors
in different gamuts in CIELAB color space.

Fig. 3.1: Visualization of typical printer gamuts (colored objects) in comparison to a standard
sRGB-gamut (wire frame: newspaper gamut (left), coated offset paper (middle), inkjet printer
(right).

3.1.3 Color and image appearance models

Since viewing conditions play an important role, appropriate models are necessary in particular
when colors or images are compared under different conditions. Fairchild explains this in his
textbook [21, p.1]:

Color appearance models aim to extend basic colorimetry to the level specifying the
perceived color of stimuli in a wide variety of viewing conditions.

A first step towards a color appearance space is the compensation of the reference white in the
CIELAB color space. This allows a first order compensation for the adaption of the human viewing
system to the lighting condition. However, the CIELAB model lacks compensation of other viewing
parameters such as the surround condition. It also has some limitations in its color difference
metric. This led to the development of new color appearance models, such as CIECAM97 and
CIECAMO2 [13]. The CTIECAMO02 model allows to calculate dependencies for the six technically-
defined dimensions of color appearance: brightness, lightness, colorfulness, chroma, saturation,
and hue. The model has a set of parameters to compensate for the relevant influence of surround
conditions:

e The surround ratio of the absolute luminance of the reference white measured in the surround
field to the display area Sg.
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e A factor F' determining the degree of adaptation of an eye to the lightness
e A parameter ¢ compensating the impact of the surrounding

e The chromatic induction factor N,.

These parameters are defined for a set of typical viewing conditions: “Average” for viewing surface
colors, “Dim” for viewing television, and “Dark” for using a projector in a dark room.

One major shortcoming of color appearance models is that they do not directly account for spa-
tial and temporal properties of human vision. They basically treat each pixel in an image as a
completely independent stimulus. Thus a new class of models, named image appearance models
have been developed and still are under development. An interesting approach to include spatial
aspects of image appearance is Land’s retinex model [40]. Retinex models are quite successfully
used in computer vision, however, it has been shown that they do not accurately model human
color perception [35]. Recently, a more sophisticated model, the iCAM-Framework was proposed
by Fairchild and Johnson [22]. The basic idea is to extract image appearance components from
four different images:

e A high frequency color image;
e A low frequency color image;
e A low frequency image gray scale;

e A low frequency image within its surrounding.

3.2 Image quality measures overview

There are plenty of image quality measures described in the literature [15]. Different models are
suitable for different applications. Here we will concentrate on the measures relevant for gamut
mapping, which is a relatively easier task, as the typical problems in gamut mapping are mostly
the preservation of color and local contrast. Halo artifacts or continuity artifacts can also be a
problem. But noise or compression artifacts are hardly created during the gamut mapping process.

In this section, we review image quality measures that can be useful for comparing images obtained
in gamut mapping. Most of the measures described here are one-dimensional and designed for
grayscale images. However, they are also applicable for color images, either by choosing one color
coordinate or by computing the given image quality measure for all coordinates and then combining
them. When deciding for only one coordinate, it is probably best to choose lightness.

Here we always compare two images X and Y with n x m pixels. At the pixels z;; € X and
yi; € Y, respectively, we consider color coordinates. Mostly we are using the lightness coordinate
L in CIELAB color space. If not stated otherwise, we do not distinguish in our notation between
a pixel and the color coordinate considered at this pixel. Here, we divide reference image quality
measures into two groups: pointwise measures and structural measures.

3.2.1 Pointwise measures

Pointwise measures are based on the differences of pixel colors from two images at the same location.
These distance at corresponding pixels are averaged or summed up resulting in the distance between
two images. The main advantage of pointwise measures is that they are easy and fast to compute.
The disadvantage of these measures is that they do not include the structure of the images. An
example showing imperfections of an exemplary pointwise measure is shown in Figure 3.2.
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TR RN R RN

Fig. 3.2: The original image (on the left) and two gamut mapped images (in the middle and on
the right). For the image in middle we have a pointwise measure (Qag) = 24.65 and a structural
measure (Qarc) = 0.341 using HPminDE algorithm [12] without detail enhancement, and on the
right we have the pointwise measure (Qag) = 27.00 and the structural (Qarc) = 0.318 using
HPminDE with details enhancement. For the image in the middle Qag is smaller than for the
image on the right, but the middle image has lost a lot of details and has the larger perceptual
distance from the original (left image).

Mean Square Error (MSE)

The mean square error is the squared pointwise difference between the images X and Y. The
corresponding image quality measure Qysg is defined as

n m

Quse(X,Y) = % DO (@i — i), (3.7)

i=1 j=1

where z;; and y;; are L coordinates in the CIELAB color space for the points in images X and Y
respectively.

Euclidean distance in CIELAB color space (AFE)

AFE is another pointwise distance measure, similar to MSE. The difference is, that it is computed in
3-D color space instead of in a one-dimensional projection. It is defined as the Euclidean distance
in CIELAB color space between corresponding pixels in two images. That is, locally at a pixel
x € X and the corresponding pixel y € Y the AFE distance is defined as:

AB(2,y) = \/(La — L) + (az — 0,) + (bs — by)? (3.8)

As our image quality measure Qa g we take the average AE over the pixels of the two images, i.e.,

1 n m
QAE X Y %ZZAE ngvyz]) (39)

AF is a popular image quality measure since it is easy to compute and has a natural interpretation.
In principle it could be replaced by any of the more sophisticated color distance measures such as
CIECAMO2 [13; 47] or AEqg, [10; 43].
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3.2.2 Structural measures

Structural measures consider not only differences at the level of single points, but take the neigh-
borhood of the points in account. The size of the neighborhood is often a free parameter of those
measures, as different sizes are optimal for different settings, e.g. for different viewing distances.
With the use of structural measures, it is possible to assess preservation of details. In Figure
3.2 one can see an example, where a structural measure (ALC) correlates better with perceived
distances than a pointwise measure.

Next we describe a few approaches from research on structural image quality measures.

Laplacian Mean Square Error (LMSE)

The Laplacian Mean Square Error [20] is a local measure for the difference in two images. We
compute the following quantities at each pixel (with indices2 <i<n—1and 2<j<m—1) of
X and Y, respectively:

Lzig) = @gvn; + 26— + i) T Tig-1) — 4245
and
L(yi) = Y T Y615 +YiG+1) T ¥iG-1) — 4 (3.10)

The image quality measure Qp,msg is then defined as

—

3

n—

Quuse(X,Y) = W =2m=9 L(zi;) — L(yi;))*. (3.11)
=2 j

~
/|
v

Structural similarity index (SSIM)

The Structural SIMilarity index (SSIM) was introduced by Wang et. al. [60] and is defined on
quadratic image patches of size k x k at the same location within the images X and Y. Let
Px C X be such a patch and Py the corresponding patch for Y. We compute the following
quantities for the patches:

Px = %Zlﬂ PY:]?IZZZ/,

€ Px yEPy
1 _
opy’ = 21 Z (ﬂ’_PX)Qv
€ Px
2 1 _ 12
Opy = szlz(y_PY) ’
yEPy
1 &
UPXPY = mZ( Px)( Py) (3.12)
=1

The structural similarity index is then defined as

(QPXPY + 01) (20p5 Py +C2)
(15)2( + ]532, + Cl) (0'123X + O'IQJY + (32) ’

SSIM(Px, Py) = (3.13)
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with two constants ¢; and ¢; depending on resolution of the image and quantization.

Using the structural similarity index an image quality measure Qssim (X, Y') can be defined as the
structural similarity index averaged over all possible k x k patches in the images X and Y. The
resulting value is in the range [—1, 1], and the higher the Qssiv value, the more similar are the
compared images.

Discrete wavelet transform (DWT)

The discrete wavelet transform image quality measure has been defined by Gayle [25]. Images X
and Y are compared as follows: a discrete wavelet transform is applied to the luminance layer
of image X and Y, respectively. Let M )f( be the magnitudes of the discrete wavelet transform

coeflicients obtained for X and frequency band f, and let M{; be the corresponding magnitudes
for image Y. From M )f{ and M{i the absolute values of differences

af (X, v) = |Mf, - M,

S M)f(‘ - ‘M{ﬁ’. (3.14)
are computed for each frequency band. Let o¢(X,Y’) be the standard deviation of the differences
d{(X,Y) for frequency band f. Now, the Qpwr(X,Y) image quality measure is defined as the
mean of the g¢(X,Y") for all the frequency bands.

QpwT-

Difference in local contrast (ALC)

The image quality measure Qapc is based on a local contrast measure. Here the Michelson
contrast [44] is used as a measure of local contrast. We compute it on a k x k patch Px C X of
the image X as follows:

xT — Tmi
LO(P _ “max min
( X) Tmaz T Tmin

, (3.15)

where z is a luminance coordinate in XY Z color space (at pixel x € Px), and %4, and z,,;, are
the highest value and the lowest value, respectively, of this intensity on the patch Px. Analogously,
we can compute the value LC'(Py) for the corresponding patch Py in image Y, and define

ALC(Px,Py) =|LC(Px)— LC(Py)]. (3.16)
The image quality measure Qarc(X,Y) is then finally defined as the measure ALC averaged over

all possible k x k patches in images X and Y.

Linear combination of ALC and AF

As we mentioned before, in images transformed during the gamut mapping process the most
important factors are usually color preservation, detail preservation and avoiding artifacts. Here
we describe a measure, which combines two of these factors, namely color preservation (using AE)
and detail preservation (ALC). The measure Ag ;¢ is a linear combination of these factors.

QAE‘LC = Q- QALC + (]- - 04) : QAE (317)

The coefficient « is chosen to maximize hit rates using cross validation.
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Chapter 4

Evaluation of gamut mapping
algorithms

However beautiful the strategy,
you should occasionally look at the results.
Sir Winston Churchill

As shown in the previous chapter, gamuts of different devices differ strongly from each other.
For instance, because of device limitations, a printer is typically not able to reproduce all the
colors visible on a display. As an illustration, we show in Figure 4.1 an original image and its
reproduction by different printer gamuts, where all out-of-gamut colors are reproduced by white.
When reproducing color images on different devices, one has to adapt these images to device gamut
limitations. The process of adapting the colors to device limitations is called gamut mapping.

In this chapter, we describe psycho-visual tests that can be used for the comparison of GMAs and
also in the development of GMAs. Our approach builds on the insight that gamut mapping can be
seen as a highly parameterized problem. There are many, sometimes competing parameters rele-
vant, for gamut mapping: first of all the preservation of hue, lightness and saturation. Also, in the
realization of GMAs, we have a choice of working color space, the mapping direction, compression
type (clipping, linear, nonlinear compression) and an application depending source gamut descrip-
tion. We use psycho-visual tests—paired comparisons—to determine an optimal parameter setting.
The data elicitation phase of our test is the same as in traditional psycho-visual tests conducted to
compare different gamut mapping algorithms. In particular, the number of paired comparisons per
observer is not larger, and the number of observers can be kept reasonable, although the potential
number of mapping algorithms that can be compared is much larger. The difference to traditional
psycho-visual tests comparing GMAs is in the way, how we analyze the elicited data. As men-
tioned in the Chapter 2, Thurstone’s method is not efficient enough for testing multi-parameter
algorithms. Hence, here we use conjoint analysis that essentially fits a linear model [26] to the
data by assigning a part-worth value to each parameter level. In addition to quality values of a
parameter setting, we are also interested in extending and testing the underlying model, including
parameter interdependencies, choice models, and the influence of individual images and observers.

We should point out that we are not the first who systematically include observer experiments in
the development of GMAs, see for example the work done by Kang et al. [37]. Multivariate analysis
techniques also have been used in image processing to gauge the importance of parameters, see for
example the book of Keelan [38]. Here, the scaling between different parameters is ensured with
the use of Just Noticeable Differences (JNDs).
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Fig. 4.1: Demonstration of in-gamut colors for typical printing gamuts. Colors not in gamut are
left white: Original sSRGB (a), photo paper (b), coated offset paper (c), and newspaper (d).

4.1 Conjoint analysis for evaluating parametrized GM As.

4.1.1 Algorithms

In our study, we consider one master algorithm with free parameters. The master algorithm is
quite simple, it maps any color point in the source gamut along a line segment connecting a focal
point and the color point into the destination gamut. Additionally, we consider the influence of
detail enhancement and working color space. Furthermore, we want to compare the influence of
those gamut mapping parameters with typical color and lightness operations on an image and with
parameters of the destination gamut. In the following, we present the parameters which we have
studied. We always used sRGB as source gamut, i.e., we did not consider the source gamut as a
parameter.

Compression. This parameter describes how our master algorithm moves a color point along
the line segment. We have tested different strategies: linear compression, clipping and sigmoidal
compression algorithms. In order to parameterize the sigmoidal compression we used a weighted
average of linear and non-linear compression [64]. The scale factor [ is computed as

0 =a-D-tanh <%~tanh_1 <)_S(>) +(1—a)~¥, (4.1)

where
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e X is the distance of the focal point to the color point that needs to be mapped,
e S is the distance of the focal point to the source gamut boundary,
e D is the distance of the focal point to the destination gamut boundary, and

e « is a weighting factor in the range 0 < o < 1.

Details. Reconstructing details can essentially improve the quality of the mapped image [4; 23;
65]. We used a detail enhancement procedure independent of the master algorithm. But we
can interpret it as a parameter of the master algorithm in the sense that we can apply detail
enhancement in varying degrees to the results obtained from the master algorithm. We use the
detail enhancement method based on edge-preserving smoothing filters described by Zolliker [65]
with different weighting factors . The other parameters were kept at default values: 0. = 20 and
os = 4%.

Color space. Note that our master algorithm can be applied in many color spaces and this
parameter describes the choice of working color space. In our study we used either IPT [18] or
CIELAB [10] color space.

Color and Lightness. Another free parameter of our master algorithm is the choice of focal
point. The idea is to produce well defined color and density shifts in the mapped image by varying
the focal point. A natural choice for the focal point is close to the mid point of the gray axis in
the destination gamut. Moving the focal point on the lightness axis results in a overall lightness
change of the mapped image. The amount of the lightness change of a specific pixel decreases from
a maximum for the colors close to the focal point towards zero at the gamut boundary. Similarly,
a shift of the focal point in the chroma plane results in a color shift of the mapped image.

Hue. In order to study the influence of hue shifts the color of all pixels were shifted in hue by a
defined angle prior to applying the master algorithm.

Gamut Size. To gauge the importance of the destination gamut we also tested a gamut size
parameter. This is not actually a free parameter of our master algorithm, but we included it,
because it allows us to estimate the relative importance of the destination device capabilities
compared to the free parameters of the master algorithm. We tested four different destination
gamuts. The smallest was ISO-Newspaper, the largest ISO-Coated. The remaining gamuts were
created from the two as weighted average.

Gamut Shift. This parameter describes a shift of the destination gamut in the working color
space.

Gamut Rotation. Another parameter that we considered is a rotation of the destination gamut
in the working color space.

4.1.2 Setup of the conjoint studies

Two conjoint studies were defined based on the above parameters. After preliminary evaluating
the results of Study 1 it was realized, that the gain in information from two of the parameters
(Gamut Shift and Gamut Rotation) was marginal. Thus, in Study 2, those two parameters were
replaced by new parameters (Color/Lightness and Hue/Color Space).

In order to keep the number of possible combinations reasonably small, some of the parameters
were combined into one parameter and the number of considered levels was reduced. Lightness
and Color were combined into one parameter with only six levels. Because the main difference of
CIELAB and IPT color space are hue conservation issues, the parameters Color Space and Hue
parameters were also combined into one parameter. In Study 1, only neighboring Gamut Size levels
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were used in the comparisons. This restriction was removed in Study 2 in order to better test the
distribution assumption (compare Sections 2.3.4, 2.2.5) in the evaluation model.

The used parameters and levels for the two studies are summarized in Table 4.1. For both studies,
every image had 1536 possible mapping combinations. The five parameters had a total of 22 levels.

| Parameter | Level [ Level description | Study |
S1 Newspaper 12
, S2 2/3 Newsp. 1/3 ISOcoat. 12
Gamut Size S3 1;3 Newsp. 2;3 ISOcoat. 12
S4 ISOcoated 12
C1 Linear 12
Compression C2 Sigmoidal oo = 0.5 12
C3 Sigmoidal oo = 0.8 12
C4 Clipping 12
S1 no enhancement 12
. S2 weighting factor r = 0.5 12
Details S3 weighting factor r = 1.0 12
S4 weighting factor r = 1.5 12
ShO0 no shift 1
Sh+ shift (+5,0,0) 1
) Sh- shift (—5,0,0 1
Gamaut Shift ShC1 | shift E+o, 3, 03 1
ShC?2 shift (0, —1.5, —1.5/3) 1
ShC3 shift (0, —1.5,+1.5/3) 1
IPT-RO | IPT, no rotation 1
Gamut Rotation IPT-R- | IPT, hue -0.1 radians 1
IPT-R+ | IPT, hue +0.1 radians 1
Lab-R0 | CIELAB, no rotation 1
LO no shift 2
L+ shift (+5,0,0) 2
. L- shift (—5,0,0 2
Color/Lighiness Coll shift E_H)’ 3. 0; 5
Col2 shift (0, —1.5, —1.5v/3) 2
Col3 shift (0, —1.5,+1.5/3) 2
IPT-HO | IPT, no rotation 2
Hue,/Color space IPT-H- | IPT, hue -0.1 radians 2
IPT-H+ | IPT, hue +0.1 radians 2
Lab-HO | CIELAB, no rotation 2

Table 4.1: Parameters and their levels used in Study 1 and Study 2.

4.1.3 Test setup

In this section, we describe how we collected paired comparison data in a psycho-visual test to
analyze our master gamut mapping algorithm. In every paired comparison, we presented an original
image and two images mapped by different incarnations of our master algorithm on a LCD screen.
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The original image was presented in the upper half of the screen and two mappings below the
original side by side, compare Figure 2.1 in Chapter 2. Observers were asked to make their choice
according to the following instruction: “Choose the best representation of the original. If you see
no difference, click the original”.

The two mappings were chosen at random from our parameter space. As mentioned in Section 2.1.2
random designs may not be the most efficient ones, but avoiding systematic errors had a higher
priority for us than efficiency. For Study 1 we had the constraint, that gamut size levels in compared
images differ no more than one consecutive (in the natural order) level since larger differences in
gamut size essentially determine the choice.

The observers who participated in our test had to choose the mapped image that better reproduces
the original. For their choices, the observers used a mouse to click on the corresponding image. If
no difference could be seen, the original had to be selected in order to avoid a forced choice.

Test sets

The same visual study was carried out within different environments. While the laboratory set-
up was carried out in a controlled environment, adjusted closely to the CIE viewing standard,
the web-based test was carried out by observers on their own systems. We also had a group of
observers, who made the test both in laboratory and web environment. This resulted in obtaining
Cross Link Laboratory and Cross Link Web data sets.

The key properties of the data sets used in this study are summarized in Table 4.2.

Identification Study | Type nr of nr of

observers | pairs
Lab-1 1 lab 70 3500
Web-1 1 web 590 25108
Cross Link-Lab 1 lab 41 1440
Cross Link-Web 1 web 41 1440
Lab-2 2 lab 24 2100
Web-2 2 web 96 5358

Table 4.2: Discussed test sets.

Next we give a summary of the set setup:

Laboratory setup. For the test we used LCD displays. An 22" Eizo CG 241W-BK monitor cal-
ibrated to show sRGB-colors was used to display test images. The ambient illumination measured
in the middle of the switched off monitor was at 40 1x. Monitor flaps around the screen prevented
flare. The monitor’s background was set to a neutral gray.

Web setup. For the Internet based part, we had to consider a variety of viewing conditions
and displays (concerning brightness, size, resolution, white point and color gamut). Therefore,
additional information was collected from the web study participants concerning their employed
system (ambient illumination, display type and size, Internet browser and operating system). We
used JPEG images with very low compression and a maximal width or height of 400 pixels which
resulted in about 150 KB per image. The resulting test pages were verified to be presentable on
common operating systems, browsers and even most of laptop displays.

Observers. Three user groups were considered in this experiment: lab, web and cross-link. Ob-
servers in the lab user group were recruited from staff of Swiss Federal Laboratories for Material
Science and Technology (EMPA), and participants of a FOGRA symposium who were mostly color
experts. Each observer had passed the Ishihara test for color deficiency. To recruit observers for
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the web user group, the Internet test was posted on the homepage of Media Technology Labora-
tory, EMPA. Students, color specialists and other people were invited to participate via e-mail and
Internet user groups. In the cross link study, the same observers participated in both environments
(identified with a user ID). The study was carried out by students from the Swiss Federal Institute
of Technology Ziirich and by staff of EMPA. The number of participating people for each study
are given in Table 4.2.

Test Images. The image set included the obligatory ”Ski” image that is specified by the CIE
156:2004 guidelines [12] and additional ISO images. A total of 99 different images including a wide
range of scenes was used in the experiment in order to get good average results and to be able to
study the influence of different images on the psycho-visual results. Most of them were taken from
royalty free libraries as well as from private stock. The images are presented in Figure 4.8

4.2 Results

4.2.1 Importance of parameters

At first we present the computed part-worths for all different parameters individually. The results
for both studies are shown in Figure 4.2. The comparison of the part-worths allows to answer
questions like: What is the relative importance of the different parameters? Which levels of the
parameters are most preferred?
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Fig. 4.2: Part-worths for all parameter levels. The light bars (red) show results of Study 1 and the
filled bars (blue) those of Study 2. Error bars show one estimated standard deviation computed
using analytical error estimation.



4.2. Results 43

At first we look at the importance of parameters, which describes how much each parameter
contributes to the quality value on the stimulus level, i.e., the combination of all parameters.
For this we use the standard deviation of the part-worths within the parameters. Note that the
computed importance depends on the levels chosen for the parameters, e.g., if we choose levels for
a parameter that hardly can be distinguished, then the importance of this parameter will be low,
though it could be high for a different choice of levels. Hence the choice of levels is an important
task in conjoint analysis. The importance of the different parameters is shown in Table 5.1.

Study 1 Study 2

Importance ‘ Rank | Importance ‘ Rank | oap)
Gamut Size 0.572 1 0.473 1 3.30
Compression 0.187 2 0.131 4 2.03
Color /Lightness 0.161 2 1.74
Color space 0.042 5 0.064 6 0.62
Gamut shift 0.074 4 0.48
Details 0.130 3 0.150 3 0.19
Hue 0.085 5 0.17
Gamut rotation 0.017 6 0.12

Table 4.3: Importance of parameters for both studies (scaled such that sum is 1). The entries are
sorted by the last column, which shows o(ap)-

In this table we also show the standard deviation o(a gy which serves as a first order measurement
of the perceived image distance between original and mapped images. (AFE) is the distance between
the transformed image and its original, averaged over the images. The standard deviation o(a gy
was calculated from (AFE) values for different levels of a specific parameter taking default levels for
all other parameters (S3, C3, ShL0/L0, IPT-R0O/IPT-HO, D1). Note that in general the importance
of parameters correlates with the average difference o(agy. An exception is the Details parameter,
which shows a very small oy despite of its relative importance. This is not surprising, as local
contrast conservation can not be measured by a global color distance measure such aso(apy-

Gamut size is the most important parameter in both studies, but it is not the only deciding factor.
Compression, Details and in the case of Study 2 also Color/Lightness all can contribute to the
quality as much as the change of gamut size of two consecutive size settings.

Clipping emerges as the best method of compression. Linear compression is not well suited.
Sigmoidal compression is better the closer it is to clipping. This result shows, that saturation
is an important factor for respondents and is in agreement with many gamut mapping studies in
the literature [49].

About equally important as compression is detail preservation. The higher the weighting factor r
the more preferred it is. Surprisingly, this even holds for an exaggerated detail enhancement with
a factor of 1.5. A factor of r = 1.0 reconstructs small details of the original image except for colors
close to the gamut boundary and due to the edge-preserving filter also for colors close to an edge.

According to the computed part-worths, the preferred color space is IPT in Study 1 and CIELAB
Study 2. This is rather unexpected. The advantage of IPT is, that it better preserves hue, especially
in blue regions. On the other hand, CIELAB may have advantages over IPT, because most gamut
mapping algorithms and their optimizations (e.g. choice of focal point) were elaborated in CIELAB.
One possible reason for our conflicting result could be that the hue advantage is relevant mainly
in Study 1. Study 2 has explicit color changes larger than the expected hue shift in the CIELAB
space and for images with a color cast, the hue advantage may not be important. In fact, a partial
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evaluation of the data in Study 2 disregarding the color shift level (C1, C2, C3) shows an increased
part worth of IPT compared to CIELAB. However, in view of the rather small part-worths of
the color space parameters, compared to the other parameters, we can not rule out that some
systematic shortcomings of our conjoint model could be the reason for the result.

For Color/Lightness, the most preferred level is L- followed by L0O. As default value of the focus
point in the destination gamut, we used the mid point L = (59, 0,0) between black and white point
of the smallest gamut. Because the mid point of the source gamut is L = (50,0, 0) a neutral gray
with the default parameter L0 is mapped to a lighter color than in the original. The results of our
study show, that in general darker images (level L-) were preferred for which the mapped neutral
gray is closer to that of the original. This indicates, that the mid grays tone should be mapped
close to its original, independent of the lightness of the destination black and white. As expected,
the color changes clearly have a negative influence on the perceived quality. A color change due to a
focus shift of 3AE causes a quality decrease of the same order as the differences between sigmoidal
compression and clipping, or the difference of two successive details enhancement factors. In a
similar manner, hue changes in either direction cause a quality decrease, but the magnitude of the
studied hue changes (0.1 radians) is only about half of that of the studied color changes.

We do not try to interpret the results of the levels of Gamut Shift and Gamut Rotation. Their
part-worth values are small anyway.

4.2.2 Testing the model

Mosteller’s test

We made the assumption on the parameter level, that the part-worth are uncorrelated normally
distributed variables with equal variances. We tested these assumptions using Mosteller’s test.
A description of Mosteller’s test can be found in Engeldrum [19] or Mosteller [53]. Results are
presented in Table 4.4. Most parameters passed the test at a significance level @« = 0.01. Only

X2, Study 1 X2, Study 2 2001
Probit | Logit | Probit | Logit
Compression 22 15 2.1 2.1 11.3
Details 0.3 0.3 4.1 4.0 11.3
Gamut Size 24.7 10.0 11.3
Color Space/Hue 2.0 2.0 11.3
Gamut Rotation/Hue | 3.2 2.0 11.3
Gamut Shift 9.4 9.4 23.2
Color/Lightness 11 11 23.2

Table 4.4:  Mosteller’s test for parameter compared to x? with significance level a = 0.01 for
Gaussian and logistic distribution.

the Compression parameter in Study I and the Gamut Size parameter in Study 2 show significant
deviations. One possible reason could be the assumption of a Gaussian distribution. A distribution
with a wider tail could better explain the data. Evaluations using a logistic distribution show better,
but not perfect results. The corresponding numbers are shown in Table 4.4. Note that we could
not apply Mosteller’s test to the gamut parameter in Study 1, as the frequency matrix for the
gamut parameter has not enough entries (only specific pairs of gamut levels had been compared).
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Equivalence of data sets

For Study 1, each data set from the three observer groups was analyzed separately: the two labora-
tory data sets that were collected once at a symposium and once in the lab, then the control study,
where the same observer performed the test on the Internet and in the laboratory environment.
Surprisingly, the three sub-tests showed similar results [56]. For Study 2 the laboratory and the In-
ternet data were also analyzed separately and compared but showed no significant difference. The
hypothesis that the results of the studies cannot be distinguished was tested with a x? comparison
test. The results support our hypothesis that the results of the studies cannot be distinguished on
the base of our data. The results are summarized in Table 4.5.

deg. of

X> | Xa—o.01 | freedom
Ctrl-Laboratory - Ctrl-Internet | 41 59 36
Study 1 Ctrl-Laboratory - Symposium | 32 59 36
Ctrl-Laboratory - Internet 26 59 36
Symposium - Internet 49 59 36
Study 2 | Laboratory - Internet 60 62 39

Table 4.5: x2-test for comparison of test sets.

The collection of the large data set using the Internet allows us to draw more precise conclusions
about our model parameters.

Linearity

The linearity assumption was tested for each parameter pair. The results of the x2-tests for Study 1
are shown in Table 4.6. The y2-values of most parameter pairs did not indicate a deviation from
linearity. Two combinations, Compression-Details and Gamut Size-Gamut Shift, show clearly
significant deviations. Interestingly, those two combination also show the largest increase in hit
rate when combined parameter levels are used.

Parameter 2 | x2_00: | Hit rate
Combinations gain /loss
Compression - Details 99 29 0.35
Compression - Gamut Size 28 29 -0.05
Compression - Gamut Rotation | 15 29 0.09
Compression - Gamut Shift 21 40 -0.13
Details - Gamut Size 23 29 -0.07
Details - Gamut Rotation 14 29 -0.05
Details - Gamut Shift 13 40 0.04
Gamut Size -Gamut Rotation 11 29 0.13
Gamut Size - Gamut Shift 66 40 0.16
Gamut Rotation - Gamut Shift | 14 29 0.02

Table 4.6: x2-values for the linearity test for Study 1. Significant deviations are shown in bold.
The last column shows changes in hit rate. Largest hit rate gains are shown in bold.
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A detailed inspection of the combined Compression-Details results show that the gain due to high
level of Details parameter are about half as large for clipping as the gains for other compression
levels (see Figure 4.3). A possible explanation is the fact, that detail reconstruction can bring
the colors out of gamut again. These colors have to be mapped back into the gamut. Using
clipping, much more colors are affected by this second mapping compared to the other compression
parameters. The nonlinearity in Gamut Size-Gamut Shift can be characterized as an increase of
the part-worth for Sh- on the cost of ShO with increasing gamut size.

For Study 2 no significant deviation from linearity could be detected and the hit rate could not
be increased for any parameter pair. This is presumably due to the limited size of the data set
compared to Study 1.
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Fig. 4.3: Part worths of Details as a function of Compression.

Distribution function

At first we qualitatively verify the assumption that the distribution of the sorted scale values of
possible parameter combination does not have gaps between successive quality values, i.e., that no
parameter is dominant over the other parameters (compare Section 2.3.4). This is visualized in
Figure 4.4. In a second step, we can experimentally estimate the average cumulative distribution
function: Histograms are collected on all judgments based on their estimated psycho-visual dis-
tance. From them, the probability that an observer’s judgment agrees with the modeled quality
distance can be computed and compared to the cumulative distribution function, see Figure 4.5.

The conjoint analysis and the determination of hit rates was performed for the Gaussian and the
logistic distribution function. The hit rates turned out to be very similar with a slight advantage
for the Gaussian distribution for Study 1 and an advantage for the logistic distribution for Study 2.

Even if there is evidence from the Mosteller test, that the logistic distribution can better explain
frequencies at large psycho-visual distances, the logistic distribution does not clearly increase hit
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| Distribution | Studyl | Study 2 |
Probabilistic | 81.5% 85.6%
Logistic 81.4% | 85.8%

Table 4.7: Hit rates using probabilistic and logistic distributions for the two studies.
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rates. The Gaussian distribution may be more appropriate at shorter distances. In view of the
very similar results for the part-worths values for both distributions we did not further investigate
finding a better distribution function, which could be a convolution of a Gaussian function with a
logistic function'. The influence of the choice of distribution functions has been already discussed in
earlier works [34; 36]. There was no significant difference in appropriateness of either of models [1].

Error analysis.

In Figure 4.6, we show the comparison of the theoretical error with three types of experimental
errors. Due to the larger data set in Study 1 compared to Study 2 the estimated error is smaller.
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Fig. 4.6: Error estimation. Average error of parameter levels for theoretical error estimation and
three types of experimental error estimations.

For both studies we did not notice a significant difference between the experimental error computed
by randomly dividing the paired comparisons into two groups and the error calculated by linear
regression. However, the experimental error computed by randomly dividing the images into two
groups is significantly larger in both studies. For Study 2, also the experimental error computed
by randomly dividing the observers into two groups is significantly larger. It means, that the
differences in scale values of algorithms are higher between images than between random chosen
sets of choices. This suggests it is worth an effort to develop gamut mapping algorithms based
on individual image properties and even personalize gamut mapping algorithms for user groups.
Therefore, we discuss the issue of individualization in gamut mapping in the next chapter.

"Note that the re-scaling in the conjoint analysis was derived assuming normal distributions, thus the rescaling
for logistic distribution is only approximative
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Table 4.8: Test images
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Chapter 5

Image-individualized gamut mapping
algorithms

Variety is the soul of pleasure.
Aphra Behn

In the previous chapter, we concluded from the error analysis, that preferences of algorithms
are image dependent. In this chapter, we first verify whether we can observe such differences
also in other psycho-visual tests concerning gamut mapping. Especially, we want to know how
the number of comparisons per image influences possible improvements of the model by using
individual data. Further, we focus on two aspects of individualization for GMAs. The first one is
individualized evaluation. We describe how to model observers preferences for individual images.
To assess the accuracy of non-individualized and individualized models we use hit rates. The
models are based either on psycho-visual data or on image quality measures. We also compare the
accuracy of these models with maximal possible hit rates for the given data sets. Another aspect of
individualization is designing an image-individualized meta-algorithm which chooses appropriate
algorithms for individual images.

5.1 FError analysis — differences between images

We use data from different previous studies concerning gamut mapping algorithms. Details of the
algorithms considered in these tests are not important at this point, as we are focusing here on
image dependency in a psycho-visual test. Hence, here we only summarize these tests.

Study 1: Basic Study (BS)

This study [6] is a traditional benchmark study comparing some newer image dependent gamut
mapping algorithms to known reference algorithms. In addition to the reference algorithms HP-
minDE, SGCK [12], the following algorithms using image gamut or spatial gamut mapping have
been considered: the algorithm NOptStar that is using the image gamut as described in by Giesen
et. al. [27], the Kolas algorithm [39], the Zolliker algorithm [65] applied to the SGCK and NOpt-
Star algorithms, and the Caluori algorithm [6]. For this study, 97 images were used, each mapped
with all seven algorithms. Each possible comparison was tested at least once. We will refer to this
study as Basic study or simply BS.

o1



52 Chapter 5. Image-individualized gamut mapping algorithms

Study 2: Image Gamut (IG)

The topic of this study was the use of image gamut descriptions for gamut mapping [27]. The
considered algorithms have used a linear or sigmoidal mapping, each of them had three possible
source gamuts, namely the device gamut (sRGB) and two types of image gamut description. The
six possible combinations were compared to HPminDE and SGCK, resulting alltogether in eight
algorithms. 75 images have been used. Each possible comparison was made approximately twice.
We will refer to this study as Image Gamut study or simply IG.

Study 3: Local Contrast (LC)

In this study, the influence of detail enhancement applied to a set of gamut mapping algorithms
was investigated [65]. The study comprised the HPminDE, SGCK, SGDA [64] algorithms and a
linear compression algorithm. All algorithms were compared with and without detail enhancement.
77 images were used, and 5376 comparisons have been performed. Each possible comparison was
made approximately 2.5 times. We will refer to this study as Local Contrast study or simply LC.

Study 4: Individual Study (IS)

In this study [16; 17], algorithms proposed by Gatta [23], Kolas [39] and an algorithm using detail
reconstruction proposed by Zolliker [65] applied to the HPMinDE algorithm were compared with
the reference algorithms HPminDE and SGCK. 20 images, presented in Figure 5.4, have been used.
Each possible comparison has been performed 40 times. We will refer to this study as Individual
Study or simply as IS.

We summarize the number of images, comparisons and algorithms per test in Table 5.1

| Study [ Number of images | Number of comparisons | Number of algorithms

BS 97 2086 7
LC 77 5376 8
1G 75 4360 8
IS 20 8000 )

Table 5.1: Number of images, comparisons and algorithms in the considered studies.

The aim now is to discuss two estimation procedures for the error: experimental with choice
divisions and experimental with image divisions (compare Section 2.5.5). Plots of these errors are
presented in Figure 5.1.

For the BS and 1G tests we cannot see much difference between experimental errors obtained with
choice divisions and image divisions. There are a few possible reasons for that. In those tests,
there were less comparisons for each image, so the results were less significant. There were also
clearer winners in those tests: The best algorithm was optimal for most of the images, so choosing
it for individual images did not change much. On the other hand, the differences between the
experimental error with choice division and experimental errors with images divisions were large
in tests for Local Contrast (LC) and especially for Individual Study (IS). This finding correlates
with number of comparisons per number of algorithms and images.



5.2. Image-individualized evaluation of gamut mapping algorithms 53

0.15 _ ;
Basic Study —&—
8 Local Contrast
5 Individual Study —4&—
= Image Gamut —o—
O 0] o
S _—
E -
7 —— 9
& 0.05 e
5 I
>
<
0
Experimental Experimental
choices images

Fig. 5.1: Error estimation. Average error of attribute levels for two types of experimental error
estimations.

5.2 Image-individualized evaluation of gamut mapping algo-
rithms

We present in this section hit rates for different degrees of individualization for the considered
studies. Then we evaluate image quality measures for the considered studies and compare them
with data-based models.

5.2.1 Evaluating Thurstone’s method

As described in the Section 2.4, we can build individual models using Thurstone’s method. In
Figure 5.2 we present hit rates for Thurstone’s method for the different studies and different degrees
of individualization. Hit rates on training sets are higher than those on test sets. Individualization
always improves hit rates on training set data, however it does not always improve hit rates on the
test sets. The higher hit rate on the training set is due to the overfitting of the model.

On the BS data set individualization does not increase the hit rate on the test sets. These test
sets included only about one repetition for each comparison, so individual results are probably not
stable enough to contribute to the model’s accuracy.

For the IG study, the optimal hit rate is obtained for a linear combination of the global scale
values and individualized ones. In this test, each comparison was repeated twice, which is enough
to individualize the scale values but not enough to get a significantly better hit rate for these
scale values than for the global scale values. The best hit rate needs a combination of global and
individualized scale values.

In the LC study, there are about 2.5 repetitions for each comparison. As for the IG study, the
optimal hit rate is achieved at a combination of individual and global scale values. But in the
LC study using only the individual scale values provides a hit rate almost as high as the optimal
combination of global and individualized scale values.
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The largest number of repetitions for the individual comparisons between algorithms, namely 40,
is present in the IS study. Here, we get the highest hit rate using just the individual scales values.
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Fig. 5.2: Hit rates using Thurstone’s method for: (a) Basic Study, (b) Local Contrast Study, (c)
Image Gamut Study, and (d) Individual Study. The blue (higher) line shows the hit rate on the
training set, the green (lower) line shows the hit rate on the test set. Scale values (sv) are computed
as a convex combination of scale values for the whole population of images (svgey) and scale values
for individual images (svinq), i.€., v = a - $Ving + (1 — @) - SVgen, with 0 < a < 1.

The results correlate well with the results from an error analysis (see Section 5.1). The experimental
error increase between choice sampling and image sampling is the highest in the IS test. A high
error by images sampling means, that results from one image are not a good prediction for other
images, as there is no algorithm in the given test, that is best on all images. This is the test,
where individualization improves hit rates the most. Also, for the LC study we could notice a
significant difference between errors based on choice sampling and image sampling. In the IG test,
where there was no significant difference between these two types of errors, mixtures of general
and individual results are only slightly better than for the non-individualized results. In the BS,
where there is also no difference between these types of errors, individualization does not improve
the results at all.
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Fig. 5.3: Hit rates obtained by different methods for four studies. Here Thurstone gen refers
to general (non-individualized) Thurstone’s method and Thurstone_ind refers to individualized
Thurstone’s method.

5.2.2 Evaluating the image quality measures

Individualization can increase hit rates, if we have enough data for single images and there is
no clear "winner” algorithm for all images. Now that we know this, we look for an image quality
measure that predicts observers’ preferences good enough to use it for individualization, i.e. better,
than non-individualized Thurstone’s method. Below we compare the accuracies obtained by image
quality measures and Thurstone’s method for the discussed tests. The results are presented in
Figure 5.3.

On all the data sets the Structural SIMilarity index measure (SSIM) proved to be the best per-
forming image quality measure, i.e., it provided the highest hit rates. On the BS data set, the
results obtained with SSIM are even better than those coming from the individualized Thurstone’s
method. On the other studies, the individualized Thurstone’s method gives better results. As
discussed before, a likely reason for this behavior is the size of the B.S study as the performance of
Thurstone’s method improves with increasing number of comparisons. It is worth noting that the
hit rates for SSIM are comparable to the hit rates obtained for the general Thurstone’s method,
or, in case of the IS test, even much higher.

The two pointwise image quality measures that we considered, namely Qa g and the mean square
error Qusg, scored lower than their competitors, often showing hit rates close to random choice,
i.e., 50%. The likely reason is that all gamut mapping algorithms tested in these studies already
optimize color preservation in some way, and thus observers’ choices are more affected by detail
preservation. In particular, clipping algorithms, for example the HPminDE algorithm, are opti-
mizing the mapped image against the pointwise distance measures, but ignores detail preservation.

The quality measures LMSE and LC, which embody detail preservation differences, perform better
than pointwise measures, but still not as good as the SSIM measure.
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5.2.3 Theoretical limit of hit rates

Let us notice, that the theoretical limit hit rate of 1.0 is almost never achieved, because observers
usually differ in their choices and even the decisions of a single observer are typically inconsistent,
i.e., the same person, under the same conditions makes sometimes a different choice on the same
images in repeated paired comparison.

If we have choice data with many repetitions for each choice, then we can estimate a better (choice
data dependent) limit for the hit rate than the ideal 1.0, namely, the mazimally achievable hit
rate as follows: let f;; be the frequency that algorithm ¢ has been preferred over algorithm j in
a comparison, i.e., the number of times an image mapped using algorithm i has been preferred
over the same image mapped by algorithm j divided by the total number that ¢ and j have been
compared. If we have same number of repetitions for each comparison (which was the case in IS
test), we can define the maximal achievable hit rate as follows:

> ic; maz(fij, f5i)

number of pairs of algorithms

HR,4r = (5.1)

Computing a mazimally achievable hit rates requires having meaningful f;; for single images. This
was the case only in IS test, where for each pair of algorithms for each image we had N = 40
comparisons. In other tests this number was much smaller. Hence we use the IS data set to
check how close the best performing quality measures SSIM and Thurstone’s method come to the
maximally achievable hit rate. All the images considered in this test are presented in Figure 5.4
The hit rates computed for the different images in the IS test set are shown in Figure 5.5.

The hit rates obtained using Thurstone’s method with individualization is always very close to the
maximally achievable hit rate for all images. For many images, the two hit rates are even equal. The
hit rates achieved by SSIM are lower, but generally close to the one for Thurstone’s method with
individualization and much higher than for Thurstone’s method without individualization. Only on
three images out of 20, SSIM performs worse than Thurstone’s method without individualization.

5.3 Image-individualized gamut mapping algorithms

5.3.1 Using SSIM to construct an image-individualized gamut mapping
algorithm

The results from the previous sections suggest that we can design a meta gamut mapping algorithm,
that chooses a “best” gamut mapping for a given image from a class of mappings. Here, “best”
is meant with respect to an image quality measure that proved to be well suited to predict the
perceived quality of a mapping. Again, the previous sections suggest that SSIM is suitable as such
a measure. This approach is also supported by previous studies [16; 50], showing that different
gamut mapping algorithms perform differently on different images, i.e., one can improve the quality
of mapped image by choosing the best algorithm for this image, instead of using the same algorithm
for all images.

Formally, the meta-algorithm can be described as follows: for a given quality measure @ (in our
case SSIM) and a given image I, let I;,...,I, be the mappings of this image using n different
mapping algorithms. Choose the mapping Ij such that Q(Ix) > Q(I;) for all i = 1,... n.
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Fig. 5.4: Images used in the IS study.

5.3.2 Using psycho-visual data to construct an image-individualized gamut
mapping algorithm

We can build an individualized algorithm also based on the data obtained in a psycho-visual test.
It can be done in the same way as based on an image quality measure, but using the psycho-visual
data to find the scale values of algorithms for images. One must not use the same data for choosing
an algorithm for images and testing. Hence we were computing scale values on 90% of the data
and used 10% for validation. This process was repeated 10 times and a mean scale value for the
meta-algorithm was computed.

5.3.3 Validation of the meta-algorithm

Thurstone’s method can easily be adapted to compare the quality of the meta algorithm and the
individual algorithms on which the meta-algorithm builds. We used the data from the IS study to
validate two meta-algorithms, one using SSIM, another one using scale values from individualized
Thurstone’s method on the training set as quality measure. Remember that IS study comprised
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Fig. 5.5: Hit rates obtained by different methods for the different images in the IS test set. Again,
Thurstone gen refers to Thurstone’s method without individualization, and Thurstone ind refers
to Thurstone’s method with individualization.

twenty images, each of them mapped by five algorithms. We did not carry out an additional
psycho-visual test, but adjusted the data from the original IS study. We extended the data as
follows: From the original study we got the data in the form of F-matrices for each image, where
fi; is the number of comparisons where algorithm i was preferred over algorithm j. Now apart
from five basic algorithms we consider a meta-algorithm. For each image this algorithm is the
same as one of the five basic algorithms, indicated by the given model as the optimal for this
image. Hence, if the optimal algorithm according to this model is for instance k, we can assume,
that the meta-algorithm for this image would have the same F- values as algorithm k. Hence
we put freta,i = fri for k # meta. Setting fretar = 0.5 is a natural assumption, as for the
considered image k and meta are the same algorithm. We can validate more than one meta-
algorithm using this adjustment method. We compared the SSIM-individualized meta-algorithm
and the Thurstone-individualized meta-algorithm with five basic algorithms. In Figure 5.6 we
summarize the results of the comparison.

Both image-individualized algorithms perform better, than any single algorithm. The meta-
algorithm using SSIM performs only slightly worse than the meta-algorithm based on individualized
Thurstone’s method. However, the algorithm based on the individualized Thurstone’s method is
not practical, as it requires conducting a psycho-visual test for every image that we want to map.
Still, the SSIM measure has its limitations, e.g., as can be seen in Figure 5.5 the meta-algorithm
predicts choices for image number 4, 12 or 19 worse than the Thurstone’s individualized scale val-
ues. Note, that we applied SSIM only for the L-coordinate of the CIELAB space, and thus image
quality effects based on the color coordinates have been neglected.
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Fig. 5.6: Scale values of five algorithms considered in the IS study, plus the meta-algorithm based
on the SSIM measure and Thurstone’s individualized scale values. Error bars show one standard
deviation and are computed analytically as described in Section 2.5.3.
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Chapter 6

Conclusion

Finish each day and be done with it.
You have done what you could.
Ralph Waldo Emerson

This thesis investigates the main methods of modelling the quality of gamut-mapped images with
the goal to optimize gamut mapping algorithms. We have introduced the concept of conjoint
analysis for evaluating the performance of parametrized gamut mapping algorithms. It extends the
well-established Thurstone’s method by allowing to decrease the number of required comparisons
to a manageable size while testing parametrized algorithms. We have presented methods to verify
appropriateness of the model assumptions for evaluating given choice data. An important topic
for future work on conjoint analysis is investigating parameters using the fact, that some of them
are continuous. Without setting constant levels one could better model distribution of preferences.
Moreover, one can improve the time-efficiency of a test by optimizing the test design. In particular,
adaptive test designs are of interest.

We have introduced a new formula for error estimation, based on error propagation. It has been
shown, that it performs better than previous methods. Our method does not impose a significant
overhead on top of computing of the scale values themselves. This error estimation method can
replace previous methods because it is more accurate for a larger range of psycho-visual scale values
and number of compared algorithms. The computation of experimental errors could give further
insights: Tt allowes verifying the appropriateness of the above methods. Additionally, different
types of experimental errors (choice based, image based or observer based) allow to test for the
homogeneity between observers or images.

We have discussed image quality measures as an alternative to psychovisual tests for evaluating
gamut mapping algorithms. We have introduced a new measure, which takes into account color
distance and details preservation, which both are important factors in gamut mapping. The use of
hit rates allows to assess different models. With them we could identify the best performing image
quality measure for the considered tests.

Using error analysis, we found evidence, that preferences of algorithms are not homogeneous be-
tween images. As a consequence, we have applied individualization concepts with respect to images
as a technique to improve evaluation and construction of gamut mapping algorithms. We have
considered two kinds of individualization. The first one: image quality measures, which by default
model the quality of individual images. The second one: based on data-driven models, improved by
individualization techniques. We have shown, that good individualized models perform better than
non-individualized. In particular, models based on ’good’ image quality measures perform better,
than non-individualized data-based models (without even requiring psycho-visual test data).
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62 Chapter 6. Conclusion

An important step in optimizing gamut mapping algorithms is the design of a practical image-
individualized meta-algorithm. On an example we have shown, that it can perform better than
any of single algorithms used for the design of this meta-algorithm.

Many directions of improving image quality measures are still to be investigated. Two basic
directions are: improving the formula describing similarity of images and defining color spaces,
where distances correlate better with distances perceived by the human visual system. Along with
improving image quality measures the performance of image quality based image-individualized
meta-algorithms would also increase. By the current methods of individualizing an algorithm with
respect to images, one has to compute mapped images for all considered algorithms.

It would be more time-efficient, if the optimal algorithm could be predicted based only on the
statistics of the original image and a data base assigning for the given image statistics an optimal
algorithm. However, this requires more research on preferences of different algorithms depending
only on the scene present in the original.
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