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ABSTRACT   

The high failure rate of the Yttria Partially Stabilized Zirconia (YPSZ)-porcelain interface in dental prostheses is 
influenced by the micro-scale mechanical property variation in this region. To improve the understanding of this 
behavior, micro-scale fracture toughness profiling by nanoindentation micropillar splitting is reported for the first time. 
Sixty 5	μm diameter micropillars were machined within the first	100	μm of the interface. Berkovich nanoindentation 
provided estimates of the bulk fracture toughness of YPSZ and porcelain that matched the literature values closely. 
However, the large included tip angle prevented precise alignment of indenter with the pillar center. Cube corner 
indentation was performed on the remainder of the pillars and calibration between nanoindentation using different tip 
shapes was used to determine the associated conversion factors. YPSZ micropillars failed by gradual crack propagation 
and bulk values persisted to within	15	μm from the interface, beyond which scatter increased and a	10% increase in 
fracture toughness was observed that may be associated with grain size variation at this location. Micropillars straddling 
the interface displayed preferential fracture within porcelain parallel to the interface at a location where nano-voiding has 
previously been observed and reported. Pure porcelain micropillars exhibited highly brittle failure and a large reduction 
of fracture toughness (by up to	~90%) within the first		50	μm of the interface. These new insights constitute a major 
advance in understanding the structure-property relationship of this important bi-material interface at the micro-scale, 
and will improve micromechanical modelling needed to optimize current manufacturing routes and reduce failure. 

Keywords: Fracture toughness, spatially resolved, yttria partially stabilized zirconia, porcelain, nanoindentation, 
micropillar splitting, microscale, dental prostheses 

1. INTRODUCTION 
Yttria Partially Stabilized Zirconia (YPSZ) is a high strength, high toughness ceramic which in recent years has found 
increasing use in the manufacture of dental prostheses [1]. The origins of the toughening behavior of this material lie in 
the tetragonal to monoclinic YPSZ phase transformation which may occur in the vicinity of cracks [2], free surfaces and 
interfaces. In dental applications YPSZ copings are veneered with porcelain in order to produce an aesthetically pleasing 
finish and to reduce the hardness of the outer surface, thereby reducing wear on existing opposing teeth [3]. However, 
this approach leads to the primary failure mode of YPSZ prostheses: near interface chipping of the porcelain veneer [4]. 
The origins of this failure are poorly understood but are believed to be linked to the mechanical property variation, 
residual stresses and porcelain creep induced in the near-interface region during prostheses manufacture [5-9]. 

Microanalysis and compositional mapping of the YPSZ-porcelain interface has been performed using a broad range of 
experimental techniques including Scanning Electron Microscopy (SEM) [10, 11], Energy Dispersive Spectroscopy 
(EDS) [11, 12], Transmission Electron Microscopy (TEM) [11, 13] and micro-focus X-ray diffraction [10, 14]. These 
studies have demonstrated that the microstructural variation at the YPSZ-porcelain interface is limited to within the first 
few hundred microns of the interface, and that the behavior is influenced by both nano-voiding and nano-grain features. 
However, these studies do not provide insight into the mechanical properties of most significance for prosthesis integrity: 
stiffness, hardness (yield strength) and toughness. Recently, microscale spatially resolved studies of Young’s modulus 
and yield strength variation across the YPSZ-porcelain interface region have recently been published [11, 15, 16]. The 
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analysis of toughness variation at very short length scales has remained an insurmountable challenge, despite the fact that 
material resistance to crack initiation and propagation, is critical for understanding the origins of the brittle failure 
observed at the YPSZ-porcelain interface. Quantification of the fracture toughness of both bulk YPSZ [17, 18] and bulk 
porcelain [19, 20] has been widely reported. However, no microscale spatially resolved analysis has been performed to 
determine the variation in the vicinity of the interface where failure is known to originate [21]. 

One of the most well-established and widely used procedures for microscale fracture toughness experimental 
determination is based on the measurement of the length of cracks induced by nanoindentation. It was first developed by 
Evans et al [22] in 1976. In recent years this approach has been refined to improve the resolution and precision of the 
technique, however it remains highly sensitive to the shape of the crack, the exact shape of the indenter tip (which may 
vary due to manufacturing imperfections and variation in use), and substrate mechanical properties [23]. Further, the 
impact of residual stress is known to influence crack formation in this configuration. This has been demonstrated in a 
recent study by Sebastiani et al. [15] who used nanoindentation to quantify the average values of fracture toughness 
within four regions across a YPSZ-porcelain cross section, in which one average near-interface value was reported. Since 
the magnitude of residual stress at the interface is known to be large and rapidly varying [16], de-convolution of this 
effect cannot be reliably performed for nanoindentation results at the micrometer resolution required. 

Recent improvements in nanoindentation systems and the increased availability of SEM-Focused Ion Beam (FIB) 
microscopes have facilitated the development of several new high resolution fracture toughness analysis techniques. A 
particular highly successful class of these methods is based around FIB milling and loading of notched micro-cantilevers 
[24-26].  Although these approaches benefit from high precision of crack positioning, there is currently disagreement in 
the literature over the sensitivity of the approach to the friction at the interface between the indenter surface (diamond) 
and the substrate, and the influence of ion beam damage at notch roots. The large FIB milling times required for each 
measurement point also limits the applicability of this approach for spatially resolved study. 

An alternative microscale fracture toughness approach based on Berkovich nanoindentation and splitting cracking of 
micropillars has recently been proposed by Sebastiani et al. [23, 27]. This approach benefits from a well-defined 
microscale gauge volume and fracture is known to originate from a location unaffected by FIB milling. Furthermore, 
complete relief of residual stress takes place within the examined region prior to indentation, minimizing the impact of 
this effect on the result. Additionally, the method can be implemented in a relatively short time frame, opening the 
possibilities of fracture toughness profiling and mapping. These benefits make it highly suitable for spatially resolved 
fracture toughness analysis across the YPSZ-porcelain interface.  

2. METHODOLOGY 
2.1 Sample preparation 

An incisal YPSZ-porcelain dental prosthesis was manufactured at DE Dental Lab Pte Ltd, Singapore. The assembly 
process employed was identical to that used in commercial samples: a YPSZ prostheses coping was produced by shaping 
lightly pre-sintered Zenotec Zr Bridge [28] into the form required. This was then sintered at 1600°C to produce a fully 
dense component. Multiple layers of IPS e.max Ceram [29] were then applied to the surface of the coping as aqueous 
slurry and fired at temperature around 650°C in order to produce a smooth porcelain surface with a realistic and 
aesthetically pleasing finish. 

In order to gain access to the interface, the completed prosthesis was mounted in epoxy resin and a 2mm-thick cross 
sectional slice was obtained using Buehler Isomet Diamond Saw. An incremental grinding and polishing process was 
then used to remove any material influenced by the cutting process and to minimize the magnitude of residual stresses 
induced by sample preparation. The sample was then mounted on an SEM stub using silver paint to provide an effective 
conduction path and minimize charging during FIB milling and SEM imaging. 

2.2 Micropillar FIB machining 

FIB milling was used to generate an array of micropillars in the shape of a cross straddling the interface as shown in 
Figure 1a. This pattern was selected to maximize the number of pillars within the first 15	μm of the interface in order to 
give improved statistics in the location where most variation was expected. FIB milling was performed on the TESCAN 
Lyra 3 FIB-SEM at the Multi-Beam Laboratory for Engineering Microscopy (MBLEM), Oxford, UK using an 
automated script for pillar milling, and a milling current of	1.25	nA. Nominal pillar diameter and depths of 5	μm were 
selected in order to provide the required resolution while simultaneously minimizing the impact of ion beam damage on 
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the fracture toughness evaluation process. This size was also consistent with the successful experiments previously 
performed by Sebastiani et al [27]. A trench width of 3	μm was selected as a compromise between maximizing the
spatial resolution of the data collected and ensuring that there was no contact or interaction between the indenter and the
surrounding material. In order to aid in aligning the indenter on the center of each pillar, a 25	nm deep target cross was 
milled into the surface, as shown in Figure 1b. High resolution imaging was performed on each pillar in using SEM stage 
tilt angles of 0° and 35° in order to measure the radius (ܴ) and height of each pillar using the technique previously 
outlined by Lunt et al. [11]. Precise measurement of the distance from the interface to the center of each pillar was also
performed during this process.

Figure 1. a) Positions of FIB milled micropillars across the YPSZ-Porcelain interface. The number of pillars near to the
interface has been chosen to be large in order to gain improved insight into the statistics of this region. b) A high 
magnification of one of the pillars (the location of which is shown in Figure 1a showing the indentation alignment cross on
the center of the pillar). Both images were captured at a SEM tilt of 55° using tilt correction in the ݔ direction. Figure 1a has
been rotated to be orientationally consistent with the other figures presented in this study. 

2.3 Micropillar indentation splitting

Micropillar indentation splitting was performed using an Alemnis SEM Indenter inside the TESCAN Lyra 3 FIB-SEM at 
Empa, Thun, Switzerland. Prior to the start of the experiment, compliance calibration was performed by indenting fused 
silica which has a well characterized indentation response. Before each indentation, the tip was cleaned by indenting the
polymer substrate in which the prosthesis was embedded. Displacement control mode was used during the analysis in
order to prevent the large displacements typically observed during fracture under load control. The purpose of this 
approach is to enable the failure mode of the pillars to be examined in more detail through SEM imaging after fracture. 
Video records of the indentation were also collected to provide further insight into the pillar failure behavior as shown in 
Videos 1 and 2 (see supplementary information). 

Video 1 and 2. Video snapshots of cube corner nanoindentation splitting in a) YPSZ (9	μm from interface) and b) porcelain 
(11	μm from interface). The more ductile fracture of YPSZ and brittle response of porcelain are demonstrated in these two 
videos. http://dx.doi.org/10.1117/12.2199217.1 ; http://dx.doi.org/10.1117/12.2199217.2 
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Critical examination of Figure 3 reveals that within each material the scatter of ܪ/ܧ is generally equal to or smaller than 
the 95% confidence intervals of each value. This means that in terms of statistical significance, given the scatter of the 
results obtained experimentally, the value ܪ/ܧ can be considered to be approximately constant in both YPSZ and 
porcelain. Further, as highlighted in Equation 2, it can be seen that moderate changes in the value of  ܪ/ܧ result in very 
small changes in	ߛ஻, i.e. the fracture toughness estimate is robust with respect to minor deviations in ܪ/ܧ. This uniform ܪ/ܧ approximation in both YPSZ and porcelain was used in the remainder of the analysis. 

It was decided that the literature values of Young’s modulus and hardness would be used to calculate the ܪ/ܧ ratio for 
both YPSZ and porcelain (Table 1). Bulk estimates are typically more reliable than the results of micro-mechanical 
testing, and the use of these values is also consistent with the approach implemented by Sebastiani et al. [27].  

Table 1.  Mechanical properties and indentation load pre-multipliers for YPSZ and porcelain. Literature values of Young’s 
Modulus (ܧ), hardness (ܪ) and fracture toughness (ܭ) are given with references, along with the calculated values of 
the Berkovich and cube corner indentation load pre-multipliers (ߛ஻ and ߛ஼ , respectively). The average fracture 
toughness estimate obtained from Berkovich indentation (ܭ஻) is included for comparison. The standard deviation of 
each measurement has been included in the table where values are known. 

Material ࡱ (GPa) ࡴ (GPa) ࡷ (MPam0.5) ࡮ࡷ ࡯ࢽ ࡮ࢽ (MPam0.5) 

YPSZ  210 [28] 12.75	 ± 1.96	[28] 5.00 [28] 0.31 ± 0.02 1.10 ± 0.05 4.79 ± 0.24 

Porcelain 60 [34] 5.40 ± 0.20 [33] 2.75 ± 0.25 [33] 0.22 ± 0.01 0.41 ± 0.04 2.65 ± 0.27 
 

3.2 Micropillar indentation splitting 

After successfully fracturing each of the 60 FIB milled pillars, analysis was performed on the load-displacement curves 
obtained from the analysis. Distinct differences were observed between the fracture of the YPSZ and porcelain 
micropillars, examples of which are shown in Figure 4. In the case of porcelain, brittle failure occurred without the onset 
of plasticity. However in the case of YPSZ, a gradual decrease in the load-displacement plot was observed prior to 
failure. Despite these differences, consistent estimates of the critical load for instability ( ஼ܲ) were obtained from each of 
the pillars corresponding to the point where large drops were observed in the load. 

 
Figure 4. Typical load-displacement plots for YPSZ, porcelain and the interface up to the point of brittle failure. The 
distance from the interface to the pillar center is given in the plot legend. YPSZ shows plasticity prior to critical failure 
whereas no reduction in gradient is observed in porcelain or the interface indentation. 

In order to obtain estimates of the fracture toughness of each of the pillars, the values of Berkovich indentation load pre-
multiplier ߛ஻ for each material were obtained. These were based on the bulk values of Young’s modulus and hardness 
for YPSZ and porcelain given in Table 1 and Equation 2 [23]. Estimates of Berkovich fracture toughness were then 
obtained using Equation 1. In order to provide comparisons with the cube corner indentations, the average value of ܭ஻ 
was determined at positions at which both techniques had been applied; 60, 70 and 80݉ߤ from the interface for 
porcelain and 35, 50 and 60݉ߤ from the interface for YPSZ. The averages and standard deviations of ܭ஻ obtained from 
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half pillar splitting observed in the interface region is preferentially aligned to the interface. What is however more 
surprising is that failure was not observed at the interface location, where a step change in mechanical properties is 
expected, or at the pillar center. Failure was found to be more likely within the near-interface porcelain at a distance of 
between 1 − 2	μm from the interface. This length scale correlates well with the position of nanoscale voiding observed 
in porcelain by Lunt et al. [11] (0.4 − 1.5	μm from the interface) suggesting that there may be an underlying  structural 
weakness in the porcelain at this location. The random nature of void type features may also explain the large scatter 
observed in the fracture toughness of the near-interface porcelain pillars. 

Clear differences can be observed between the literature average values of fracture toughness and those obtained 
micropillar splitting for both YPSZ and porcelain in the near-interface region (Figure 5). A clear reduction in fracture 
toughness (by up to	~90%) is observed in porcelain starting approximately 50	μm from the interface and extending to 
the near interface location. This variation is highly consistent in the pillars between 50 and 15	μm from the interface, 
suggesting that this weakness may be associated with a gradual variation in mechanical properties caused, for example, 
by elemental diffusion or long-range grain refinement effects, both of which are known to influence the fracture 
toughness of porcelain [35]. In contrast to this behavior, at distances less than 15	μm from the interface, a large amount 
of scatter is observed within the data suggesting more statistically driven weaknesses than those observed at larger 
distances. The fracture toughness estimates within this range vary from 0.6 − 2.5	MPam଴.ହ which demonstrates that the 
bulk mechanical behavior is present within some near-interface positions.  

The variation of fracture toughness within the interface pillars (containing both YPSZ and porcelain) demonstrates 
relatively high levels of scatter with an average value of	3.8	MPam଴.ହ. This corresponds well with the average literature 
fracture toughness values of YPSZ and porcelain of	3.9	MPam଴.ହ. Despite this consistency, the fracture toughness in 
pillars containing mostly porcelain shows high levels of scatter. Of the four pillars measured, three are within the scatter 
observed in the neighboring porcelain however one high toughness pillar (5.3	MPam଴.ହ) was observed at this location, 
this may be an outlier or perhaps is more representative of failure within YPSZ.  

In YPSZ the fracture toughness is approximately constant and equal to the literature value of 5	MPam଴.ହ	up a distance of 15	μm from the interface. In the near-interface region, an increase in fracture toughness is observed up to an average 
value of	5.5	MPam଴.ହ. An increase in scatter is also observed in this region with values between 4.9 − 6.4	MPam଴.ହ 
being observed. This again suggests that this behavioral change is statistically driven, rather than a gradual transition and 
therefore is likely to be associated with local features. At present the exact origin of this increased toughness is not clear. 
One explanation may be high elemental composition sensitivity of YPSZ fracture toughness [18, 36] and the variations 
in the concentration of Si, K, Na and Al known to be present within the first 5	μm of the interface [11]. Perhaps more 
likely, given the scatter in the fracture toughness values obtained, is the grain size dependence of YPSZ fracture 
toughness [37]. Larger grains of YPSZ are more likely to transform from a tetragonal to a monoclinic phase during stress 
application, increasing the amount of energy absorbed by the material during fracture. TEM of the YPSZ-porcelain 
interface has previously highlighted YPSZ grain size variations at this location, including the presence of relatively large 
grains (1 − 2	μmଶ) within the first 10	μm of the interface [11]. The scatter observed may therefore be dependent upon 
the presence, or lack of, a large grain within the gauge volume under consideration. 

5. CONCLUSIONS 
This study is the first published work which outlined the application of spatially resolved fracture toughness using 
nanoindentation and pillar splitting. The approach has been shown to provide reliable estimates of fracture toughness in 
the ceramics YPSZ and porcelain and has been used to investigate the variation of fracture toughness within a sample of 
commercial interest; the YPSZ-porcelain interface in dental prostheses. Further, cube corner indentation (which can be 
aligned more quickly and precisely to pillar centers) has been shown to provide realistic estimates of fracture toughness 
by making use of the critical failure load pre-multiplier	ߛ஼. Estimates of ߛ஼ for both YPSZ and porcelain were obtained 
by comparison with the Berkovich indentation approach previously published by Sebastiani et al. [23, 27]. 

Near interface YPSZ has been shown to fail through a gradual, ‘plastic’ type fracture and has shown to be consistent 
with literature estimates of fracture toughness at distances beyond 15	μm	from the interface. In the very near interface 
region, a 10% increase in fracture toughness was observed, along with an increase in scatter. This may be associated 
with grain size variation and the associated impact on fracture toughness in YPSZ. 
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In pillars which contained both YPSZ and porcelain, a distinctive half pillar splitting type failure was observed which 
was typically aligned with the interface and was positioned in the porcelain at a distance of 1 − 2	μm from the interface. 
This behavior is believed to be associated with the nanoscale voiding previously observed in porcelain at this location.  

Porcelain micropillar failure was found to be brittle in nature, with no plasticity or cracking observed before complete 
failure of the micropillar. Scatter was observed within the very near-interface (< 15	μm) fracture toughness values 
suggesting a statistically driven failure which was dependent upon local features. Further variation in fracture toughness 
was observed up to 	50	μm from the interface which demonstrated a gradual and consistent reduction in toughness (of up 
to ~90%). This large reduction in fracture toughness, in combination with the high magnitude residual stresses at this 
location, has the potential to explain the high failure rates observed in this micromechanical system. 

The insights gained by this study can be used in combination with other recent high resolution mechanical studies of the 
YPSZ-porcelain interface in order to develop improved models of the evolution of residual stress, microstructure and 
mechanical behavior. These simulations can be used to optimize the thermal processing routes applied during 
manufacture in order to reduce the impact of localized residual stress and fracture toughness variation, with the ultimate 
goal of reducing prosthesis failure rates. 
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