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ABSTRACT   

Laser scribing is an indispensable step in the industrial production of Cu(In,Ga)Se2 thin film solar modules. While cell 
separation (P1 and P3) is usually achieved using high velocity, low overlap lift-off processes, removal of the absorber 
layer for generating an electrical back-to-front interconnect (P2) is typically a slow process. In the present study we 
present an approach for scaling the classical P2 process velocity to an industrially exploitable level. We demonstrated 
successful P2 scribing at up to 1.7 m/s in a single beam, single pass configuration using a linear focal spot. The presented 
process is robust against variations in the scribing velocity and focal position, a key point for successful machine 
integration. 

Keywords: laser scribing, CIGS, solar cell patterning, selective ablation, thin-film structuring, high throughput, process 
scaling, APPOLO 
 

1. INTRODUCTION 
Laser scribing is replacing traditional mechanical scribing in the production of Cu(In,Ga)Se2 (CIGS) thin-film solar 
modules on all substrates. It is indispensable for patterning modules on flexible substrate such as polyimide in a roll-to-
roll production line. In an in-line production setup the laser scribing sub-unit should preferably operate at the same 
throughput as the deposition machines in order to facilitate integration. For a typical industrial production scenario a 
scribing velocity of meters per second should preferably be achieved. In earlier studies [1, 2] we investigated various 
scribing process combinations and found optimum module performance when ultrashort pulsed lasers with pulse 
durations of tens of picoseconds were used. An efficiency of 16.6 percent (illuminated aperture) for an all-laser scribed 
mini module on 50x50 mm2 float glass substrate was demonstrated [3]. The laser source used to realize said modules was 
the Katana HP fiber laser (Onefive GmbH, Switzerland) with maximum pulse energy of 15 µJ at 1064 nm. Scribing 
velocities for the three scribing processes were 50 mm/s for the P2 process (removal of the CIGS absorber layer and 
exposure of the molybdenum back contact) and 600 mm/s and 1200 mm/s for the P1 (isolation of the back contact) and 
P3 (selective removal of the front contact) process, respectively.  
While low overlap P1 and P3 process can be scaled by increasing the pulse repetition frequency of the laser and 
changing the scribing velocity accordingly, P2 is not scalable with the same approach due to thermal relaxation of the 
material which has to be taken into account. As a result, published scribing velocities are rarely exceeding 200 mm/s [4, 
5]. Alternative “non-classical” P2 processes were proposed, namely by Westin (thermal transformation of CIGS) [6] and 
Rekow (CIGS lift-off) [7], which follow different scaling laws. A comparative study of different P2 processes will be 
presented in a follow-up publication. Here we focus on the classical direct ablation process, which in our experiments up 
to now resulted in the best module performance.          
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Figure 3 Illustration of the multi-pass “pulse interleaving” strategy. Starting from a standard P2 process where every point on the 
scribe is hit by n pulses the multi-pass P2 scribe is decomposed into n passes where only every nth pulse is applied (pulse 
interleaving). Between the passes an offset of 1/(n+1) beam diameter is introduced. 

2.4 Multi spot approach 

A straight forward scaling approach is parallelization of the process by multiplication of the optical beam path and 
energy sharing between the simultaneous process sites (Figure 4). While the concept is simple in theory its realization 
may lead to rather complex optical systems that are difficult to align within acceptable tolerances. Splitting of the beam 
is possible using diffractive optical elements[12] or partially reflective mirrors. In both cases the challenge is to assure 
equidistant positioning of the spots, equal partition of the energy and equal beam parameters in each spot. Obviously, the 
alignment becomes more and more complex with the number of beam paths. In our scenario about 8 beamlines would be 
necessary. Further, variations in spot separation or change of scribing direction are not easily achieved. 

 
Figure 4 Illustration of a multi-spot parallelization approach for increasing P2 scribing speed. 

2.5 Process area scaling approach 

In our approach the advantages of multi-pass and multi-spot strategy are combined in the sense that a high-throughput 
scribe is achieved in a single pass, using a single beam path at low pulse repetition frequency. A high energy pulse is not 
discretely split into different spots but its energy is distributed homogeneously over a conjunct process area as shown in 
Figure 5 – hence the term “process area scaling”. The distribution which has shown good process stability is a line focus 
with a flat top profile in direction of the line and a Gaussian-like profile in transversal direction.  

 
Figure 5 Illustration of the process area scaling approach. Pulse-to-pulse overlap is held constant as well as average fluence and 
pulse repetition frequency. With the chosen line geometry this results in an increase in scribing velocity proportional to the line 
length.  
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Incoming beam focused by a spherical lens

Incoming beam modified by a square top hat beam shaping lens, focused by a spherical lens- / 1

Incoming beam modified by a square top hat beam shaping lens, focused by a weak spherical lens

Incoming beam modified by a square top hat beam shaping lens, focused by a weak spherical- and a short focal cylindrical lens

 

 

3. EXPERIMENTAL SETUP 
3.1 Optical realization 

The linear shape of the focus line element as shown in Figure 7 was achieved using a refractive beam shaper lens (e.g. 
GTH-4-2.2 from TOPAG, Germany) which, in conjunction with a spherical focusing lens, re-maps the Gaussian 
intensity distribution into a square flat top profile. Additional focusing by a cylindrical lens generates a linear focal spot 
with transversal Gaussian profile. The spot geometry can be adjusted within some limits by choosing focal length of 
spherical and cylindrical lens accordingly. Using this method, the full energy of the laser pulse can be used for scribing 
by choosing the geometrical shape (the aspect ratio) of the laser spot according to the necessary fluence and available 
pulse energy. In this configuration the achievable gain in scribing velocity is proportional to the pulse energy of the laser 
source. According to the chosen scenario which demands scribing velocities up to 2 m/s, linear spots with aspect ratio in 
the range of 20 to 30 were realized using the described method. Typically, the length of the linear spot was around 
1.5 mm and the width (1/e2) around 65 µm. A sample profile is shown in Figure 7 in a graphical representation. Exact 
geometries for three setups are given later in Table 1. Homogeneity of the peak intensity better than ±5 percent was 
regularly achieved in different setups. 

 

 
Figure 6 Line generation using a refractive flat-top beam shaping lens in combination with spherical and cylindrical lenses. 
Selection of linear spot width and aspect ratio is achieved by choosing focal lengths of the lenses accordingly.  
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Figure 8 Lab scribing machine with optical experimentation platform installed at BUAS application lab. 

 

Table 1 Geometry of the line focus elements used for high throughput P2 processing on glass and polyimide substrate. 

 Onefive Genki XP on 
polyimide substrate 

Onefive Genki XP 
on glass substrate 

EKSPLA Atlantic 60W 
on glass substrate 

focus line length (1/e2)  1740 µm 1610 µm 1600 µm 
focus line width (1/e2) 63 µm 69 µm 58 µm 
ablated line length 1560 µm 1450 µm 1440 µm 
ablated line width 47 µm 56 µm 50 µm 
exposed Mo length 1330 µm 1200 µm 1170 µm 
exposed Mo width 20 µm 28 µm 24 µm 

 

 

4. RESULTS 
4.1 Scribe morphology 

Scribe morphology was investigated using optical microscopy, scanning electron microscopy (SEM) and laser scanning 
microscopy (LSM). Optical microscopy was used as a first feedback on the scribing result during parameter study and 
for gathering color-related information such as a color transformation in the heat affected zone (HAZ). LSM helped to 
exclude substantial ablation of the back contact. SEM was predominantly used for identification and qualification of 
micro-cracks, to detect beginning delamination (in tilted mode) and for the analysis of melt formation under different 
process conditions. Some SEM images illustrating some very pronounced scribe failures for different damage 
mechanisms are presented in Figure 9. 
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Figure 9 Three examples of often observed problems in P2 scribing (left to right): damage of the back contact layer (by strong 
ripple formation or ablation of the back contact), micro-cracks extending into the surrounding absorber material with beginning 
delamination of the layer stack, and cracks in the back contact in the direction of the scribe (thermal overload caused by heat 
accumulation). 

SEM images in the following section show typical scribing results for the three high throughput processes investigated in 
this study. For comparison, a conventional scribe is depicted in Figure 10. This image shows a typical situation for a 
scribe optimized for integrity of the back contact, minimal melt and small heat affected zone. Also typical for such a 
scribe is the slow scribing velocity achieved – 32.5 mm/s in this case. 

 

 
Figure 10 Electron micrograph of a P2 scribe realized on glass substrate using a conventional round focal spot with Gaussian 
intensity profile. The process parameters used in this example were: pulse energy 1.5 µJ, repetition frequency 50 kHz, scribing 
velocity 32.5 mm/s; the laser source used was the EKSPLA Atlantic 60W emitting 10 ps pulses at 1064 nm. 

Figure 11 shows a high-throughput P2 scribe realized on polyimide substrate using the proposed area-scaling approach 
and a linear focal spot, the laser source used was the Onefive Genki XP at 250 µJ and 10 kHz pulse repetition frequency. 
The scribe image shows a clean and damage free exposure of the back contact, virtually no micro-cracks and low 
melting. Note that the slight change in surrounding CIGS surface structure results from stripping of the front contact 
described in 3.2. In this experiment not the full available laser pulse energy of 400 µJ was used. A proper optimization of 
the linear focus aspect ratio was not possible in this case due to time constraints. For an optimized linear spot a scribing 
velocity in excess of 600 mm/s can be expected at 400 µJ and 10 kHz pulse repetition frequency. 
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Figure 11 P2 scribe realized on flexible substrate (Mo/CIGS on PI substrate; Flisom). The laser used was Onefive Genki XP at 
2.5 W average power and a wavelength of 1064 nm. Achieved scribing velocity: 380 mm/s.  

Figure 12 shows a P2 scribe realized on glass substrate using the Onefive Genki XP at 400 µJ pulse energy and 10 kHz 
pulse repetition frequency. The scribe image shows a clean exposure of the back contact with marginal ripple formation 
in the molybdenum. Micro-cracks in the CIGS and melting are not observed. The process is limited by the available laser 
power only. Further scaling of the scribing velocity by increasing the pulse repetition frequency at constant pulse energy 
seems possible. 
 

 
Figure 12 P2 scribe realized on rigid substrate (Mo/CIGS/IZO on glass; Empa). The laser used was Onefive Genki XP at around 
4 W average power and a wavelength of 1064 nm. Achieved scribing velocity: 390 mm/s. 

Further scalability of the process was demonstrated using the EKSPLA Atlantic 60W laser with comparable pulse 
characteristics but higher average power. This source delivers constant pulse energy of 160 µJ up to the 400 kHz pulse 
repetition frequency of the master oscillator. A successful scaling of the high-throughput P2 scribing process up to a 
scribing velocity of 1720 mm/s was demonstrated (see Figure 13). In this experiment a pulse repetition frequency up to 
67 kHz was used. As the scribe image in Figure 13 shows, heat accumulation leads to melting of the remaining CIGS 
material. Local micro-cracks are observed which do not extend into the unprocessed material. Some droplets of molten 
CIGS were deposited on the exposed molybdenum layer during the process. Nevertheless, the back contact was not 
damaged and the exposed area is large enough for a good electrical contact. In this experiment the achievable scribing 
velocity was limited by two factors; on the one hand by the mechanical axes whose velocity is limited to 2 m/s and on 
the other hand by the available laser pulse energy. A further scaling of the process seems possible if pulse energy and 
focal line length are increased. At 400 µJ pulse energy and 67 kHz repetition frequency a scribing velocity in excess of 
4 m/s can be expected. Since this velocity level is beyond the scope of our scenario of industrial application and beyond 
the capabilities of our hardware we did not further investigate practical scaling realization at these velocity levels. 
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Figure 15 Robustness of the high-throughput P2 process with respect to changes of the focal position. Between scribing of each 
of the lines the focal position was shifted by 1 mm. All but the leftmost scribe show successful removal of the CIGS without Mo  
damage and thus valid P2 scribes. 

 
4.3 Process efficiency 

Based on used scribing parameters and resulting scribe geometry, efficiency figures can be calculated to compare 
different scribing processes. One measure of process efficiency is the necessary total laser pulse energy per unit length of 
the scribe (which is equivalent to the necessary laser power at 1 m/s). If the width of the scribe is also considered, the 
total applied pulse energy can be related to the area of the exposed back contact. The described efficiency figures 
calculated for the three investigated high-throughput classical P2 processes (employing line focus) and a reference scribe 
made with the EKSPLA Atlantic 60W using a round Gaussian spot with a diameter of 22 µm (1/e2) are listed in Table 2. 
Due to the significant differences in scribe geometry a direct comparison of values listed for the individual processes is 
difficult. However, if the width of the exposed back contact trench is taken into account, the energy necessary for 
exposing an area of 1 mm2 of the molybdenum back is roughly 300 mJ in all our investigated P2 processes. In this sense 
the process efficiency of the high throughput classical P2 process using a linear spot is comparable to the one of the 
reference process using a round Gaussian spot. A further common characteristic is the high overlap between 97 percent 
and 98 percent for all processes. 

Table 2 Laser and motion parameters used for high throughput P2 processing on glass and polyimide substrates and 
corresponding process efficiency figures.  

 Onefive Genki XP on 
polyimide substrate 

Onefive Genki XP 
on glass substrate 

EKSPLA Atlantic, 
glass substrate 

EKSPLA round 
spot on glass 

laser pulse energy  250 µJ 400 µJ 160 µJ 1.5 µJ 
approx. average fluence(*) 0.23 J/cm2 0.26 J/cm2 0.18 J/cm2 0.4 J/cm2 
pulse repetition frequency 10 kHz 10 kHz 67 kHz 50 kHz 
scribing velocity 380 mm/s 390 mm/s 1720 mm/s 32.5 mm/s 
energy per scribe length unit 66 mJ/cm 103 mJ/cm 62 mJ/cm 23 mJ/cm 
energy per exposed Mo area 330 mJ/mm2 366 mJ/mm2 260 mJ/mm2 320 mJ/mm2 
laser power needed @1 m/s  6.6 W 10.3 W 6.2 W 2.3 W 

 (*) The average fluence was approximated as pulse energy divided by the area of the linear spot. The spot area was determined     
from a grey-level image of the intensity profile with threshold set at 1/e2 of the maximum intensity. 

 

4.4 Electrical quality 

Direct electrical testing of P2 scribe contact resistance has played an important role during development and optimization 
of the high throughput process. For this purpose, test structures have been produced for direct comparison of different P2 
scribes. The simplified test structure allowed measuring cumulative resistance of front contact, back contact and contact 
resistance of the P2 scribe for many P2 process variants on one sample. In these tests high-throughput processes did 
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show similar electrical properties as the reference process. Currently, selected high-throughput P2 processes are 
validated in functional modules and test structures allowing us to extract specific data for the P2 contact resistance. The 
result of these measurements will be published as a comparative study in a follow-up publication. 

 

5. CONCLUSION AND OUTLOOK 
In the present study different scaling approaches for P2 scribing were investigated for an industrial scenario demanding 
1-2 m/s scribing velocity. A simple and effective "process area scaling" approach was proposed employing a linear focus 
element and high energy ultrashort laser pulses. The optical realization is simple and low-cost, based only on refractive 
optics. The process is extraordinarily robust against variations in scribing velocity and the z-position of the sample, 
therefore it is ideally suited to be used on a roll-to-roll production machine where maintaining a constant z-position of 
the flexible substrate is challenging. In scribing experiments good scribe quality was achieved with minimal substrate 
damage and no delamination. Scalability of the process up to a scribing velocity of 1720 mm/s was demonstrated and 
further scaling is possible if necessary using high energy, low repetition frequency ultrashort pulsed laser sources. 
Together with the low overlap and high throughput P1 and P3 processes a full set of industrially exploitable laser 
scribing processes is now available. In-depth characterization and validation of the scribing processes is currently 
running and will be one of the outcomes of the FP7 project APPOLO.  
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