Observations of Atmospheric Methane and Carbon Dioxide Mixing Ratios: Tall-tower or Mountain-top Stations?

Ines Bamberger • Brian Oney • Dominik Brunner • Stephan Henne • Markus Leuenberger • Nina Buchmann • Werner Eugster

Received: DD Month 2015/ Accepted: DD Month YEAR

Abstract Mountain-top observations of greenhouse gas mixing ratios may be an alternative to tall-tower measurements for regional scale source and sink estimation. To investigate the equivalence or limitations of a mountain-top site as compared to a tall tower site, we used the unique opportunity of comparing in situ measurements of methane (CH$_4$) and carbon dioxide (CO$_2$) mixing ratios at a mountain top (986 m above sea level, a.s.l.) with measurements from a nearby (distance 28.4 km) tall tower, sampled at almost the same elevation (1009 m a.s.l.). Special attention was given to (i) how local wind statistics and greenhouse gas sources and sinks at the mountain top influence the observations, and (ii) whether mountain-top observations can be used as for those from a tall tower for constraining regional greenhouse gas emissions. Wind statistics at the mountain-top site are clearly more influenced by local flow systems than those at the tall-tower site. Differences in temporal patterns of the greenhouse gas mixing ratios observed at the two sites are mostly related to the influence of local sources and sinks at the
mountain top site. Major influences of local sources can be removed by applying a statistical filter (5th percentile) or a filter that removes periods with unfavourable flow conditions. In the best case, the bias in mixing ratios between the mountain-top and the tall-tower sites after the application of the wind filter was -0.0005 ± 0.0010 ppm for methane (September, 0000–0400 UTC) and 0.11 ± 0.18 ppm for CO$_2$ (February, 1200–1600 UTC). Temporal fluctuations of atmospheric CH$_4$ and CO$_2$ mixing ratios at both stations also showed good agreement (apart from CO$_2$ during summertime) as determined by moving bi-weekly Pearson correlation coefficients (up to 0.96 for CO$_2$ and 0.97 for CH$_4$). When only comparing mixing ratios minimally influenced by local sources (low bias and high correlation coefficients), our measurements indicate that mountain-top observations are comparable to tall-tower observations.

Keywords Atmospheric observations • Greenhouse gases • Local greenhouse gas sources • Mountain meteorology • Mountain top • Tall tower

1 Introduction

Tall-tower measurements of atmospheric greenhouse gases contain information from larger spatial scales than measurements close to the ground (Marquis and Tans 2008) and thus provide valuable information for resolving regional transport and the distribution of greenhouse gases (Gloor et al., 2001). In contrast, greenhouse gas mixing ratios measured at mountain-top stations are often more influenced by boundary-layer processes and by local sources and sinks than are tall-tower measurements. This is mainly due to the complex topography around mountain sites and the low sampling height above the ground, allowing local fluxes to considerably influence the local concentration field. To address the question: how similar, or how different, are mountain-top and tall-tower measurements at the same elevation above sea level, we compared carbon dioxide (CO$_2$) and methane (CH$_4$) mixing ratio measurements at a mountain-top and a tall-tower site that are only separated by 28.4 km, which allows for a unique and direct comparison. It is not expected that short-term variations at two sites separated by such a distance are synchronous, but it can be expected that, with adequate statistical aggregation,
measurements made at both sites should provide similar regional information in the CO₂ and CH₄ time series.

While the global budgets of carbon dioxide and methane are relatively well known, their sources and sinks are poorly constrained based on current regional scale observational networks, where “regional” used herein refers to an area > 10⁴ km² (Cleugh et al. 2004). With a joint contribution of 81% to the positive anthropogenic radiative forcing, CO₂ and CH₄ are the two most important anthropogenic greenhouse gases (Myhre et al. 2013). Even though tall-tower networks in both Europe and North America provide observations of net changes in CO₂ and CH₄ mixing ratios at large spatial scales, the network density is insufficient to resolve atmospheric and surface flux patterns at the smaller regional (sub-national) scale (Marquis and Tans 2008, Villani et al. 2010, Dlugokencky et al. 2011). An increased number of tall-tower stations would be beneficial for resolving the regional distribution of greenhouse gas mixing ratios (Lauvaux et al. 2012). A concentrated effort towards a dense regional network of tall towers was initiated by the NOAA Earth System Research Laboratory that resulted in a network of seven towers (Andrews et al. 2014). Similarly in Europe, a tall tower network exists with seven towers (e.g., Vermeulen et al. 2011, Thompson et al. 2009), and in order to expand existing and create new networks, TV and radio broadcasting towers could be equipped with relevant instrumentation (Marquis and Tans 2008, Andrews et al. 2014). Such towers and additional sites are currently being integrated into the European Integrated Carbon Observation System (ICOS, www.icos-ri.eu). However, access to existing telecommunication towers may not always be possible, and the installation and maintenance of measurement instrumentation is often prohibitive and time intensive.

Other approaches such as aircraft measurements (e.g., Beck et al. 2012, Schuck et al. 2012, Xiong et al. 2010) yield useful snapshots of the atmospheric composition and add supplementary information on vertical and horizontal profiles (Crevoisier et al. 2006, Zhang et al. 2014). Long-term aircraft measurements of greenhouse gases within the NOAA atmospheric monitoring network have been carried out by Karion et al. (2013) twice a week over selected areas, but such airborne measurements cannot provide continuous, long-term observations, and may miss essential parts of the atmospheric variability, especially on the regional scale. Remote sensing products such as satellite
retrievals of global atmospheric greenhouse gas total column mixing ratios have recently become available (Frankenberg et al. 2005, 2008, 2015, Kuze et al. 2009, Buchwitz et al. 2013). These measurements are complementary in their ability to provide spatial information on atmospheric greenhouse gases. However, they are still limited in their temporal and spatial resolutions, are affected by cloud cover, and are less accurate and less sensitive to surface fluxes than in situ measurements (Marquis and Tans 2008). Alternatively, continuous measurements of CO$_2$ and CH$_4$ mixing ratios close to the ground but at elevated locations such as mountain tops might provide a footprint of similar size as that of a tall-tower station. Consequently, the use of such measurement stations could complement the number of sites used to measure greenhouse gas mixing ratios, especially in mountainous regions where tower facilities are rare (Andrews et al. 2014, Lee et al. 2015). However, to the best of our knowledge, the comparability of mountain-top data to tall-tower data in a direct comparison, as we present here, has not yet been investigated. Greenhouse gas mixing ratios at mountain tops might be influenced by local flows and nearby greenhouse gas sources and sinks. All these influences may negatively affect the regional representativeness of mountain top measurements (Brooks et al. 2012). Before being used in atmospheric inversions, mountain-top measurements may need to be screened using meteorological or statistical filters in order to remove local influences (Brooks et al. 2012, Lee et al. 2015).

Highly accurate atmospheric mixing ratio measurements in combination with an inverse transport model are required to produce quantitative information on greenhouse gas sources and sinks (Nisbet and Weiss 2010). Thus, apart from network density and accuracy of measurements, the top-down approach to determining regional and global greenhouse gas fluxes is dependent on the reliability of transport models to allocate regional sources and sinks (Lin and Gerbig 2005, Gerbig et al. 2008, Tolk et al. 2008, Kretschmer et al. 2014). Even if measurements are taken at considerable altitudes above ground, the exact representation of the transport of greenhouse gases may be a major source of uncertainty in these top-down approaches (e.g., McKain et al. 2012, Smallman et al. 2014). Especially due to the development of small-scale local circulations, such as thermally induced slope-wind systems (Whiteman 2000) and their insufficient representation in relatively coarse-resolution atmospheric transport models, the
greenhouse gas mixing ratios above complex terrain (e.g. mountain tops) are difficult to predict using such models. Subgrid-scale transport processes due to complex topography are currently not, or only very crudely, represented in global and regional-scale transport models (van der Molen and Dolman 2007, Tolk et al. 2008) that are used for estimating greenhouse gas fluxes at continental to global scales. Recently it has been argued that the use of such coarse transport models results in an underestimation of net CO$_2$ exchange (Rotach et al. 2013), which is critical since at least 50 \% of the land surface can be classified as complex terrain (Rotach et al. 2007, 2013). Thus, in combination with measurements in complex terrain (e.g. at mountain tops), high-resolution transport models are required to capture micro scale to meso scale (2 to 20 km) wind circulations and their effect on greenhouse gas mixing ratios (Pillai et al. 2011). Another drawback of mountain-top measurements may be that they are affected by microscale greenhouse gas sources or sinks, close to the measurement inlet that cannot readily be represented in a transport model. Thus, it is unclear how local sources and local flows will influence greenhouse gas mixing ratios observed at a mountain-top station as compared to a tall-tower station.

The aim of this study is to determine whether a mountain-top station can provide data of similar quality as those at a tall-tower station. For this purpose, we compared CO$_2$ and CH$_4$ mixing ratio measurements at sub-daily to seasonal time scales from a tall-tower and a mountain-top station in Switzerland, located at a similar elevation (above sea level) and with a relatively short horizontal distance from each other (28.4 km). The two sites are part of a greenhouse gas observation network in Switzerland that has recently been established in the framework of the CarboCount CH project (www.carbocount.ch, Oney et al. 2015).

We pose the following questions: (1) How different are flows at the mountain-top compared to the tall-tower stations? (2) How important is the potential contamination of the mountain-top measurements by local greenhouse gas sources and sinks if an inlet close to the ground is used? (3) Is it possible to identify optimum atmospheric conditions for which mountain-top observations are comparable to those from a tall tower, given that other environmental factors are similar (i.e. climate, distance to pollution from urban centres)?
2 Materials and Methods

2.1 Field Sites

Measurements of greenhouse gases and meteorological variables were made at two of the four sites of the CarboCount CH observation network in Switzerland, which has been established to investigate greenhouse gas sources and sinks through an integrated approach using both observations and atmospheric transport models (Oney et al. 2015). The two sites are located within 28.4 km of each other close to the southern edge of the Swiss Plateau, the relatively flat, most densely populated and agriculturally used area in Switzerland, located between the Alps and the Jura mountains. A cross-sectional profile of the topography between both stations and photographs of the corresponding sites are shown in Fig. 1. The proximity of both sites guaranteed comparable weather conditions as well as a similar distance to major greenhouse gas sources and sinks.

![Cross-sectional profile of the topography between both stations and photographs of the corresponding sites](image)

Fig. 1 Topographical transect between the tall-tower site Beromünster (left) and the mountain-top site Früebüel (right). Red arrows indicate the inlet heights at both sites. Note the vertical amplification of the scale.

2.1.1 Früebüel Mountain-top Station

Measurements at Früebüel – a Swiss FluxNet site (www.swissfluxnet.ch) – were taken on top of the Zugerberg mountain ridge, located at an elevation of 982 m above sea level.
in the pre-alpine foothills of Switzerland (47°06′57.0″ N, 8°32′16.0″ E). The site is located on a relatively flat highland, extending about 2 km in the east–west and 5 km in the north–south directions, and is thus not a classical mountain-top site because it has no pronounced peak. Average daytime convective boundary-layer heights above the Swiss Plateau usually exceed 500 m above the ground during the warm season (March to September, Collaud Coen et al. 2014). With an elevation of 1000 m (≈ 500 m above the Swiss Plateau) we therefore assume that Früebüel mostly lies within the convective boundary layer.

The Zugerberg mountain ridge is a sparsely populated agricultural area, with prevailing land-cover types managed grasslands and forests. The towns of Zug (at ≈ 10 km distance) and Lucerne (≈ 20 km) are the nearest larger towns and are situated approximately 450 m below the measurement station’s elevation.

The air inlet for the greenhouse gas mixing ratio measurements was installed 4 m above a moderately intensively managed grassland (Zeeman et al. 2010, Imer et al. 2013), with meteorological measurements (wind speed, air temperature) taken approximately 3 m away from the air inlet at 2-m height. In 2013, the average air temperature was 7.1 °C, ranging from –14.5 °C to 34.8 °C (range of 2-h averages).

Farmsteads and barns of the ETH (Eidgenössische Technische Hochschule) research station Früebüel are located approximately 300 m to the south-west of the atmospheric measurement tower. In 2013, the farmstead accommodated between 96 (June) and 50 (December) head of cattle, and from October till mid-November an additional 15 sheep. From mid-July to mid-September all cattle were relocated to remote alpine pastures off site. Otherwise, there were no other farmsteads or other anthropogenic sources in close vicinity to the site. The three grassland parcels directly adjacent to the station were managed differently; while the ungrazed meadow next to the measurement station was cut three times and fertilized twice a year, the two grazed parcels were only fertilized once and cut once or twice a year (Table S1 in Supplementary Material).
2.1.2 Beromünster Tall-Tower Station

The Beromünster tall-tower station is located approximately 30 km to the west of Früebüel, atop a gentle hill (797 m a.s.l., 47°11’22.4"N, 8°10’31.5"E) close to Lake Sempach, Switzerland. The area surrounding the tall-tower station is predominantly used for agriculture. The two larger towns closest to the tall tower are Lucerne (≈ 20 km) and Zug (≈ 30 km). The tall tower is the taller of two former national radio broadcast towers and is protected as a national monument, and is no longer used for telecommunication. Although greenhouse gas and meteorological measurements were made at five different heights, we have only used measurements from the top of the tower at an elevation of 1009 m a.s.l. (212 m above ground level), similar to the elevation of measurements at Früebüel. Air temperatures recorded at this elevation ranged from −9.9 °C to 29.1 °C in the year 2013, resulting in an annual average of 7.3 °C.

2.2 Instrumentation

Mixing ratios of CO₂ and CH₄ at the mountain-top station (Früebüel) were measured with a cavity ring-down spectrometer (Picarro G2301, Picarro Inc., Santa Clara, California, USA), while the tall-tower station (Beromünster) was equipped with a Picarro G2401 analyzer that also measured CO mixing ratios. Both instruments were operated at a standard cavity pressure of 186.7 hPa and a cavity temperature of 45 °C. All times reported here are given in UTC, which differs by one hour from local time (CET – 1 h).

Früebüel: The air inlet was covered by an inlet filter (F-15-050, Solberg International, Ltd., Itasca, IL, USA). Ambient air was drawn through an insulated and heated Synflex 1300 hose to the analyzer, which was placed within an air-conditioned (20–28 °C) container. Automatic recalibration of the system was performed daily using three reference gases (high: CO₂/CH₄ mixing ratios 475.3/2.398 ppm; low: 383.5/1.895 ppm; working: 405.2/2.056 ppm). Calibration gases were traced to the WMO primary standards WMO-X2007 for CO₂ and WMO-X2004 for CH₄. The accuracy of the greenhouse gas measurements was estimated at ≤ 0.07 ppm and ≤ 0.0005 ppm for CO₂ and CH₄, respectively (Oney et al. 2015). Details about the meteorological sensors are given by Zeeman et al. (2010).
Beromünster: At the Beromünster tall tower, air was drawn at a flow rate of 14 L min\(^{-1}\) from the highest level (212 m) to the analyzer through a 220 m long inlet tube. The analyzer was placed within the old radio transmitter building at the base of the tower, and automatic calibration was done once a week (high: 472.66/2.4247 ppm; low: 382.11/1.9089 ppm) similarly to Früebüel. In addition, every 6 h measurements were compared with a working gas standard (392.24/2.1312 ppm), see Berhanu et al. (2016). Meteorological measurements at the highest level of the tall tower were provided by an integrated weather station (MetPakTM II Remote, Gill Instruments Ltd, Lymington, Hampshire, UK). The weather station included sensors to measure wind direction and speed, air temperature, relative humidity, and barometric pressure. All measurements were performed at 1-s resolution and processed to 2-h averages for data analysis.

2.3 Data Analysis

Comparisons between the two sites initially used 1-min average mixing ratios aggregated to 2-h intervals if at least 20\% of the 1-min averages represented concurrent measurements at both sites. For each 2-h interval the following two statistical parameters were computed: (1) the average greenhouse gas mixing ratios; and (2) the quantile of the CO\(_2\) and CH\(_4\) frequency distribution within each 2-h interval based on 1-min data, which separates the lowest 5\% from the upper 95\% of the observed mixing ratios (referred to as the 5\(^{th}\) percentile). Similar to the arithmetic mean or the median (= 50\(^{th}\) percentile), the 5\(^{th}\) percentile acts as a low-pass filter. This was necessary since the frequency distribution of CH\(_4\) mixing ratios is positively skewed towards higher mixing ratios at the mountain-top station. In contrast, the lower tail of the frequency distribution is much less influenced by outliers, thus suggesting that the 5\(^{th}\) percentile is more likely to represent air parcels unaffected by local sources than the arithmetic mean. One drawback of the 5\(^{th}\) percentile, however, is its high sensitivity to local sinks (for example the biospheric sink for CO\(_2\)). Two-hourly averages and 5\(^{th}\) percentile values were used for further analysis of the atmospheric greenhouse gas mixing ratios at the two stations.

To identify a filter criterion for the mountain-top station that eliminates unwanted local influences that do not relate to regional-scale greenhouse gas fluxes, we evaluated
differences between mountain-top and tall-tower mixing ratios using these aggregated
data. We calculated binned average differences according to wind speed, wind direction
and atmospheric stability at the mountain-top site (see Supplementary Material, Section S2).

To determine the level of agreement between wind-direction measurements at the two
sites, we used a kernel distribution in a polar coordinate system. The kernel density
estimation of wind direction was calculated using the procedure described by Botev et al.
(2010). As differences in CH$_4$ mixing ratios between the mountain-top and the tall-tower
sites may be due to local CH$_4$ sources at the mountain-top site, we investigated between-
site differences in CH$_4$ mixing ratios and their dependence on wind direction observed at
the mountain-top site. To this end, we grouped the differences between the corresponding
2-h tall-tower and mountain-top mixing ratios into 18 wind sectors (each spanning 20°).
Then, the average differences in CH$_4$ mixing ratios between the sites were calculated for
daytime (0800–1600 UTC) and nighttime (2000–0400 UTC), summer (April to October)
and winter (November to March) and for each wind sector. More detailed information on
the aggregation of these classes is presented in the Supplementary Material (Section S3,
Figs. S2 and S4). For CO$_2$, the same procedure was repeated using a slightly modified
UTC and night: 0000–0400 UTC) and seasonal classification (spring: April to June,
summer/autumn: July to October, winter: November to March) to account for the
differences in sources and sinks of CO$_2$ in comparison with CH$_4$.

In order to determine the general agreement between the two sites, we used the 5th
percentile time series and the time series after removing periods with unfavourable flow
conditions for CO$_2$ and CH$_4$ and calculated the bias and Pearson's correlation coefficients
between the tall-tower and the mountain-top stations. The bias after filtering was
evaluated for different months and times of day, whereas the correlation coefficient was
calculated between the filtered time series of CO$_2$ and CH$_4$ mixing ratios within time
periods of ±7 days centred at each 2-h value.
3 Results

3.1 Wind Directions at the Tall-tower and the Mountain-top Site

Wind directions at the mountain-top site were similar to those at the tall-tower site (Fig. 2a, b), but with a few noteworthy differences. Wind directions at the tall-tower site were dominated by the typical south-westerly and north-easterly directions found over the Swiss Plateau due to the channelling of flow between the Alps and the Jura mountains (Wanner and Furger 1990). In contrast, the flow at the mountain-top site was generally much weaker and arriving from more variable wind directions. Strongest wind at the mountain-top site was observed from the south-easterly sector (around 150°), most probably corresponding to foehn wind.

Fig. 2 Wind-rose plots for the measurement stations Früebüel (mountain top, a) and Beromünster (tall tower, b) during the year 2013 additionally separated for daytime (0800–1600 UTC, c) and nighttime (0000–0400 UTC, d) at the mountain-top station

To emphasize the influence of diurnal variations due to thermally-forced slope flow, Fig. 2c, d show wind roses at the mountain-top site separately for daytime and nighttime.
While flow from northerly directions was most frequent during daytime, nighttime flow was predominantly from southerly or easterly directions. Flow from easterly and westerly directions was generally weak, more frequently arriving from the east at night and from the west during the day.

![Figure 3](image)

Fig. 3 Probability density distribution of wind directions at the Beromünster tall-tower station (horizontal axis) versus the Früebüel mountain-top station (vertical axis) based on a bivariate kernel density estimation. Reddish colours denote a high probability density, while bluish colours depict lower probability densities.

The kernel density plot of the bivariate probability distribution between wind directions (Fig. 3) showed that flows from the north-easterly sector at the tall-tower site were accompanied by flows from a similar direction also at the mountain-top site. Larger directional spread was found at the mountain-top site, whereas the tall-tower site experienced rather well defined south-westerly flow (220°–270°). Under these conditions, the wind directions at Früebüel varied over a wider range of angles, but the peak of the joint probability distribution showed a relatively small directional bias (≈20°–30°), likely reflecting the influence of the surface drag at the mountain top compared to the tower measurements that are more representative of mid-boundary layer conditions.
3.2 Greenhouse Gas Variations

Methane: Despite notable differences in wind direction and wind speed between the two sites (Figs. 2 and 3), CH$_4$ mixing ratios followed a similar seasonal course (Fig. 4a), with mixing ratios varying roughly between 1.8 ppm and 2.2 ppm. Peak CH$_4$ mixing ratios observed at the mountain-top site, however, deviated by up to 0.2 ppm from mixing ratios observed at the tall-tower site. The positive outliers were most likely influenced by local CH$_4$ sources at the mountain-top site.

![Fig. 4 Time series of 2-h averages of CH$_4$ (a), and CO$_2$ (b) mixing ratios measured at the Beromünster tall-tower station (blue symbols) compared to those measured at the Früebühl mountain-top station (green symbols) from January to December 2013](image)

For average CH$_4$ mixing ratios these differences between the two stations remained generally below 0.02 ppm for any wind direction, except for southerly flow from the direction of the ETH research station when average mixing ratios at the mountain-top site were considerably higher (up to 0.065 ppm, Fig. S1 in Supplementary Material). This pattern indicates that the major source for methane at this site is the farmstead of the ETH research station.
Fig. 5 Monthly average diurnal cycles derived from the 5th percentiles of the 2-h frequency distribution of CH₄ mixing ratios observed at the Beromünster tall-tower station (blue colour) and the difference in CH₄ mixing ratios between the mountain-top and the tall-tower stations (ΔCₘ, red colour) including the corresponding 95% confidence interval (vertical bars) from January to December 2013.

The influence of local sources was investigated by analyzing monthly aggregated diurnal patterns of the 5th percentiles of the CH₄ mixing ratios at 2-h resolution. Such CH₄ mixing ratios only showed weak diurnal patterns at the mountain top, whereas an increase of up to 0.025 ppm was seen in the late morning or around midday at the tall-tower station, especially during the summer months (Fig. 5). Except for the late morning/midday minima when methane mixing ratios at the mountain-top station were lower than at the tall-tower station, monthly averages of CH₄ mixing ratios were moderately but significantly higher at the mountain-top site (between 0.005 ppm in August and 0.020 ppm in January) than at the tall-tower site (Fig. 5, red line). A generally weak bimodal seasonal pattern of methane mixing ratios was observed. At both sites, mixing ratios were low during winter (December and January), reached their first
maximum during February, then declined slowly during the summer and exhibited a second maximum in November.

Carbon dioxide: During winter, CO\(_2\) mixing ratios at the mountain-top and tall-tower stations almost followed the same temporal course, mostly fluctuating between 400 ppm (daytime) and 440 ppm (nighttime; Fig. 4b). In summer, however, the average CO\(_2\) mixing ratios at the mountain top station were lower and varied between 380 ppm and 420 ppm. In general, CO\(_2\) mixing ratios in summer were lower than in winter.

![Image of monthly average diurnal cycles of CO\(_2\) mixing ratios](image)

Fig. 6 Monthly average diurnal cycles of the 2-h frequency distribution of CO\(_2\) mixing ratios observed at the Beromünster tall-tower station (blue colour) and the difference in CO\(_2\) mixing ratios between the tall-tower and the mountain-top stations (ΔC\(_c\), red colour) including the corresponding 95% confidence interval (vertical bars) from January to December 2013.

To investigate the difference in summertime CO\(_2\) mixing ratios between the two sites, average diurnal cycles of CO\(_2\) for each month and both stations were calculated in an analogous manner to CH\(_4\), but using averages instead of 5\(^{th}\) percentiles (since the 5\(^{th}\)
percentile approach did not work satisfactorily for CO$_2$ (Fig. 6). During wintertime, only a weak diurnal cycle of CO$_2$ mixing ratios could be seen at the tall-tower station, showing a slight increase of up to 4 ppm during midday. This increase in midday CO$_2$ mixing ratios was not observed at the mountain-top station and thus the bias between the mountain-top and the tall-tower stations (red line in Fig. 6) usually decreased around this time of day. CO$_2$ mixing ratios always remained close to 410 ppm (except during December when CO$_2$ mixing ratios approached 400 ppm). In summer, CO$_2$ mixing ratios at the mountain-top site showed a typical diurnal cycle with lowest values during daytime and a maximum at night. Summertime CO$_2$ mixing ratios at the tall-tower site had their maximum in the morning and reached lowest values in the afternoon. Thus, the bias in CO$_2$ mixing ratios was usually negative during the day and positive at nighttime.

Fig. 7 Diurnal cycles of median CH$_4$ (a, b) and CO$_2$ (c, d) mixing ratios at the mountain-top station (Früebüel CH–FRU, blue colour) and a nearby valley-bottom station at 393 m a.s.l. (Chamau CH–CHA 47°12′37″N, 8°24′38″E, green colour; Merbold et al. 2014) for a representative month in the winter (February 2013, a, c) and summer (July 2013, b, d). The green and blue shaded areas indicate the interquartile range for the valley bottom and mountain-top station, respectively.
Near-surface CH$_4$ mixing ratios at the mountain-top site showed a less distinct diurnal cycle than at a nearby (ca. 15 km distance) valley-bottom site (Chamau, cf. Fig.7), where nighttime CH$_4$ mixing ratios increased up to 2.4 ppm and 2.2 ppm in July and February, respectively. These valley-bottom data were collected and published by Merbold et al. (2014) and are only shown for comparison. A similar difference between mountain-top and valley-bottom sites is seen in CO$_2$ mixing ratios, with a very weak nighttime increase of approximately 20 ppm at the mountain-top site in July 2013 as compared to the 200-ppm increase observed at the valley-bottom site.

3.3. Filtering CH$_4$ and CO$_2$ and Mixing Ratio Differences to Minimize Local Influences

The percentile filtering approach revealed to be highly capable of removing a relevant share of mixing ratios influenced by local sources, but is not based on physical considerations, since it only uses a statistical filtering criterion. Hence, we also applied a second filtering approach that employs meteorological information. With this second approach, wind speeds and wind directions could be identified that led to large differences between mountain-top and tall-tower measurements. These were then discarded. From the retained subset of measurements, the signal with minimal influence of local conditions was extracted as a function of time of day and season. An analysis of variance approach was used to determine the aggregation levels for wind speed, wind direction, time of day, and seasonality. The aggregation levels differed slightly for CH$_4$ and CO$_2$ mixing ratios. Details are given in Supplementary Material, Sections S3.1 and S3.2. For simplicity, we termed this meteorological filtering the “WDS filter” (W for wind speed and direction, D for time of day, and S for seasonality).

The differences of CH$_4$ mixing ratios between the mountain-top and the tall-tower sites (ΔC_m) were best explained by the four factors: wind direction (three classes), wind speed (five classes), time of day (separated into daytime 0800–1600 UTC and nighttime 0000–0400 UTC), and seasonality (two classes: summer, April to October; and winter, November to March). For CO$_2$, the between-site difference of mixing ratios (ΔC_c) depended on the same four factors but required a higher degree of detail, with four classes for time of day (morning: 0800–1200 UTC, afternoon: 1200–1600, evening:...
2000–2400 UTC, and night: 0000–0400 UTC) and three classes for season (spring: April to June, summer/autumn: July to October, and winter: November to March). Transition periods between night and morning (0400–0800 UTC) and between afternoon and evening (1600–2000 UTC) were excluded from this analysis since during these time periods conditions are changing rapidly and may result in mixing ratios that are representative of neither daytime nor of nighttime conditions. This classification was coarse enough to be meaningful but still detailed enough to represent the pronounced diurnal cycle of the CO$_2$ mixing ratios (Fig. 6).

Before applying such a filter, a clear dependence of ΔC_m and ΔC_c mixing ratio differences on all four factors was obvious (Figs. 8 and 9). Wind direction had a comparatively larger influence on ΔC_m (Fig. 8) than ΔC_c (Fig. 9).

Fig. 8 Average differences of daytime (0800–1600 UTC, left) and nighttime (0000–0400 UTC, right) CH$_4$ mixing ratios between mountain-top and tall-tower station (ΔC_m) during the winter season (November–March, top) and the summer season (April–October, bottom), binned for different wind direction and wind speed classes at the mountain top.
Under strong (> 3 m s\(^{-1}\)) south-easterly flow (130 ° to 170 °), CH\(_4\) mixing ratios tended to be up to 0.06 ppm lower at the mountain-top site compared to the tall-tower site, especially during daytime (Fig. 8). In contrast, CH\(_4\) mixing ratios were up to 0.07 ppm higher at the mountain-top site compared to the tall-tower site with wind speeds < 3 m s\(^{-1}\) and wind directions from 120 ° to 200 ° corresponding to the sectors influenced by the ETH farmstead (Fig. S1). Negative \(\Delta C_m\) mixing ratio differences were also observed during easterly flow (60 °–120 °) with wind speeds > 2 m s\(^{-1}\). Especially in summer, positive deviations of the mountain-top from the tall-tower measurements tended to be higher during the night than during the day.

![Fig. 9 Average differences of morning (0800–1200 UTC, left), afternoon (1200–1600 UTC), evening (2000–2400 UTC), and night (0000–0400 UTC) CO\(_2\) mixing ratios between mountain-top and tall-tower station (\(\Delta C_c\)) during spring (April-June, top), summer/autumn (July-October, centre) and the winter season (November-March, bottom) binned for different wind direction and wind speed classes at the mountain top](image)

The weak wind direction dependency of \(\Delta C_c\) (Fig. 9) compared to \(\Delta C_m\) (Fig. 8) is not surprising because the main local source and sink for CO\(_2\) at the mountain top is the vegetation which extends around the measurement station in all directions. During spring, daytime CO\(_2\) mixing ratios (morning, afternoon) at the mountain-top station were
generally lower than at the tall-tower station, irrespective of wind direction. Contrastingly, CO₂ mixing ratios measured during evening and night were increased at the mountain-top station as compared to the tall-tower station. Similar conditions were found in summer/autumn except with easterly wind directions in the morning (ΔCₖ > 0 ppm) and with south-westerly wind directions during the night (ΔCₖ < 0 ppm). In winter, ΔCₖ was generally smaller than in summer, and wind directions 90°–160° and 190°–260° tended to show the smallest differences between the mountain-top and the tall-tower measurements (Fig. 9).

3.4 Comparison of Greenhouse Gas Mixing Ratios

All wind directions with strong local influence on CH₄ or CO₂ mixing ratios were filtered out based on the analysis of variance results shown in Supplementary Material (Tables S2 and S3). CH₄ mixing ratios were maintained if the following conditions were met: (1) summer daytime wind directions in the range 0°–50° or 190°–360°, (2) summer nighttime wind directions in the range 10°–120° or 200°–360° in combination with wind speeds > 2 m s⁻¹, (3) winter daytime wind directions in the range 0°–70° combined with wind speeds > 2 m s⁻¹, (4) winter daytime wind directions in the range 220°–360° combined with wind speeds > 1 m s⁻¹, (5) winter nighttime wind speeds in the range 1–2 m s⁻¹ and wind directions in the range 40°–130°, and (6) winter nighttime wind directions in the range 200°–260° and wind speeds > 2 m s⁻¹. The remaining CH₄ mixing ratios were used for further analysis.

CO₂ mixing ratios at the mountain-top station during spring or autumn were generally either higher or lower than at the tall-tower station, thus filtering of CO₂ mixing ratios was problematic: In winter only CO₂ mixing ratios could be retained when wind direction was 90°–160° or 190°–260° in combination with wind speeds > 1 m s⁻¹ irrespective of time of day. In summer, all CO₂ mixing ratios at the mountain-top station were strongly affected by CO₂ uptake (photosynthesis) by vegetation during daytime and CO₂ release (respiration) during the night. With this data screening, 35% of the CH₄ mixing ratios and 9% of the CO₂ mixing ratios measured at the mountain-top station could be retained (Fig. 10 a, c).
Table 1 Average differences between the CH$_4$ (ΔC_m) and CO$_2$ (ΔC_c) mixing ratios at the mountain-top and the tall-tower station after the application of the WDS filter

<table>
<thead>
<tr>
<th>Month</th>
<th>Night (ΔC_m (ppm))</th>
<th>Morning (ΔC_m (ppm))</th>
<th>Afternoon (ΔC_m (ppm))</th>
<th>Evening (ΔC_m (ppm))</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>-0.0018 ± 0.0026</td>
<td>0.0392 ± 0.0041</td>
<td>0.0252 ± 0.0025</td>
<td>0.0030 ± 0.0017</td>
</tr>
<tr>
<td>February</td>
<td>0.0041 ± 0.0009</td>
<td>0.0008 ± 0.0024</td>
<td>0.0038 ± 0.0023</td>
<td>0.0121 ± 0.0016</td>
</tr>
<tr>
<td>March</td>
<td>0.0071 ± 0.0015</td>
<td>0.0030 ± 0.0033</td>
<td>0.0135 ± 0.0018</td>
<td>0.0144 ± 0.0019</td>
</tr>
<tr>
<td>April</td>
<td>0.0074 ± 0.0013</td>
<td>-0.0050 ± 0.0018</td>
<td>0.0084 ± 0.0011</td>
<td>0.0167 ± 0.0016</td>
</tr>
<tr>
<td>May</td>
<td>0.0083 ± 0.0013</td>
<td>0.0082 ± 0.0016</td>
<td>0.0157 ± 0.0013</td>
<td>0.0296 ± 0.0028</td>
</tr>
<tr>
<td>June</td>
<td>0.0319 ± 0.0030</td>
<td>-0.0019 ± 0.0018</td>
<td>0.0043 ± 0.0013</td>
<td>0.0348 ± 0.0035</td>
</tr>
<tr>
<td>July</td>
<td>0.0091 ± 0.0018</td>
<td>-0.0052 ± 0.0026</td>
<td>0.0113 ± 0.0017</td>
<td>0.0071 ± 0.0010</td>
</tr>
<tr>
<td>August</td>
<td>-0.0018 ± 0.0010</td>
<td>-0.0149 ± 0.0022</td>
<td>0.0033 ± 0.0019</td>
<td>0.0047 ± 0.0012</td>
</tr>
<tr>
<td>September</td>
<td>-0.0005 ± 0.0010</td>
<td>-0.0080 ± 0.0021</td>
<td>0.0115 ± 0.0030</td>
<td>0.0156 ± 0.0028</td>
</tr>
<tr>
<td>October</td>
<td>0.0110 ± 0.0038</td>
<td>0.0141 ± 0.0034</td>
<td>0.0151 ± 0.0031</td>
<td>0.0262 ± 0.0044</td>
</tr>
<tr>
<td>November</td>
<td>0.0037 ± 0.0008</td>
<td>-0.0040 ± 0.0025</td>
<td>0.0145 ± 0.0016</td>
<td>0.0157 ± 0.0020</td>
</tr>
<tr>
<td>December</td>
<td>0.0106 ± 0.0022</td>
<td>0.0031 ± 0.0020</td>
<td>0.0079 ± 0.0019</td>
<td>-0.0007 ± 0.0014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Night (ΔC_c (ppm))</th>
<th>Morning (ΔC_c (ppm))</th>
<th>Afternoon (ΔC_c (ppm))</th>
<th>Evening (ΔC_c (ppm))</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1.01 ± 0.27</td>
<td>0.26 ± 0.18</td>
<td>1.99 ± 0.34</td>
<td>0.91 ± 0.25</td>
</tr>
<tr>
<td>February</td>
<td>-0.71 ± 0.21</td>
<td>-0.19 ± 0.19</td>
<td>0.11 ± 0.18</td>
<td>-0.27 ± 0.18</td>
</tr>
<tr>
<td>March</td>
<td>1.00 ± 0.18</td>
<td>2.84 ± 0.60</td>
<td>2.82 ± 0.73</td>
<td>2.35 ± 0.36</td>
</tr>
<tr>
<td>November</td>
<td>1.76 ± 0.26</td>
<td>1.69 ± 0.45</td>
<td>2.19 ± 0.64</td>
<td>1.34 ± 0.22</td>
</tr>
<tr>
<td>December</td>
<td>1.32 ± 0.24</td>
<td>1.05 ± 0.15</td>
<td>2.41 ± 0.26</td>
<td>0.65 ± 0.13</td>
</tr>
</tbody>
</table>

ΔC_m, ΔC_c: Difference in CH$_4$ and CO$_2$ mixing ratios between the mountain-top and the tall-tower station derived as average value of each 2-h bias passing the WDS filter within the corresponding time period (including the corresponding standard deviation). Night: 0000–0400 UTC; morning: 0800–1200 UTC; afternoon: 1200–1600 UTC; evening: 2000–2400 UTC. The WDS filter is a meteorological conditional filter described in Section 3.3.

These retained data are thought to best represent the regional atmospheric signal in a way that allows for a direct comparison of the mountain-top mixing ratios with those concurrently measured at the tall-tower station. Average ΔC_m after WDS filtering (Table 1) varied between $-0.0149 ± 0.0022$ ppm (0800–1200 UTC in August) and $0.0392 ± 0.0041$ ppm (0800–1200 UTC in January). In September between 0000 and 0400 UTC, the average ΔC_m bias was closest to zero ($-0.0005±0.0010$ ppm). During the
morning hours, the average ΔC_m was often negative (tall-tower station observed higher values than the mountain-top station), especially in summer. Average ΔC_c after filtering varied between -0.71 ± 0.21 ppm (0000–0400 UTC in February) and 2.84 ± 0.60 ppm (0800–1200 UTC in March) and was 0.11 ± 0.18 ppm (1200–1600 UTC in February) in the best case.

In addition to the bias calculations we also performed a correlation analysis with (a) the WDS filtered 2-h mixing ratio averages and (b) the 5th percentiles of CH$_4$ and CO$_2$ mixing ratios measured at both sites. Fourteen-day running Pearson’s correlation coefficients for CH$_4$ mixing ratios filtered with the 5th percentile exceeded $R = 0.7$ in 67% of all cases. This means that in the majority of cases more than $\approx 50\%$ (derived from $R^2 \geq 0.7^2$) of the variance in the CH$_4$ mixing ratios at the mountain top could be explained by the concurrent tall-tower measurements and vice versa.

The WDS filter led to similarly high correlations between the mountain-top and the tall-tower station CH$_4$ mixing ratios ($R \geq 0.7$ in 67% of the cases) as the 5th percentile (Fig. 10 b). Weaker correlations ($R < 0.7$) could often be attributed to periods with weakly varying atmospheric CH$_4$ mixing ratios at both stations. Usually periods with very high correlations were also characterised by offsets between the stations being close to zero. The good overall agreement between both filtered time series indicates that CH$_4$ mixing ratios at the mountain-top station follow the same seasonal trend as CH$_4$ mixing ratios at the tall-tower station, but it was not possible to completely eliminate the offset at the mountain-top station imposed by local sources and/or mountain flows, even after screening 2-h averages with a WDS filter or filtering the CH$_4$ data using the 5th percentile approach.

Wintertime CO$_2$ mixing ratios at the two stations agreed rather well after applying the 5th percentile or the WDS filter, as is indicated by the high correlation coefficients (typically $R > 0.7$). From January to April, there was an excellent agreement of CO$_2$ mixing ratios between the tall-tower and the mountain-top station (Fig. 10 c, d). During the growing season, the relationship was weakest (usually with $0.3 < R < 0.6$, Fig. 10 d). During winter the relationship between 5th percentiles of the CO$_2$ mixing ratios measured at both
stations was as good as the relationship between the WDS filtered 2-h average mixing ratios, whereas in summer the WDS filtering usually did not retain any values.

Fig. 10 Comparison of the CH$_4$ (a) and CO$_2$ (c) mixing ratios at the mountain-top (green crosses) and the tall-tower (blue asterisk) station after the application of the WDS filter. Pearson's correlation coefficients (R) between 5th percentiles of mountain-top and tall-tower measurements (black solid line) and 2-h averages of mountain-top and tall-tower measurements retained after WDS filtering (blue dots) calculated within a time window of ± 7 days around every measurement point are shown for CH$_4$ (b) and CO$_2$ (d), respectively. The Pearson correlation coefficients are all significantly different from zero ($p < 0.01$). Management activities affecting the surrounding meadows are highlighted in grey in panels b and d. The management activities at the mountain-top station were: application of organic fertilizer or grazing of cattle on the pastures surrounding the measurements (b) and harvests (d).
4 Discussion

Precise measurements of CO$_2$ and CH$_4$ mixing ratios have been carried out at several stations in Europe and North America already (e.g. Thompson et al. 2009, Göckede et al. 2010, Sun et al. 2010, Winderlich et al. 2010, Vermeulen et al. 2011, Lavaux et al. 2012, Miles et al. 2012, Andrews et al. 2014). To the best of our knowledge, however, this study is the first to discuss the measurements obtained at two stations in a paired-site approach, comparing a tall-tower with a neighbouring (≈ 28 km separation) mountain-top station at a similar elevation above sea level. Since local effects are usually not represented well in atmospheric transport models it is essential to extract the regional signal from mountain-top measurements. Thus, the key challenge for inverse modelling in the comparison between tall-tower and mountain-top greenhouse gas mixing ratios is the filtering of the dataset to remove local influences that only affect one but not the other site. On the other hand, meteorologists trying to qualitatively and quantitatively understand such local effects in complex terrain are typically interested in periods or in meteorological conditions when differences between two sites are largest. In order to address both aspects, we first discuss the extraction of the regional signal using the filtering approach suggested in Section 3.3, and then address the meteorological differences between the sites under conditions when local effects play an important role.

4.1 Extracting the Regional Signal

Two approaches were used to extract the regional signal from the time series of mixing ratio measurements: (i) using a statistical percentile filter, and (ii) using a conditional filter based on wind direction, wind speed, time of day, and season (WDS filter). An alternative filtering approach, which was already used to screen data from well mixed air masses, is time-of-day filtering (Göckede et al. 2010, Peters et al. 2010), which exclusively uses well mixed afternoon conditions and nighttime measurements in the residual layer well above the nocturnal boundary layer. More sophisticated statistical approaches which have been used to filter mountain-top measurements are (i) short-term variance filters and (ii) weighted median smoothers (Brooks et al., 2012). In our case, the 5th percentile approach proved to be a suitable choice to filter outliers related to local CH$_4$ sources. However, this approach makes the implicit assumption that within a 2-hour time
period the lower-than-average mixing ratios are most likely closest to the regional signal, while higher-than-average mixing ratios are more likely to be outliers caused by local sources. Using a 5th percentile filter led to rather robust comparisons between tall-tower and mountain-top sites for CH\textsubscript{4} mixing ratios (Fig. 5). Its shortcomings, however, are its relatively strong sensitivity to local sinks, its statistical and non-causal basis, and the fact that there is no clear threshold that would establish the 5th percentile as the best choice everywhere. Contrastingly, the second approach – the WDS filter – uses conditional criteria that are easier to understand in the context of impacts of the local topography and local surface fluxes. For CH\textsubscript{4}, both filtering approaches seem to be useful, whereas in the case of CO\textsubscript{2} none of the filters worked well during the growing season (Fig. 10), indicating that the regional signal is too strongly altered by local influences to be extracted with a WDS filter.

4.2 The Importance of Local Effects

4.2.1 Terrain Driven Effects on Greenhouse Gas Mixing Ratios

The accumulation of CH\textsubscript{4} and other trace gases in the nocturnal boundary layer at valley-bottom sites during the night is a general pattern found in diurnal cycles of mixing ratio measurements and has been used before to determine regional-scale CH\textsubscript{4} fluxes (e.g., Stieger et al. 2015). At the mountain top, cold air drainage flows prevent the build-up of a deep, stable nocturnal boundary layer and thus the boundary layer extends 200–300 m above the valley bottom, even in broad valleys such as the Swiss Plateau (cf. Eugster and Siegrist, 2000; see also Stieger et al., 2015). Hence, although our mountain-top measurements were only performed at 4-m height above ground surface, the diurnal courses of CH\textsubscript{4} and CO\textsubscript{2} mixing ratios rather followed that of the tall-tower site (Figs. 5 and 6) than that of a valley-bottom site (Fig. 7). This indicates that the mountain-top station – similarly to the tall-tower station – remains above the stable nocturnal boundary layer of the surrounding valleys, where agriculturally driven methane emissions lead to a substantial increase of methane during the night (Fig. 7). Consequently, both sites were decoupled from the conditions at the valley floor during the night. This agrees well with mobile measurements that were performed along the slopes of the Reuss valley and up to
the Früebüel mountain-top site (Bamberger et al. 2014) which clearly showed that the
nocturnal boundary-layer depth is only between 100 m and 200 m deep during clear
summer days, while the Früebüel mountain-top site is located almost 500 m above the
valley floor. Considering the low sampling height above ground, however, the mountain-
top site is located in the local surface layer.

Greenhouse gas mixing ratios at the tall-tower site showed a well-known increase of
mixing ratios in the late morning with the onset of daytime convective mixing (Davis et
al. 2003) which was virtually absent at the mountain-top site. The absence of the late
morning peak at the mountain top can be explained by its location on top of a mountain
ridge on the easterly side of the Reuss valley (Bamberger et al. 2014). The onset of
daytime convective mixing and vertical advection of nighttime pollution along the
warmer hillslopes is a pattern that is common to mountainous regions (Gohm et al. 2009,
Schnitzhofer et al. 2014). Considering the diurnal cycle of greenhouse gas mixing ratios,
the tall-tower station (nominally 212 m a.g.l.) also profits from its position on a local hill
that removes the tower top from the valley bottom (where CH$_4$ and CO$_2$ accumulates
during the night) by an additional \approx 300 m: the tower base is at 797 m a.s.l., whereas the
flat areas surrounding the locality are at 463 m (Lake Baldegg) to 504 m a.s.l. (Lake
Sempach). Without this additional topographic height, more pronounced diurnal cycles in
CH$_4$ and CO$_2$ mixing ratios would be expected at the tall-tower site: Winderlich et al.
(2014) found that at the highest level (301 m above ground) of the Zotino tower, Siberia,
occasional nocturnal increases in CH$_4$ mixing ratios occur.

All these considerations suggest that for both mountain-top and tall-tower sites it is not
the height of a measurement from the local ground that matters, but the larger-scale
topographic context, and thus the altitude above the topographic reference elevation,
which is typically the bottom of a larger and broader valley where nocturnal
accumulation of greenhouse gases takes place.

4.2.2 Effects of Local Flow

Flows at the tall-tower and the mountain-top stations showed both a strong channelling
along the two main wind directions (north-east and south-west) and minor contributions
from other directions, mostly in combination with low wind speeds. On the other hand,
there was a directional shift between the main wind directions at the mountain-top site (which was turned anti-clockwise) as compared with the tall-tower site. However, such a rotation of the flow between the surface and the mid-boundary layer is well known as the Ekman spiral (e.g. Holton 2004). Due to the well-known natural increase of wind speed with height above surface, wind speeds within the surface layer measured at 2 m a.g.l. at the mountain-top site were considerably lower than those at the tall-tower site (at 212 m a.g.l.) In addition, wind speeds at the tall-tower site were maximal during the night, whereas they were lowest during the night at the mountain-top site, at least during summer (Oney et al. 2015).

At the mountain top, flow from south-easterly direction was occasionally stronger (up to 10 m s\(^{-1}\)) than flow from other directions. These high wind speeds usually occurred in combination with high temperatures and persistent wind directions (data not shown) and indicated the influence of foehn winds (warm and dry southerly winds across the Alps). The influence of foehn winds at the mountain-top station is plausible as it is located near the main axis of the Reuss Valley, one of the main foehn valleys in Switzerland (Seibert 1990), whereas the tall-tower station is much more sheltered against the southerly flow by Mount Rigi and other mountain ridges and is further away from the Alps. At the mountain-top station, wind directions outside the usual easterly or westerly directions were more frequent than at the tall-tower station but generally weak (mostly < 2 m s\(^{-1}\)), suggesting thermally induced south-westerly flows along the slopes of the Zugerberg mountain ridge and larger scale northerly plain-to-mountain flows (Lugauer and Winkler 2005), a phenomenon commonly referred to as Alpine pumping. While easterly (down-slope) winds were seen predominantly during night-time, westerly (up-slope) winds were more frequent during the day, agreeing with the typical picture of diurnal mountain winds (Whiteman 2000) in the surface layer. These findings agree with the findings by Oney et al. (2015) that the local environment influences prevailing wind directions more at the mountain-top station than at the tall-tower station.

4.2.3 The Effect of Local Sources and Sinks

During time periods when the ETH research station and its farmstead buildings were in upwind direction of the mountain-top site the offset between both stations was 0.065 ppm
on average, whereas it was much lower (< 0.01 ppm) for all other wind directions (see Fig. S1). The small directional deviation between the sector with highest CH$_4$ mixing ratios and the farmstead buildings (seen in Fig. S1) relates to the influence of local terrain. The close farmstead obviously acted as a source of CH$_4$ which considerably influenced the mixing ratios when the flow came from that direction (Figs. S1 and 8). With higher wind speeds and south-easterly flow, CH$_4$ and CO$_2$ mixing ratios at the mountain-top site were typically lower than those at the tall-tower site (Figs. 8 and 9). This indicates that the mountain-top station observes relatively clean free-tropospheric air masses descending in the lee of the Alps during foehn as opposed to the tall-tower station measuring planetary boundary-layer air. Since foehn wind tends to follow the terrain similarly to hydraulic flows, our assumption that the same elevation above sea level can be compared fails under such special conditions where altitude above the topographic reference surface becomes more relevant than the absolute elevation. Additionally, during nighttime and in winter, when vertical mixing is generally weaker, mixing ratios at wind speeds < 2 m s$^{-1}$ were often larger at the mountain-top as compared to the tall-tower station, especially with westerly up-slope winds and northerly winds which most likely originated from lower parts of the valley. Thus, with the WDS filter all conditions with (a) flow from the farmstead, (b) wind directions and speeds associated with foehn, and (c) during times with reduced vertical mixing, wind speeds < 2 m s$^{-1}$ and northerly or westerly wind directions were removed from the time series. When wind speeds are low (0–1 m s$^{-1}$), wind directions are often not properly defined or very variable. This could explain why CH$_4$ mixing ratios at wind speeds < 1 m s$^{-1}$ are higher at the mountain top even if wind direction does not include the local farmstead. Moreover, a strong northerly or westerly component in the flow means that the air mass passed the Zugerberg mountain ridge where other farmsteads are located. During periods of low solar radiation, weak turbulence, and low wind speeds, the influences from more remote farmsteads could be increased, which could explain the higher CH$_4$ mixing ratios observed at the mountain-top station.

Periods when CO$_2$ mixing ratios were higher at the mountain-top station than those at the tall-tower site did not show such pronounced wind-direction dependence as did CH$_4$. In spring and summer/autumn, the difference between CO$_2$ mixing ratios at the mountain-
top and the tall-tower station was typically highest with lower wind speeds < 2 m s\(^{-1}\) and reduced vertical mixing (evening, night). As the vegetation surrounding the mountain-top site is covered by grassland and forests, it acted both as a source (respiration) and a strong sink (photosynthesis) of CO\(_2\) depending on time of day or season and management (Zeeman et al. 2010). This generally limited the capability to distil the anthropogenic CO\(_2\) signal out of the CO\(_2\) mixing ratio time series. Here an increased measurement height above the local surface may help to reduce the strong influence from the vegetation (e.g. Bakwin et al. 1995, 1998). Alternatively, there are methods to estimate regional fluxes based on vertical gradients of mixing ratios between the atmospheric boundary layer and the free troposphere at tower sites (e.g. Bakwin et al. 2004, Crevoisier et al. 2006). In a well-mixed atmospheric boundary layer, flux–gradient relationships (Monin and Obukhov 1954, Moeng and Wyngaard 1984, 1989) have been used to adjust for biases introduced by low measurement heights (Bakwin et al. 2004). In winter, CO\(_2\) mixing ratios at the mountain-top were often higher than at the tall-tower site with flows from the farmstead and flows from northerly or westerly directions, similarly to CH\(_4\) mixing ratios. These high biases were most frequent during periods of reduced vertical mixing and thus were removed from our analysis.

In summary, our comparison between a tall-tower site and a mountain-top site provided evidence that the regional signal of CH\(_4\) mixing ratios can be extracted from the time series even under the presence of geographically constrained local sources. However, a bias of approximately 0.01 ppm in the CH\(_4\) mixing ratio has to be taken into account. It remains much more challenging to do the same with CO\(_2\) mixing ratios due to the dominance of the local biogenic signal present in the measurements when plant photosynthesis and ecosystem respiration are most active.

5 Conclusions

Atmospheric CO\(_2\) and CH\(_4\) observations at a mountain-top site have been compared to measurements at a neighbouring tall-tower site (within 28.4 km horizontal distance) at a similar elevation above sea level. Although the airflow was significantly perturbed locally at the mountain-top site, CH\(_4\) mixing ratios were quite similar to those at the tall-
tower site, except for peak values. Average mountain-top and tall-tower CH₄ mixing
ratios showed good agreement, with an average CH₄ bias between the two stations that
was around 0.01 ppm, after applying a filter to select for favorable wind direction, wind
speeds, time of day and season at the mountain-top site, and 5th percentiles of the 2-h
frequency distribution of CH₄ mixing ratios at both sites. Peak mixing ratios of unfiltered
data, however, were clearly influenced more by local CH₄ sources at the mountain top
site than at the tall-tower site. Consequently, it was possible to minimize, but not to
completely remove, the influence of local agricultural CH₄ sources by choosing an
appropriate filter. Hence, we conclude that, at least in absence of local sources, a
mountain-top station can provide greenhouse gas observations with similar regional
representativeness as a tall-tower station. Geographically well-defined CH₄ sources may
be acceptable to a certain degree as their influence can be removed with appropriate
filtering. However, it is generally preferable to choose the location of mountain-top sites
in a way that local sources are virtually absent.

For CO₂, however, the usefulness of mountain-top mixing ratio measurements may be
more limited for inverse modelling, especially during summer, when vegetation and soils
cause a more pronounced diurnal cycle at the mountain top than on the top of a tall tower.
Since these diurnal and seasonal signals are strong, a filter based on local wind conditions,
time of day, and season is not able to remove all local influences of the vegetation at the
mountain-top site. At sites where the larger-scale (far-field) signal to local-scale noise
ratio remains an issue, an increased measurement height should be considered, leading to
a dilution and damping of the local-scale noise. Being aware of such limitations, we
conclude that a carefully selected mountain-top site still can be considered a suitable
alternative for a tall-tower station. Mountain sites have a similar potential for continuous
long-term monitoring, and could complement tall-tower stations, especially in
mountainous terrain.

Acknowledgements The study was financially supported by the Swiss National Science Foundation under
the grant number CRSII2_136273. The authors acknowledge the staff members of the ETH research station
for the agricultural management at the mountain-top site and the technicians of the ETH Grassland
Sciences Group, Peter Plüss and Thomas Baur, for their assistance during installation and setup of the
measurement station at Früebüel. We acknowledge the tower-site installation at Beromünster designed by
Rüdiger Schanda, Peter Nyfeler, Hanspeter Moret, Samuel Mareding from the University of Bern and
installed by Cablex AG (Bern, Switzerland). Further, the authors acknowledge Swisscom for granting
access to the tall tower, and the local authorities for the construction permit. Susanne Burri, Carmen
Emmel, Anna Gilgen, Lukas Hörttagl and Lutz Merbold from the Grassland Sciences Group are
acknowledged for their helpful scientific discussions.
References

Supplementary Material: Observation of CH$_4$ and CO$_2$ mixing ratios: Tall-tower or mountain-top stations?

Ines Bamberger · Brian Oney · Dominik Brunner · Stephan Henne · Markus Leuenberger · Nina Buchmann · Werner Eugster*

*ETH Zurich, Universit"atstrasse 2, 8092 Zurich, Switzerland, phone +41-44-632-6847, e-mail eugsterw@ethz.ch

S1 Management Activities at the Mountain-Top Site

<table>
<thead>
<tr>
<th>Date in 2013</th>
<th>Management activity</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>17–18 April</td>
<td>organic fertilizer</td>
<td>solid</td>
</tr>
<tr>
<td>2–8 May</td>
<td>grazing</td>
<td>suckler cows (25), calves (24)</td>
</tr>
<tr>
<td>6–14 June</td>
<td>grazing</td>
<td>cows (34)</td>
</tr>
<tr>
<td>1–2 July</td>
<td>cutting</td>
<td>0.68 ha</td>
</tr>
<tr>
<td>11–12 July</td>
<td>cutting</td>
<td>0.71 ha</td>
</tr>
<tr>
<td>18 July</td>
<td>organic fertilizer</td>
<td>solid</td>
</tr>
<tr>
<td>23 July</td>
<td>cutting</td>
<td>3.28 ha</td>
</tr>
<tr>
<td>23 September</td>
<td>cutting</td>
<td>0.68 ha</td>
</tr>
<tr>
<td>7–13 November</td>
<td>grazing</td>
<td>cows (34)</td>
</tr>
</tbody>
</table>

S2 Origin of Methane Emissions

To determine whether the local methane sources at the mountain-top station are diffuse or attributable to a specific source we analyzed the dependence of the between-site differences ($\Delta C_m = C_{m,FRU} - C_{m,BER}$) on the wind direction at the mountain top (FRU). This was done both for two-hourly average CH$_4$ mixing ratios and for the 5th percentiles of the two-hourly frequency distribution (Fig. S1). For average CH$_4$ mixing ratios these differences remained generally below 0.02 ppm for any wind direction, except for southerly winds from the direction of the ETH research station when average mixing ratios at the FRU were considerably higher (up to 0.065 ppm).

This pattern was not restricted to dates when cattle were grazing on the pastures surrounding the FRU measurement station, thus indicating the general influence of CH$_4$ emissions from the nearby farmstead in the south. Evaluating the between-site differences for the 5th percentiles instead of the average mixing ratios, however, showed no comparable dependence on wind direction (Fig. S1). Thus the percentile approach, which assumes that the lower edge of the two-hourly frequency distribution is mainly unaffected by local greenhouse gas fluxes, was successful in eliminating the most prominent influences on CH$_4$ mixing ratios imposed by the local farmstead.

S3 Analyzing Mixing Ratio Differences

In order to find the most likely predictor variables that influence the mixing ratio difference between the FRU (mountain-top) and BER (tall-tower) sites, we carried out a principal component analysis
Binned averages of the CH$_4$ differences between the FRU mountain-top station and the BER tall-tower station (ΔC_m) as calculated from the annual time series of 2-h averages (yellow line) and the 5^th percentiles of the 2-h frequency distribution (red dotted line) for 20° bins of the wind direction at the mountain top, overlaid on an orthoimage © 2014 swisstopo (JD100042) of the mountain-top site

(not shown) to detect collinearities among the meteorological variables that have the potential to predict such differences, and then performed an analysis of variance to determine, which groups of environmental conditions can be used to classify mixing ratio differences between FRU and BER. All statistical analyses were done with R (R Core Team, 2016).

The response variables of interest were ΔC_m and ΔC_c, the absolute differences in CH$_4$ and CO$_2$ mixing ratio measurements, respectively, measured at the two sites. Positive values of ΔC_m and ΔC_c indicate that the respective gas mixing ratio measured at the FRU mountain-top site exceeded the concurrent measurements at the top of the BER tall-tower site.

S3.1 Analysis of Variance

S3.1.1 Material and Method

We carried out an analysis of variance to quantify the differences between the FRU and BER mixing ratio measurements. The goal was not primarily to determine the offset between the sites, but how this potential offset varies with the variables used in the principal component analysis. We used a three-step procedure that takes into account that different variables are most relevant for ΔC_m than for ΔC_c:

1. A five-factorial analysis of variance was computed with the variables wind direction (ϑ), horizontal wind speed (U), atmospheric stability (z/L; all measured at FRU), H_r (hour of day),
and S_n (season, starting with 12 levels correspoding to calender months). To simplify calculations, all variables were binned to classes to reduce the number of levels. In the first step no interactions between the different variables were considered. The H_r variable was binned at 2-h resolution, and atmospheric stability was aggregated to the three classes “unstable” ($z/L < -0.0625$), “neutral” ($-0.0625 \leq z/L < 0.0625$), and “stable” ($z/L \geq 0.0625$), since both z/L and L/z only showed a weak effect in both principal component analyses for ΔC_m and ΔC_c.

Wind speed was binned into classes at intervals of 1 m s$^{-1}$, and ϑ (as measured at the FRU site) was binned in 10° segments. Tukey’s honest significant difference test was calculated on all groupwise comparisons of mixing ratio differences.

2. After this, the classes without significant in-between differences were combined to reduce the number of classes in each variable. U was aggregated to five classes (0–1 m s$^{-1}$, 1–2 m s$^{-1}$, 2–5 m s$^{-1}$, 5–6 m s$^{-1}$, > 6 m s$^{-1}$ for ΔC_m, and < 1 m s$^{-1}$, 1–2 m s$^{-1}$, 2–4 m s$^{-1}$, 4–6 m s$^{-1}$, > 6 m s$^{-1}$ for ΔC_c). ϑ was aggregated to three classes (70–120°, 120–200°, 200–70°). To use a more detailed resolution of H_r and S_n than in Fig. 8, an aggregation was done as shown in Fig. S2 with four classes each for H_r and S_n.

3. With this reduced set of classes a full analysis of variance model including interactions was run. Using stepwise exclusion, all nonsignificant variables and interactions (adjusted $p \geq 0.05$) were subsequently eliminated from the model. Within a few iterations we were left with a simplified analysis of variance model that only contained variables and interactions that showed a nonzero influence on measured ΔC_m or ΔC_c, respectively, at adjusted $p < 0.05$ (see Tables S2 & S3).

S3.1.2 Results

On average the mixing ratio offset between FRU and BER was 0.019 ± 0.019 ppm for ΔC_m, and 2.9 ± 3.7 ppm for ΔC_c (mean difference ± standard deviation of all group comparison of the groups that were used in the final analysis of variance model).

Differences in CH$_4$ mixing ratios.

In the first step (no interactions considered) an aggregation of predictor classes was possible, namely H_r could be reduced to two classes: 0800–1600 UTC (day), and 2000–0400 UTC (night). Transition times were not included in the analysis. The 12 months of S_n could be aggregated to four seasons, January, February–July, August, and September–December. January and August differed in all comparisons with other months, hence this site-specific classification was chosen (Fig. S2). Wind speed classes could be reduced to five classes, and ϑ was aggregated to three classes (see above). The two stability groups “unstable” and “neutral” did not differ significantly and thus were combined. These classes were used in step 3 to obtain the final analysis of variance Table S2.

The output from the final analysis of variance model (Table S2) was then used to compute group averages, standard deviations, and standard error of the mean of ΔC_m to quantify the possible local effects on ΔC_m. These averages were then ranked and plotted in Fig. S3 in combination with the predictor classes involved.

Figure S3 shows quite clearly that wind directions from 120–200° were mostly responsible for the largest positive deviations, i.e., local emissions at FRU increase CH$_4$ mixing ratios above the value expected at BER. Contrastingly, the most negative deviations are associated with the highest wind speeds and with the early season (February to July).

Wind directions from 70–120° (Bise winds; Wanner and Furger, 1990) never led to significantly increased ΔC_m compared to other factor combinations, and hence those wind directions can be considered representative for BER conditions, irrespective of H_r, S_n, U, and z/L. Whereas stability, U, and H_r had a similar influence on the variability of ΔC_m (F ratios in the range 40–50, Table S2), only U showed a distinct influence on average ΔC_m. While weak winds led to positive ΔC_m, strong winds were usually associated with negative ΔC_m. Thus, U – which is also related to stability – had a much stronger influence than stability on local anomalies in CH$_4$ mixing ratio measurements at FRU.
Mean ΔC_m was 0.019 ± 0.019 ppm, shown in Fig. S3 with the two dashed vertical lines. The most positive ΔC_m ranged up to 0.060 ppm (January, neutral z/L, calm winds < 1 m s$^{-1}$, and ϑ 120–200$^\circ$), and the most negative ΔC_m was –0.045 ppm (afternoons with relatively strong winds with U in the range 7–8 m s$^{-1}$).

Differences in CO$_2$ mixing ratios.

For ΔC_c the aggregation of the variables led to slightly different classes than for ΔC_m. For simplicity we used the same H_r classes as for CH$_4$ (night 2000–0600 UTC, morning 0600–1200 UTC, 1200–1600 (afternoon), 1600–2000 (evening), 2000–0600 (night); season S_n: January, February–July, August, September–December; stability z/L stable, unstable and neutral.

Table S2 Analysis of variance table for the response variable ΔC_m after stepwise elimination of nonsignificant predictors and predictor combinations, sorted by F value

<table>
<thead>
<tr>
<th>Factor Interaction</th>
<th>DF</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(> F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϑ</td>
<td>2</td>
<td>0.6538</td>
<td>0.32691</td>
<td>$< 2.2 \times 10^{-16}$***</td>
<td></td>
</tr>
<tr>
<td>z/L</td>
<td>1</td>
<td>0.0648</td>
<td>0.06476</td>
<td>49.4552</td>
<td>2.398 $\times 10^{-12}$***</td>
</tr>
<tr>
<td>U</td>
<td>7</td>
<td>0.3946</td>
<td>0.05638</td>
<td>43.0564</td>
<td>$< 2.2 \times 10^{-16}$***</td>
</tr>
<tr>
<td>H_r</td>
<td>3</td>
<td>0.1575</td>
<td>0.05249</td>
<td>40.0872</td>
<td>$< 2.2 \times 10^{-16}$***</td>
</tr>
<tr>
<td>S_n</td>
<td>3</td>
<td>0.1117</td>
<td>0.03724</td>
<td>28.4392</td>
<td>$< 2.2 \times 10^{-16}$***</td>
</tr>
<tr>
<td>$\vartheta : U$</td>
<td>6</td>
<td>0.0728</td>
<td>0.01213</td>
<td>9.2623</td>
<td>4.227 $\times 10^{10}$***</td>
</tr>
<tr>
<td>$\vartheta : z/L$</td>
<td>2</td>
<td>0.0211</td>
<td>0.01054</td>
<td>8.0496</td>
<td>0.0003247***</td>
</tr>
<tr>
<td>$S_n : H_r$</td>
<td>9</td>
<td>0.0477</td>
<td>0.00530</td>
<td>4.0448</td>
<td>3.561 $\times 10^{-3}$***</td>
</tr>
<tr>
<td>$\vartheta : H_r$</td>
<td>6</td>
<td>0.0249</td>
<td>0.00415</td>
<td>3.1680</td>
<td>0.0042138**</td>
</tr>
<tr>
<td>$\vartheta : S_n$</td>
<td>23</td>
<td>0.0703</td>
<td>0.00306</td>
<td>2.3333</td>
<td>0.0003198***</td>
</tr>
<tr>
<td>$\vartheta : z/L$</td>
<td>9</td>
<td>0.0238</td>
<td>0.00265</td>
<td>2.0236</td>
<td>0.0330805 *</td>
</tr>
<tr>
<td>$\vartheta : S_n : H_r$</td>
<td>23</td>
<td>0.0504</td>
<td>0.00219</td>
<td>1.6732</td>
<td>0.0230944 *</td>
</tr>
<tr>
<td>Residuals</td>
<td>3783</td>
<td>4.9535</td>
<td>0.00131</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asterisks in the last column indicate $p < 0.001$ (***), $p < 0.01$ (**), and $p < 0.05$ (*), and the colons in the first column indicate interactions among variables. The following classes were built for each variable: wind direction ϑ 70–120$^\circ$, 120–200$^\circ$, 200–70$^\circ$; wind speed U < 1 m s$^{-1}$, 1–2 m s$^{-1}$, 2–5 m s$^{-1}$, 5–6 m s$^{-1}$, > 6 m s$^{-1}$; hour of day H_r: 0600–1200 (morning), 1200–1600 (afternoon), 1600–2000 (evening), 2000–0600 (night); season S_n: January, February–July, August, September–December; stability z/L stable, unstable and neutral.
afternoon 1200–1600 UTC, evening 1600–2000 UTC), and the transition times (0400–0800 UTC and 1600–2000 UTC) were excluded from further analysis (Fig. S4) in the same way as was done with CH$_4$. Seasonality was represented by four levels: November–April, May–June, July–August, and September–October. For ϑ we used the same three sectors as for CH$_4$: ϑ 70–120°, 120–200°, and 200–70°. For U five levels were used: < 1 m s$^{-1}$, 1–2 m s$^{-1}$, 2–5 m s$^{-1}$, 5–6 m s$^{-1}$, and > 6 m s$^{-1}$. Stability had three levels: “unstable”, “neutral”, and “stable”. The final analysis of variance model is shown in Table S3.

Similarly to ΔC_m we sorted the differences and plotted the values along with the classes involved (Fig. S5). Beginning at the bottom of Fig. S5 it is quite clearly seen that large positive differences are never associated with wind speeds above 2 m s$^{-1}$, and the most negative deviations are associated with high wind speeds (and thus enhanced turbulent mixing). At the same time, the most negative values of ΔC_m tend to be related to the southeastern wind sector. This wind sector is mostly associated with foehn conditions (Desai et al., 2016), that bring fresh and warm air from the Alps directly to FRU, whereas the BER site actually should already see parts of the anthropogenic emissions in the Alpine foreland. Hence such differences—although weak and only represented by few datapoints—are realistic and most likely true differences, not sampling artefacts. Very positive deviations are primarily associated with nighttime or early morning (dusk), and mostly during
the warm season from July until October. This coincides with the period when the vegetation is most active during the day. At the same time soils are warm enough to enhance the activity of soil microbes that decompose soil organic matter and increase the local CO\(_2\) mixing ratio, namely at night. The largest positive \(\Delta C_e\) observed was 14.3 ppm (July–August, neutral \(z/L\), calm winds

...
Fig. S5 Group means of differences in CO\textsubscript{2} mixing ratios measured at the FRU site in comparison with the BER site, sorted in descending order. Only group comparisons with statistically significant nonzero differences (\(p < 0.05\)) are shown. The mean difference \(\pm\) one standard deviation (i.e., 2.9 \(\pm\) 3.7 ppm) is shown with two vertical dashed lines. The zero difference is shown with a horizontal and a vertical solid thin line. The vertical symbols below the graph indicate which class combination was used for the respective group mean less than 1 m s-1, and \(\vartheta\) 120–200\(^\circ\)), and the most negative value was –4.8 ppm (May–June, neutral \(z/L\), \(U\) 2–4 m s-1, and \(\vartheta\) 120–200\(^\circ\)).

References

