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Inverse poroelasticity as a fundamental mechanism
in biomechanics and mechanobiology
Alexander E. Ehret1,2, Kevin Bircher1, Alberto Stracuzzi1, Vita Marina1, Manuel Zündel1 & Edoardo Mazza1,2

Understanding the mechanisms of deformation of biological materials is important for

improved diagnosis and therapy, fundamental investigations in mechanobiology, and appli-

cations in tissue engineering. Here we demonstrate the essential role of interstitial fluid

mobility in determining the mechanical properties of soft tissues. Opposite to the behavior

expected for a poroelastic material, the tissue volume of different collagenous membranes is

observed to strongly decrease with tensile loading. Inverse poroelasticity governs monotonic

and cyclic responses of soft biomembranes, and induces chemo-mechanical coupling, such

that tensile forces are modulated by the chemical potential of the interstitial fluid. Corre-

spondingly, the osmotic pressure varies with mechanical loads, thus providing an effective

mechanism for mechanotransduction. Water mobility determines the tissue’s ability to adapt

to deformation through compaction and dilation of the collagen fiber network. In the near

field of defects this mechanism activates the reversible formation of reinforcing collagen

structures which effectively avoid propagation of cracks.
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In terms of weight and volume, water is indisputably the major
component of soft biological tissues. The mechanical property
most commonly associated with the presence of water is near

volume constancy, i.e., incompressibility, based on the fact that

the compression modulus of water is orders of magnitude larger
than the distortional stiffness of tissues1. The vast majority of
biomechanical studies on soft collagenous tissues is based on this
assumption2, typically without experimental verification of its
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Fig. 1 Volume changes in soft collagenous membranes. a Illustration of extracellular matrix components mainly responsible for the mechanical behavior of
soft collagenous tissues: collagen fibrils and fibers, proteoglycans carrying negative charges and interstitial fluid. b Schematics of the response to in-plane
mechanical forces: unloaded and deformed tissues in uniaxial (UA) and equibiaxial (EB) tension. c Thickness reduction of bovine Glisson’s capsule (bGC)
sample in UA tension with increasing applied elongation ε; cross-sectional multiphoton microscopy (MPM) images of collagen (green) and stained cell
nuclei (blue), taken close to the lateral edge of a sample. Scale bar: 100 μm. d MPM stacks in reference and deformed state demonstrate strong thickness
reduction at ~10% in-plane elongation. Scale bars: 50 μm. e Volume reduction J= λ1λ2λ3 in UA and EB tension from combined macroscopic (human amnion
(hAM): n= 9, bGC: n= 5, porcine pericardium (pPC): n= 5) and MPM (hAM: n=3, bGC: n= 3, pPC: n= 3) data. Reported is mean and standard deviation
(error bar). f Volume change during cyclic loading (10 cycles) in UA (strain states εhigh= 12%, εlow= 0%) and EB (inflation pressure states phigh= 4 kPa
(hAM)/55 kPa (bGC, pPC), plow= 0.1 kPa) configurations. The data are normalized with respect to the volume at εhigh and phigh in the first cycle. Reported
is mean and standard deviation (error bar) for hAM (macroscopic: n= 7, MPM: nUA= 3, nEB= 4), bGC (macroscopic: n= 5, MPM: n= 3) and pPC
(macroscopic: n= 5, MPM: n=3). Some of the hAM data include information from refs.10, 23, 54
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validity. While this assumption implies that all the interstitial
fluid is immobile and bound to the tissue, other biomechanical
analyses build, vice-versa, on the mobility of the liquid phase in a
porous matrix, driven by spatial pressure gradients. The role of
water in such biphasic or porous media representations thus lies
in that it furnishes the tissue with time-dependent characteristics
governed by the chemical and physical properties of fluid and
solid phase3. The hydrostatic pressure in a material that is under
uniaxial (UA) tensile stress σ is −σ/3, hence negative, and Biot’s
theory of poroelasticity4 tells us that such negative pressure
should lead to an increase of volume under tensile loading. For a
saturated porous medium, this indicates influx of water. In con-
trast to both conceptions, negative compressibility5, documented
by Poisson’s ratios larger than 0.5 and volume loss during UA
tensile loading, has been reported for tendons and ligaments6–8,
human amnion9, 10, samples prepared from articular cartilage11,
as well as collagen and fibrin-based hydrogels12–15. This entails
efflux of water14, 16 for negative hydrostatic pressure, and we refer
to this behavior as inverse poroelasticity. The corresponding
volume changes reported for tendons and ligaments6–8 are
comparably small, and substantial volume reductions in carti-
lage11 were elicited only by large elongations.

Here we demonstrate that various soft collagenous membranes
experience very large volume reduction already for moderate in-
plane tensile loading, that these volume changes are reversible,
and that they are a collective result of the particular arrangement
and kinematics of the collagen network and the inherent che-
moelasticity of soft biological tissues. While the important role of
water in creating residual stresses in tissues by swelling has been
identified17, and its impact on the mechanics of collagen on a
molecular scale was recently highlighted18, the present data
demonstrate the key role of water mobility in determining the
tissue response, and identify an essential deformation mechanism
with far-reaching implications for the biomechanics and
mechanobiology of soft biological tissues. We show this on the
basis of UA and biaxial tensile experiments on human amniotic
membrane (hAM), bovine liver (Glisson’s) capsule (bGC) and
porcine pericardium (pPC), i.e., three different types of biological
tissues. Monotonic and cyclic loading protocols are applied in
macroscopic tests and in situ, in a multiphoton microscope
(MPM), allowing for a quantitative analysis of the 3D kinematics
of the tissue associated with each loading condition. Drastic
volume changes are associated with strong variations in water
content. As a consequence, the osmotic pressure varies with
mechanical loads and, vice-versa, the level of tension for a given
deformation depends on the chemical potential of the interstitial
fluid. The observed chemo-mechanical coupling is rationalized
through corresponding biphasic constitutive models and is pro-
posed as an effective mechanism for mechanotransduction.
Inverse poroelasticity and the associated compaction and dilation
of the collagen fiber network provide soft tissues with unique
mechanical properties, such as high compliance for moderate
stretching and strong resistance to larger non-physiological
deformations. MPM observations of the near field of crack-like
defects demonstrate that these mechanisms induce a localized
reversible densification of collagen protecting the tissue from
crack propagation.

Results
Volume changes in soft collagenous membranes. The liquid
volume fraction of the considered membranes is typically >80%,
the network of collagen fibers (mainly types I and III) constitutes
a significant amount of tissue dry weight and no significant
elastin content was reported for the bulk of these membranes19–
21. Considered as a mechanical system, these tissues thus consist

mainly of water within a network of collagen fibers, enriched with
negatively charged proteoglycans (Fig. 1a). The present analysis of
their deformation behavior is based on the kinematic response of
membrane samples to UA tension and in-plane biaxial tension,
performed in wet conditions. Figure 1b illustrates qualitatively the
observed kinematic response to UA and biaxial loading common
to all three membranes: large contraction perpendicular to the
loading direction leads to fluid efflux and strong volume reduc-
tion upon application of tensile forces. MPM images of the lateral
cross sections taken at increasing values of elongation in in situ
UA tensile tests highlight the drastic reduction in thickness
(Fig. 1c). To quantify volume changes in all three membranes, the
in-plane state of deformation was retrieved from the displace-
ment field of a surface pattern in macroscopic experiments22

(Supplementary Fig. 1a), while MPM image stacks from in situ
experiments were used to determine the corresponding changes
of thickness for UA and biaxial loading conditions (Fig. 1d). On
the basis of these data, the apparent Poisson ratios13, 23 and the
change in volume for monotonic tensile tests were quantified
(Fig. 1e). Poisson’s ratios change with elongation and reach
maxima up to 6 (Supplementary Fig. 1e, f), about twice the values
reported for biopolymer gels13, 14, 24, 25. For moderate UA
elongation, the volume decreases by up to a factor of two for all
three membranes, and even four-fold when larger forces were
applied (Supplementary Fig. 1d). Less, but still remarkable
volume reduction was associated also with equibiaxial (EB) in-
plane tension (Fig. 1e). The question arises whether the drastic
volume changes are a characteristic of the very first loading step
(after tissue extraction from the organism) that would accord-
ingly not be present or, at least, much smaller in successive
loading cycles. To evaluate this, tissue specimens were cyclically
loaded and unloaded 10 times between two load levels, the upper
one causing ~10% elongation, and the corresponding volume
changes were determined. The results convincingly showed that
volume loss and regain persist over the cycles, with volume
changes of 50% or larger (Fig. 1f). Volume increase and decrease
hence represent a characteristic feature of the deformation
behavior of all three membranes under both UA and biaxial
loading conditions. In terms of resistance to deformation, all
tissues display the characteristic J-shaped tension-stretch
curves23, 26 well known for soft biological materials (Supple-
mentary Fig. 1b). The in-plane lateral contraction in UA tensile
tests is by a factor of 5 to 10 larger than the one expected for
isotropic incompressible materials23, 26 (Supplementary Fig. 1c)
and both this contraction and the volume reduction data are
highly reproducible as opposed to the typically large variability of
the corresponding tension-elongation curves (Supplementary
Fig. 1b–d).

Assuming water volume fractions in the range of 80%, our
results suggest that more than 60% of the liquid phase is expelled
from the tissue for the applied tension level, which induces an
order of 10% in-plane elongation. Such a drastic level of
dehydration is expected to affect the osmolarity of the tissue.
Vice-versa, the osmotic pressure difference between tissue and its
environment should thus influence the tension level for a given
state of deformation. This chemo-mechanical coupling was
investigated in a set of dedicated experiments.

Chemo-mechanically coupled tissue response. We had pre-
viously shown that tension reduces considerably with time in
relaxation tests, i.e., upon application of a fixed level of elongation
in UA tension experiments for hAM9 and bGC26. The relative
reduction of tension with time was highly reproducible for the
same testing protocol, despite the typically large variability among
samples of biological origin. Making use of the high
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reproducibility of this protocol, test pieces were clamped and
equilibrated in physiological saline solution, then rapidly elon-
gated to a given target force, and kept at the corresponding length
while the force signal was recorded. After a short time, however,
the bath was changed to distilled water. The change to a hypo-
tonic environment leads to a strong reduction or even reversal of
the stress relaxation in all tissues (Fig. 2a–c). These results
demonstrate that the mechanical response of the membranes can
be actively controlled by setting the chemical potential of their
environment, and reveal the significance of chemo-mechanical
coupling mechanisms. To rationalize the osmosensitive relaxation
characteristics of the membranes, the tissue was considered as a
highly hydrated, i.e., swollen biphasic material consisting of an
incompressible solid phase, mainly the network of collagen fibers,
and water. Swelling occurs due to the osmotic pressure difference
π caused by charge-independent and charge-dependent effects,
which are mainly attributed to the presence of proteoglycans27, 28

within the collagenous matrix. In an equilibrium state, π equals
the hydrostatic pressure p acting on the interstitial fluid phase,
which is balanced by the mechanical response of the dilated
collagen network. When either osmotic pressure or mechanical
stress change, the gradient of the difference p−π drives the water
through, and over the boundaries of the porous matrix, leading to
a change of tissue volume. The Cauchy stress tensor σ and fluid
flux vector q were thus modeled as28–30

σ ¼ σs � pI; q ¼ �kgrad p� πð Þ; ð1Þ

where σs represents the stress in the solid phase, I is the identity
tensor and k denotes the deformation dependent hydraulic con-
ductivity31 of the tissue. In our model σs is defined based on
equations representing the viscoelastic response of soft

collageneous membranes26, 32. The hydraulic conductivity of
collagenous membranes is typically in an order of33 10−14 to
10−12 m4 N−1 s−1. For membranes of a few hundred microns
thickness this leads to a fast exchange of water with time scales in
the range of seconds (Fig. 2a–c). This indicates that water flow
can affect typical physiological tissue deformations caused by, e.g.,
the cardiac cycle, breathing, fetal movements or uterine con-
tractions. The osmotic pressure π increases with reducing tissue
volume, which can be explained by entropic effects and the
increased density of fixed negative charges present at the pro-
teoglycans29, leading to a flux of mobile ions according to the
Donnan equilibrium34. Since the parameters of these theories are
largely unknown for the tested soft tissue membranes, we quan-
tified the relation between π and the volume change J for bGC
from confined compression experiments (Fig. 2d). The outcome
was used to rationalize the measurements (Fig. 2e) and provided
indicative results on the corresponding time histories of hydro-
static and osmotic pressure within the tissue (Fig. 2f).

Notably, both measurements and calculations (Fig. 2d, f)
indicate that volume decrease is associated with variations in
osmotic pressure of several kPa. Such significant changes in
osmotic pressure are known to affect cell homeostasis and
mitosis35–37. Additionally, the corresponding fluctuations in
hydrostatic pressure, here up to 30 kPa (Fig. 2f), contribute to
the mechanical cues arising from inverse poroelasticity.

The results in Fig. 2 further demonstrate that the osmotic
pressure difference between the tissue and its environment, which
depends on the proteoglycan density, and thus on the current
volume of the tissue, provides a mechanism of resistance to
deformation. Higher density increases the resistance to fluid
outflow and decreases tissue compliance. Osmotic pressure is thus
an important determinant for the biomechanics and
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Fig. 2 Chemo-mechanically coupled tissue response. a–c Uniaxial (UA) tension relaxation experiments on (a) human amnion (hAM, n= 3, peak force 0.2
N), (b) bovine Glisson’s capsule (bGC, n= 3, peak force 0.8 N) and (c) porcine pericardium (pPC, n= 3, peak force 0.8 N) performed in 0.9% NaCl
solution without (black) and with bath change to distilled water (color). The data are presented as mean (solid curve) and standard deviation (shaded area)
and normalized by the corresponding tension value (TC) at the time point of change of bath. d Experimentally determined relaxed pressure (force per area)
vs. volume ratio J curves for bGC sample (n= 9 stacks, black) together with the response of the biphasic model (blue). Inset: schematic illustration of the
confined compression set-up. e Temporal evolution of tension in simulated UA relaxation experiment for bGC without (black) and with (blue) bath change
to distilled water. f Evolution of hydrostatic (black) and osmotic (gray) pressures in the center of the specimen, corresponding to e without change of bath
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mechanobiology of soft collagenous membranes. The other key
component in determining the inverse poroelasticity of these
membranes is the network of collagen fibers.

Kinematics of collagen fiber networks. Slender collagen fibers
are highly compliant in compression, due to their low bending
stiffness, and gain high stiffness in tension. This key characteristic
of biopolymer filaments has been previously identified to
allow for large Poisson ratios38 in fibrous networks, and to
cause the negative Poynting effect39 in various biopolymer gels

(Supplementary Discussion). Instead of stretching, fibers in the
network have the tendency to accommodate tissue elongation by
rotation towards the loading direction25. This is the main cause of
the kinematic response observed for soft collagenous membranes.
Figure 3a–d illustrates the difference in tissue morphology
between initial (unloaded) and deformed configuration in a UA
tensile experiment on bGC. In the deformed state, fibers are
consistently oriented towards the loading direction, as indicated
by the angular distribution histogram (Fig. 3d). In particular, the
collective reorientation within the membrane plane and the
reduction of the out-of-plane inclination cause very strong lateral
contractions, and volume loss. We thus hypothesized that the
observed strong volume reductions at moderate elongations
would be favored by the particular, transversally isotropic orga-
nization of the fibers with a small inclination with respect to the
membrane plane (Fig. 3c).

To investigate this, we created a network model (cf. ref. 25) for
the membranes (Fig. 3e, i), in which fibers are represented as
discrete load bearing elements, with high stiffness in tension and
low stiffness in compression (Fig. 3h). The role of the interstitial
fluid in equilibrium states is represented by a compressible
matrix, with initially low resistance to volume reduction that
strongly increases at low volume when osmotic effects oppose
water outflow. The strong contraction perpendicular to the
loading direction, eliciting drastic volume changes and strong
reorientation of fibers towards the loading directions, is
consistently reproduced by the fiber network model for UA and
biaxial loading conditions as indicated by polar plots of the fiber
orientations (Fig. 3f,g,j,k). Conversely, when fibers are repre-
sented with equal stiffness in tension and compression, lateral
contractility and, consequently, volume reductions are signifi-
cantly lower (Fig. 3l). Likewise, calculations assuming isotropic
initial fiber arrangement weaken the volume changes, and a
combination of the two modifications finally determines a nearly
incompressible response, and even reverses the effect slightly for
EB tension (Fig. 3l). These results confirm that the early volume
collapse in collagenous membranes is a collective result of both
the strong nonlinearity in the response of slender fibers, which
are stiff when tensioned but buckle in compression, and the
transversally isotropic distribution of fibers, caused by their low
out-of-plane inclination.

The interplay between fiber kinematics and osmotic effects
driving water from and to the tissue leads to an effective
deformation behavior which allows material to resist large
stretches, but to easily adapt to moderate, physiological
deformations. This adaptive compliance is realized through the
recoverable process of water efflux, thus without permanent
deterioration of the microstructure. We speculated that this
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Second harmonic generation (SHG) signal (green) and fluorescence of
stained cell nuclei (blue). Scale bar: 100 μm. c, d Out-of-plane (green, left)
and in-plane (blue, right) fiber orientation distribution measured in a
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μm. h Qualitative axial force vs. strain diagram of linear (red) and nonlinear
(blue) fiber response. i–k Computed out-of-plane (green) and in-plane
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respect to reference configuration at λ1= 1.15, computed for different
network types, with either initially oriented or isotropic fiber distribution in
out-of-plane direction (green symbol), and either nonlinear (blue) or linear
(red) fiber response
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characteristic feature of their deformation behavior is intimately
related to the outstanding defect tolerance of soft biological
tissues40, 41. To investigate this hypothesis, we analyzed the near
field of defects in fetal membranes.

Reinforcement and stress shielding in near fields of defects.
Both soft and hard biological tissues have been identified to be
highly defect tolerant, and explanations based on their micro-
structure were proposed41–44. Fracture mechanics analyses of
hAM, in particular, are related to the medical problem of iatro-
genic premature rupture of the fetal membrane after invasive
prenatal intervention45. We performed in situ experiments in
order to analyze the local mechanisms of deformation in the near
field of a defect in hAM. Biaxial tests were performed on speci-
mens with a central, circular hole of 1mm diameter, and typical
mode-I fracture test pieces46 with a lateral cut were tested in
strip-biaxial tension (Fig. 4a), while near and far-fields of the
defects were monitored. The intensity of the collagen second
harmonic generation (SHG) signal (CSI) was considered as a
measure of collagen compaction, and the nucleus aspect ratio47

(NAR) of epithelial cells, was used to identify the zone kinema-
tically affected by the defect. The CSI is maximal in the direct
vicinity of the defect and drops rapidly to a mean level com-
parable to that of the far-field (Fig. 4b, c). This indicates that the

collagen fibrils form a dense reinforcement at the defect that
effectively prevents crack propagation through the tissue and
shields the remote areas (Supplementary Video). The NAR, as an
indicator of strain, is likewise at maximum at the defect sites and
rapidly decays towards the far-field level (Fig. 4b, c), which takes a
value of about 1.25 for EB stretching before normalization, in
good agreement with values reported for roundish epithelial
cells48. Figure 4d, e illustrates that a dense collagen fiber bundle
forms at the defect when load is applied and dissolves almost
entirely upon unloading, thus indicating that the process leading
to the local reinforcement is reversible, in agreement with the
reversibility of volume changes observed for intact samples
(Fig. 1f). Inverse poroelasticity and strong effective compressi-
bility are key to enable these protective mechanisms, which would
not be possible if water was immobile. This is illustrated by
simulations with the biphasic model described above. A realistic
value for the parameter defining the initial hydraulic conductivity
in the order of 10−14 m4 N−1 s−1 was used and, for comparison,
zero-permeability was assumed in a second simulation, which
corresponds to the widespread assumption of incompressibility.
While the reference model predicts a rapid transition of strain
and volume change with increasing distance from the defect
(Fig. 4f, g), the incompressible model cannot reproduce the
observed compaction mechanism (Fig. 4f). Although CSI and
NAR do not provide direct quantitative measures of tissue density
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and deformation, it is interesting to note that the reference model
predicts densification and circumferential to radial stretch ratio
well in line with the patterns of CSI and NAR observed in hAM
(Fig. 4b, g). The simulation reveals that the densification proceeds
rapidly and is even facilitated at the defect site, where efflux
occurs both over the membrane face and the lateral defect surface
(Fig. 4h).

Discussion
The analysis of the 3D kinematics of biomembranes revealed
deformation characteristics that contradict the common expec-
tations based on incompressible or poroelastic theories. The tissue
response can be understood as inversely poroelastic and be
explained by the interplay between collagen fibers and interstitial
fluid, interacting as in a tensegrity-like structure49: While the
former provides the tensile load bearing elements, the latter
carries compressive forces and prevents the collapse. The pro-
nounced water mobility and effective compressibility of the
membranes analyzed in the present work are expected to apply to
a variety of soft collagenous tissues with similar structure and
physiological function, though biomaterials with lower hydraulic
conductivity, lower initial water content, higher density of pro-
teoglycans, or larger non-collagenous matrix fractions (cf. ref. 13)
may be less affected by inverse poroelasticity, and their treatment
as incompressible solids in biomechanics may represent a rea-
sonable approximation.

Large volume loss in tension, albeit counterintuitive, is not in
conflict with thermodynamics for nonlinear materials (Supple-
mentary Discussion and Supplementary Fig. 3). Negative com-
pressibility of biopolymer hydrogels12–14 was attributed to strong
reorientation and buckling of collagen fibers25, or conformational
changes in fibrin24. The investigated soft tissue membranes stand
out from other tissues with negative compressibility6–8, 11 as
reducing their volume drastically already with moderate elonga-
tions. This is pinpointed by high Poisson’s ratios up to 6, and
explained by the transversely isotropic alignment of the collagen
fibers in these thin tissues, which amplifies the effects of fiber
nonlinearity and reorientation. The mobility of interstitial fluid is
a second key element that determines the response of tissues in
physiologically relevant tensile loading states. Volume changes
occur only due to the ability of water to move out of or into the
tissue, allowing to accommodate to elongations or to effectively
defuse a defect exposed to stress concentrations. By reflux, this
mechanism of adaption is reversible, thus leading to high
toughness without permanent microstructural deterioration. An
additional toughening effect in porous media is related to the
motion of water within the near field of the defect, as proposed
for polymer gels50.

Our results demonstrate that moderate in-plane elongations
lead to increased hydrostatic pressure (Fig. 2f), significant chan-
ges of tissue hydration and thus in the chemical potential of the
interstitial fluid. Variations in hydrostatic and osmotic pressure
between cell interior and their environment affect cell hemostasis
(e.g., ref. 37) and represent fast and homogeneously distributed
signals of the occurrence of mechanical loads. The chemo-
mechanical coupling induced by the inverse poroelastic behavior
thus suggests itself as a very effective mechanism of mechan-
otransduction, different from the integrin-based pathways51. Our
results indicate that the architecture of the collagen fiber network
and the amount of proteoglycans represent key features of the
extracellular matrix to control the magnitude of these mechanical
cues and the effectiveness of their transmission.

As another implication of inverse poroelasticity, tensile loads
might cause significant hydrostatic loading of a confluent
superficial cell layer lining the interface between soft collagenous

tissues and their environment. In fact, as demonstrated by a
corresponding simulation (Supplementary Methods and Supple-
mentary Fig. 2), the inverse poroelastic effect elicits an outward
directed rising pressure during in-plane loading. Potential
“hydraulic fracture” of the cell layer is thus expected to occur
during the tensile loading phase in biological membranes, in
contrast to recent results for cell substrates made of poly-
acrylamide hydrogel, which report fracture during unloading52.
This difference between hydrogels and biological tissues is
expected to be relevant for tissue engineering applications49 with
respect to the mechanical biocompatibility53 of materials for cell
culture.

Methods
Macroscopic and in situ characterization of soft tissue membranes. Porcine
hearts and bovine liver tissue were received from the local slaughterhouse short
time after animal euthanasia, after inspection by a veterinarian. Membrane samples
were prepared by gentle separation of the organ capsules (bGC, pPC) from the
underlying tissue layers26. hAM was obtained from fetal membranes of patients
undergoing elective term cesarean sections, according to the criteria defined in the
ethical approval (Ethical Committee of the District of Zurich Stv22/06 and Stv07/
07). Experiments with animal and human tissue were performed within few hours
after extraction from the body. Membranes were immersed in 0.9% saline solution
at room temperature at all times before and during experiments, and kept hydrated
during sample preparation.

Rectangular and circular test pieces for UA and inflation (equibiaxial, EB)
testing, respectively, were cut using a surgical scalpel, placed and clamped in the
testing devices as described in refs.9, 26. Test pieces for macroscopic testing were cut
to dimensions of 80 mm × 15mm (free length 60 mm) for UA tests and to 70 mm
diameter (free diameter 50 mm) for EB tests. In-plane deformations were
determined by tracking the positions of ink markers (GEOCollege Pigment Liner
0.05) on the surface of the test pieces (Supplementary Fig. 1a) recorded by a CCD
camera (UA: Pike F-100B Allied Vision Technologies GmbH, Stadtroda, Germany
/ EB: Dragonfly 2, Point Grey, Richmond, Canada). Images were analyzed with a
custom-built algorithm22 to extract local displacement fields in a preselected
central region of the samples, where the state of deformation was approximately
homogeneous, and the in-plane principal stretches λ1 and λ2 were computed.
Synchronized acquisition of images and the data from a pressure sensor (digital
manometer, LEX 1, Keller, Switzerland) for the EB test, or load cells (MTS Systems,
Eden Prairie, USA) for UA tests, provided time histories of displacements, inflation
pressure and forces9, 26. Nominal tension T in UA tests was obtained by dividing
measured forces with sample width in the reference state. Test pieces for in situ
characterization were cut to dimensions of 60 mm × 10mm (40 mm free length)
for UA tests and to 55 mm diameter for inflation tests (free diameter 35 mm).
Custom-made devices were used to perform in situ mechanical testing54. For UA
experiments stretching was obtained using a motorized axis moving the clamps in
opposite direction at a predefined speed to maintain the same sample region
centered under the lens of a MPM (Fluoview 1000 MPE, Olympus, water objective:
XLPlan N25×, NA 1.05). Applied strain (elongation) ε= (l−L)/L was defined as the
ratio between increase in free sample length, i.e., grip distance, and the length L in
the reference state. Each experiment consisted of a series of loading steps of few
seconds followed by an interval of several minutes to acquire 3D stacks with typical
dimensions of 250 μm× 250 μm× 200 μm with an out-of-plane spacing of 3 μm, at
one or multiple locations with an excitation wavelength of 820 nm. Image
acquisition was started typically 60 s after each loading step. Previous experiments
with hAM9 had shown that this interval was sufficient to reach stable sample
dimensions. The acquisition time of a single image was about 4 s, so that the total
time depended on the number of images with vertical spacing of 3 μm required to
scan the whole thickness of the sample. Fluorescence of cell nuclei (stained with
Hoechst 33342 or DAPI, Invitrogen) and the SHG signal of collagen were acquired
using appropriate filters (Olympus FV10-MRROPT, BA397–412, BA455–490). Laser
intensity, filter sensitivity and grayscale thresholds were adjusted in each application
to optimize the contrast of the images. Microscopy images were processed with
Imaris software (Bitplane AG, Zurich, Switzerland). Angular distribution histograms
of collagen (Fig. 3c, d) were prepared with Matlab (TheMathWorks Inc., Natick, MA,
USA), according to ref.55 from representative image stacks (cf. Fig. 1c, d). Monotonic
EB tests were performed in volume control (Standard Infuse/Withdraw PHD Ultra
Syringe Pump, Harvard Appartus, USA), cyclic tests under pressure control, achieved
by setting the height of a water column loading the lower chamber of the inflation
device (hAM) or by controlling the syringe pump with custom Lab View code
(National Instruments, Huntsville, USA). The reference configuration was defined by
a small tissue-specific reference force threshold (per width of the sample) of 0.33 Nm
−1 (hAM) or 6.7 Nm−1 (bGC, pPC) in UA experiments, and by a small inflation
pressure in the order 0.1 kPa for EB tests.

Determination of volume change and Poisson’s ratios. Quantification of volume
changes associated with in-plane loading of soft tissue membranes was achieved by
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combination of macroscopic (λ1 and λ2) and the in situ experimental data (λ3).
Thickness measurements were based on the a sharp transition from high signal
intensity to negligible detected emission at the upper and lower boundaries of 3D
stacks in in situ tests54 (Fig. 1d). While the SHG signal intensity might change due
to variation of optical properties over sample thickness, a sharp transition from
significant to negligible SHG signal level was consistently observed and taken as a
robust criterion to determine tissue thickness. The technique was further confirmed
by UA experiments, in which bGC test pieces were rotated by 90° along their long
axis such that the lens focused on planes perpendicular to the membrane plane,
and stacks were acquired with a series of membrane cross sections in the vicinity of
the edge (Fig. 1c). The ratio of deformed to reference thickness provided the
thickness stretch λ3 which was combined with the in-plane stretches λ1 and λ2 to
compute the volume change J= λ1λ2λ3 (Supplementary Fig. 1c, d). Apparent
Poisson’s ratios were calculated as13

ν12 ¼ � λ1
λ2

∂λ2
∂λ1

; ν13 ¼ � λ1
λ3

∂λ3
∂λ1

; ð2Þ

where the partial derivatives were approximated by the central difference quotient,
or one-sided finite differences at the first and last data point. For the sake of
comparability, Poisson’s ratios were evaluated at steps of 3% for both λ1−λ3 and
λ1−λ2 data, despite the higher data density available for the latter (Supplementary
Fig. 1e, f).

Macroscopic stress relaxation tests with change of bath. On the basis of a
protocol previously applied to bGC and hAM in physiological saline solution9, 26,
UA test pieces were loaded rapidly ( ~ 1 s) up to a predefined force value (bGC: 0.8
N, hAM: 0.2 N, pPC: 0.8 N) and kept fixed at the corresponding displacement for
10 minutes. Top view images of the relaxing specimen and the continuously
decreasing tension response were recorded. This standard protocol was modified
such that after ~45 s of relaxation the bath was changed to distilled water
(Fig. 2a–c). The hAM data were filtered with a moving average filter due to larger
noise at lower forces.

Confined compression tests with bGC. Seven to eight circular samples of 16 mm
diameter were prepared from larger samples of bGC, stacked into an impermeable
cylindrical cavity with 16 mm inner diameter, made of polymethylmethacrylate,
and immersed in saline solution. A cylindrical porous glass filter (diameter 15 mm,
P250 (ISO4793), Duran Group GmbH, Wertheim, Germany) was placed on top
and the stack of membrane specimens was compressed in several steps using a
vertical tension/compression testing device (Stentor II, Andilog Industries,
Vitrolles, France), interrupted by hold phases to reach quasi-equilibrium (Fig. 2d).
This arrangement corresponds to a confined compression test30, 56, in which the
volume change J of the tissue is equal to the ratio between current and reference
height of the tissue stack. The corresponding forces F were recorded and divided by
the cross-section A0 of the stack to obtain the equilibrium stress. The initial steps
led to zero equilibrium force, indicating that excessive liquid between the loosely
piled membranes was expelled in this phase. The reference height was thus defined
at the beginning of the step, for which we measured a nonzero force after a dwell
time of 200 s.

In situ tests on human amnion samples with defects. In situ inflation tests were
performed on circular hAM specimens with a central circular hole of 1 mm
(Fig. 4a), created by a biopsy puncher (Kai Medical, Seki, Japan). Defective amnion
specimens were combined with the respective intact chorion layers to prevent
leakage of water through the hole during inflation. The amnion-chorion double-
layer was clamped such that the defect was positioned in the center of the inflated
region. Inflation pressure was controlled based on the height of the corresponding
water column. Images were acquired at the reference state (0.1 kPa) and at 6
following loading steps up to a pressure of about 5.5 kPa. Experiments with a crack-
like defect in amnion were performed using specimens with free dimensions of 10
mm × 40mm, i.e., with length to width aspect ratio <1 and a lateral cut of 10 mm,
based on the typical arrangement for mode-I fracture tests to determine the tearing
energy46, 57 (Fig. 4a). The custom-built device for in situ tensile (UA) testing was
used to progressively open the crack by displacing the clamps in steps of 0.5 mm at
0.1 mm s−1. The microscopy data were analyzed with Matlab (Version 2013a,
TheMathWorks Inc., Natick, MA, USA). To measure the collagen signal intensity
(CSI) in the near field of a defect, each image of the stack was converted to
grayscale and the SHG intensity value in each pixel was added up along the z-
coordinate. To identify the formation and dissolution of collagenous structures in
the vicinity of a defect, the laser intensity and all image acquisition settings were
kept constant over a series of images taken during loading and unloading of a
notched specimen, and a normalized integrated CSI was computed by summing
the CSI value in each pixel over the first 50 μm distance from the notch tip and
normalizing by its maximum obtained during a load cycle (Fig. 4d, e). To compute
the NAR47, 58 images were converted to binary, and the nuclei in a region of 0.1
mm2 were fitted with ellipses. NAR was then computed as the ratio between the
major and minor axes of each ellipse, plotted against the distance from the defect
site, and a moving average filter was applied to smooth the data. While this 2D
analysis does not provide quantitative information on the change in nucleus shape,

the determined spatial variation in NAR serves to quantify the size of the near field
of a defect, based on the transition from elevated values at the defect site to a stable
mean value in the far field. To compare NAR and CSI, the smoothed NAR curves
were normalized by their maximum (Fig. 4b, c).

3D discrete fiber network model. A recent planar network model59 was extended
to 3D. Representative volume elements (RVEs) were created by seeding a spatial
domain of VRVE= bRVE × bRVE × tRVE randomly with NI intersection points and
connecting these, respectively, to other four intersections by straight lines. The
amount of intersections NI was controlled by defining the intersection density ρI so
that

NI ¼ ρIVRVE ¼ ρIðb2RVEtRVEÞ: ð3Þ
The connecting lines were generated using a weighted random selection

process, where the weight p for each possible connector with length l, in-plane
orientation α and out-of-plane orientation ϕ is given by a combination of
probability distributions60

p ¼ l�2pl lð Þpα αð Þpφ φð Þ ð4Þ

with pα= 1 to account for in-plane isotropy of the membranes, whereas pφ was
defined by a von-Mises distribution with concentration parameter β, and pl is a
Poisson distribution, leading to networks with Poisson distributed fiber lengths of
average length ls. Fibers were discretized by connector elements (CONN3D2) in
Abaqus/Standard software (Abaqus 6.10EF1, Dassault Systèmes Simulia Corp.,
Providence, RI, USA). To account for the resistance of the network against
volumetric deformation a single solid continuum element (C3D8) was
superimposed on the network, similar to ref. 25 but without any distortional
stiffness. Its material properties were defined by the strain-energy function

Φ Jð Þ ¼ κ

2
1� J�ð Þ 1� J�ð Þ2

J � J�
þ J þ J� � 2

� �
; ð5Þ

where κ is a material parameter with dimension of stress. This model predicts
increasing resistance to compression and limits the volume reduction to J*. Short
range, soft elastic interaction between adjacent fibers through a weak matrix were
represented by two additional connectors with low stiffness km between
intersections, respectively, isotropically distributed but chosen as short as possible.
The non linear response of the fiber connectors was approximated by a tri-linear
force-strain (Fc−εc) curve (Fig. 3h), representing the low compressive stiffness (k0)
for εc<0, the moderate stiffness (kb) during the bending-dominated straightening
phase (0<εc<εs), and the high tensile stiffness (k1) of straight fibers (εc>εs). The
RVE was subjected to homogeneous boundary conditions reflecting the
macroscopic displacement and stress-free lateral faces in UA and EB tests. The
computed reaction forces on the boundaries were used to compute the
homogenized stress tensor61 and the orientation of the connector elements in the
deformed RVE were extracted, processed with Matlab (Version R2013a) and
represented as polar plots.

The results in Fig. 3e–g, i–k are representative of bGC behavior with a thickness
of 150 μm and reproduce the measured mean tension, elongation and contraction
data in UA tests. The network was characterized by the following set of parameters:
ρI= 0.00045 μm−3, ls= 50 μm, β= 3, k0= 9.6 μN, kb= 19.2 μN, k1= 32 mN,
km= 16 μN, εs= 16.5%, κ= 0.06 MPa, J* = 0.2. Results in Fig. 3l for linear fiber
behavior and isotropic fiber distributions were computed with kb= k0= k1= 32
mN and β= 0, respectively, while maintaining the other parameters. To be
consistent with the experimental procedures, a threshold stress of 0.044 MPa was
used to identify the reference configuration, equivalent to the threshold force per
width of 6.7 Nm−1 used for experiments on bGC membranes.

Biphasic chemo-mechanically coupled constitutive model. Combining theories
for bi-phasic62, 63 and swelling28, 64 media, membranes were modeled as fluid-
saturated biphasic tissues with reference solid and liquid volume fractions ϕref

s and
ϕref
l ¼ 1� ϕref

s , respectively (Supplementary Methods). For a history of deforma-
tion χ(X,t) with deformation gradient F ¼ GradχðX; tÞ at place X and local volume
change J= det F of the mixture, the tissue Cauchy stress tensor was defined by28, 30

σ ¼ σs � π þ μð ÞI; ð6Þ

where σs is the stress contribution from the incompressible solid phase, π denotes
the osmotic pressure, and μ represents the chemical potential of water per current
volume of the mixture. Following previous work23, 26, 32, the solid stress con-
tribution σs is modeled as a fiber-reinforced, visco-hyperelastic material, quasi-
isotropic in the membrane plane, such that

σs ¼ ϕref
s c0e

q gmþgfeð ÞJ�1 c1FF
T þ c2

N

XN
i¼1

λe;i � 1
� �2c3�1 λe;i

jFMij2
FMi � FMi

" #
: ð7Þ

The unit vectors Mi define the directions of N families of fibers in the reference
state, uniformly distributed within the membrane plane and with an out-of-plane
inclination of ±ϑ, respectively. c0, c1, c2, c3 and q are material parameters, h�i
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denote Macaulay brackets, and

gm ¼ c1 tr FFT
� �� 3

� 	
; gfe ¼ c2

c3

1
N

XN
i¼1

λe;i � 1
� �2c3 ; ð8Þ

similar to ref. 65. The stretch in the ith fiber families is given by λe,i which calculate
from evolution equations32

_λe;i
λe;i

¼
_λi
λi
� ϕref

s c0e
q gmþgfeð Þ c2

νF
λe;i λe;i � 1

� �2c3�1
; i ¼ 1; 2; :::;N; λi ¼ FMij j ð9Þ

with initial conditions λe,i= 1 at t= 0 and vF is a viscosity-like constant. The
relationship between the osmotic pressure π and tissue volume change J was
described by the empiric relation

π ¼ π Jð Þ ¼ a0
1� ϕref

s

J � ϕref
s

" #2a1

þ π0 ð10Þ

determined experimentally for bGC in confined compression tests, where a0, a1,
and π0 ¼ ϕref

s c0c1 � a0 are parameters. The liquid volume flux q follows from a
generalized Darcy’s law with an isotropic but compaction-dependent
conductivity31 and the gradient of30 μ as

q ¼ �k0
J � ϕref

s

1� φref
s


 �k1
e
k2
2 J2�1ð Þ grad μ; ð11Þ

where k0 is the initial hydraulic conductivity in the reference state. The model was
implemented in finite element software (COMSOL Multiphysics Version 5.2) and
simulations were performed by specifying initial and boundary conditions. The
model was calibrated by comparison with the relaxation test data on bGC samples
(Fig. 2), and simulations were performed for N= 32 with the following parameter
set: ϑ¼ 10:36� , q= 5.0, c0= 1.8 MPa, c1= 0.001, c2= 180, c3= 1.02, vF= 1.2121e5
MPa s, ϕref

s ¼ 0:15, a0= 0.9435 kPa, a1= 1.0235, k0= 3.4783 e−14 m4 N−1 s−1,
k1= 0.6, k2= 9.8.

Simulation of relaxation with change in bath salinity. A central 0.7 mm-long
segment of the UA tension specimen with full width of 15 mm and thickness of 0.1
mm was simulated. Preliminary computations based on the entire specimen geo-
metry showed that fluid motion along the stretching direction becomes negligible
beyond this central region so that the computational domain could be reduced by
preventing flux through the cutting surface. Due to the symmetry of the sample,
one eighth of this segment was discretized with hexahedral elements, and zero flux
and displacement boundary conditions were prescribed at the faces lying in
symmetry planes, while on the boundaries in contact with the external bath zero
stress and a defined value of the chemical potential was prescribed30 μ ¼ μext . In
line with the experimental protocol, the specimen was elongated by 5% within 0.5 s
at constant rate and maintained at constant length for 600 s. To model the tissue
response to a reduction of salinity in the surrounding bath, an increase of π(J) to
πch(J) was implemented at a prescribed time tch during the dwell phase, and
parameters of πch(J) were selected to approximate the corresponding experimental
behavior after a change of bath (Fig. 2e).

Equibiaxial loading of a membrane with circular defect. A square sample of
tissue with side length 10 mm, thickness of 0.1 mm and a circular hole of 1 mm
diameter was considered and an octant of this geometry was simulated by
exploitation of symmetry (Fig. 4f). A defined value of the chemical potential and
zero stress were prescribed on the surfaces in contact with the external bath, while
the flux was prevented on the lateral surfaces, which were displaced by 8% of the
side length within 4 s to create a state of EB extension in the membrane plane. This
displacement was maintained and the deformation, stress, flux and pressure fields
were analyzed over 30 s. The ratio of circumferential to radial stretch λθ/λr with
respect to a cylindrical coordinate system aligned with the cylindrical hole, and the
local change in tissue density J−1 were computed from the resultant deformation
field. These quantities were normalized by their maximum values, respectively, so
that for the density change ρ/max(ρ) =min(J)/J (Fig. 4g).

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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