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The  prediction  of  the  long  term  performance  of  VIPs  remains  challenging.  To  improve  the  forecast,  the
evaluation  of  VIPs  aged  for very  long  periods  can  help  significantly.  This study  reports  the  characteriza-
tion  method  which  was  implemented  on  VIPs  after  an artificial  aging  of  10  years  in  the  laboratory,  at
room  temperature  in two  different  relative  humidities:  quite  low  and  high  (23 ◦C  at  33  and  80  %RH).  The
aim  is  to evaluate  the  aging  of the  fumed  silica  core  thanks  to  the detailed  study  of  the hygrothermal  and
structural  evolutions  of  the core  material.  The  evaluation  reveals  that  the silica  core  has  been  partly  aged
at high  relative  humidity  (80  %RH),  as  highlighted  by:  (i) the  moisture  content  at equilibrium  which  is not
so  high  as  the  moisture  content  that  could  be reached  by short-term  additional  aging  of  the  sole  silica  at
high humidity  levels,  (ii)  the evolution  of the  specific  area  (decrease  of only  several  percents).  For  the  VIP
ation

therms
s
nductivity

aged  at relatively  high  humidity,  the  water  sorption  isotherm  indicates  that the  moisture  content  inside
the  VIP  corresponds  to a humidity  level  of  44  %:  in  comparison  with  the  permeation  at  the  beginning  of
the  accelerated  aging,  the  WVTR  decreased  approximately  by  a factor  2 (humidity  gradient  from  80  to
44  %).  Furthermore,  thanks  to  the  follow-up  on the  weight  and  internal  pressure  of the VIPs,  the  perme-
ances  of  the  barrier  laminate  to water  vapor  and air  are also  estimated.

©  2017  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
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rediction of the long term performance of VIPs remains
ng. It is important that the thermal conductivity of VIPs
g aging in laboratory or in service is not underestimated

increasing application in buildings. There are many rea-
the deviation towards too low predicted values: e.g. the

 of the model used or the accuracy of the data. Accord-
e most commonly used models, the degradation of the
erformance (conductivity increase) is due firstly to the

of the internal pressure (main contribution: dry air), that
e increase of the gaseous contribution to the thermal con-

 and secondly to the increase of the solid conduction [1].
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oscopy (TEM) by Morel for pyrogenic silica [3,4], the silica
undergoes surface modifications during aging at 80 %RH
). TEM examinations show that the surface of the aged
appears smoothened and a coalescence of the primary
is evidenced without any modification of the aggregates
ure [3,5] (Fig. 1). This is linked to the decrease of the mea-
ecific surface area and suggests an enhancement of the
l contribution to the thermal conductivity.

 models developed a decade ago to predict the evolution of
e-of-panel thermal conductivity do not take into consid-
he aging of the core itself. Recently, difference between
n and measurements has been pointed out by Brunner
e measurements on monitored VIPs installed on a roof for
ears have shown an underestimation by the model by an
f 1.1–1.4 mW/(m.K) in their centre-of-panel thermal con-

 [6]. The authors presume that aging of the core is the more
lanation: a redistribution of Si and O atoms around the

iO2 particles enhances the structural heat transfer trough

skeleton.
prove the knowledge and then the forecast, the evalua-
IPs aged for very long periods can help significantly. It is
t of this study, which reports the characterization pro-
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uate the irreversible modifications of the silica core after
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IPs during 1 month at high humidity level (90 %RH at 23

 The evolutions can be interpreted thanks to the detailed
he aging of the fumed silica core. Concerning the barrier

 the follow-up on the weight and internal pressure of the
s an assessment of the water vapor and air permeances.
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e the prediction of the conductivity evolution.

imental

les

IP samples were aged in Empa laboratory at 23 ◦C and in
rent relative humidities, quite low (33 %) and high (80 %).
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ysis. The beginning of the aging discussed here was  2003,
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rrier laminate is a three-fold metalized polymer laminate
ly studied in [9–13]). It was  referenced MF4  in the Annex
IEA [9] and MF2  in the linked paper [10]. It was also called
12] and Type B in [13]. There is no gluing tape for labelling
xing the folded seams (only a 2 cm2 identification tag) so
bation of the weight gain is expected.
easurements during aging are the following (VIPs of

20 mm3):

d internal pressure at the beginning, after about 200 days
he end with about 3950 days.
l conductivity at the beginning and at the end.

uation method of the silica core

aluation method of the core is as follows:
ntification of the water mass content �VIP by the weight
ents of the VIP. It was  checked that the water content

 in the sample �ads can be approximated by the water
f the VIP (negligible influence of the masses of water dis-

 the envelope and as vapor in the core porosity). Practically,
g on the quality of the initial drying the water content

 in the sample �ads is the sum of the rate of initial water
g in the core before sealing the VIP �ini and the rate of
take during aging �m%:

i + � m % (1)

antification of the chemi- and physisorbed water by the
ethod. The VIP is opened to sample the core, and then it
ed. The drying is done thanks to a vacuum pretreatment
nt Belprep (Bel Japan) and an analytical balance (model
ltaRange, Mettler Toledo,  resolution of 0.01 mg  for samples
up to 62 g) as follows:

ing during 2 h at 140 ◦C, which is the temperature usually
ed by the VIP manufacturers, for which the low energy
rbed water is removed;

 drying during 2 h at 200 ◦C, to be sure having dried all the
rbed water including the high energy one [5,2]; the dried
t gives �phys.
misorbed amount can then be deducted:

ads − �phys (2)
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Table  1
samples characteristics and their aging conditions.

Sample # Dimensions (mm3) Aging

Conditions Start date End date Duration

12 500*500*20 23 ◦C, 33 %RH 19/05/2003 31/03/2014 3969
13  500*500*20 23 ◦C, 33 %RH 19/05/2003 31/03/2014 3969
3  250*500*20 23 ◦C, 80 %RH 25/07/2003 31/03/2014 3902
4  

◦ 28
6  25
7  25

3) Wa
vacuum a
the isoth
ratus (Be
main par
macrosco
evaluate 

a way to 

the classi
4) Wa

chamber 

aged stat
5) Nitr

area ABET
on the de
preparati
Belprep a
with a Be

The n
making i
Emmett-
0.30–0.35
porous a
in the ca
monolaye
increasin
increase 

reduced 

the meso
condensa
and deso
than ∼ 4 n
at 77 K).T
but an in

As the
aged at (2

2.3. Evalu

The w
recorded
inate can

j = � · A ·

where
j = mas
� = pe
A = bar
pext , p
For w

and Eq. (4

�wv = dm

dt

or ai
 to c

Ma

R

re
pa,int
−1)
a,ext −
e th
a = m

pores

 = un
 = tem
he v
artia

hods

e fir
e pan
e wa

t = Pt

e se
nel a
essu

oth s
once
ress
e en

men
 as t

ound
he w

 mea
porte
der t
he se

 time
princ
perat
ater 

cally
case
l inte

 tem
250*500*20 23 C, 80 %RH
500*500*20 23 ◦C, 80 %RH 

500*500*20 23 ◦C, 80 %RH 

ter sorption isotherm at 25 ◦C after preparation under
t 140 ◦C. The preparation is made with the Belprep and

erm �ads = f(pv) is established on a very accurate appa-
lsorp Aqua, Bel Japan) using the volumetric method. The
ameters deducted from the isotherms for this work is the
pic hygrophilicity �ads@50 %RH. This value could be used to
the surface hygrophilicity �ads = �ads@50 %RH/ABET which is
characterize the surface chemistry. The comparison with
cal new silica gives the intensity of the aging of the core.
ter sorption isotherm at 25 ◦C after a treatment in climatic
(50 ◦C, 90 %RH, 1 month) to age the core close to a fully
e.
ogen sorption at −196 ◦C (77 K) to determine the specific
(BET method) and the pore size distribution (BJH method,
sorption isotherm) and therefore evaluate aging. The same
on than for water sorption measurement is made with the
nd the adsorption and desorption isotherms are recorded
lsorp Max  (Bel Japan).
itrogen adsorption isotherm is close to the type IV(a),
t possible to assess the specific area by the Brunauer-
Teller (BET) method, within the p/p0 range of ∼ 0.05 −

 [14,15]. This type of isotherm corresponds to meso-
dsorbents. Its first part for the lowest p/p0 ratio (<0.42
se of nitrogen adsorption at 77 K) reflects the initial
r – multilayer adsorption on the mesopores walls. Then,

g p/p0, pore condensation occurs. While continuing to
the p/p0 ratio, a plateau (of variable length, sometimes
to an inflexion point) corresponds to the saturation of
pores. In the case of a type IV(a) isotherm, the capillary
tion is accompanied by a hysteresis between adsorption
rption (this hysteresis takes place for mesopores wider
m in the case of nitrogen desorption in cylindrical pores

he isotherms recorded on VIP cores do not show a plateau
flexion point.

 reference state of the silica is no more available, the silica
3 ◦C, 33 %RH) is considered to be very little modified.

ation method of the multilayer barrier laminate

eight and internal pressure increases of the VIPs were
, so the water vapor and air permeance of the barrier lam-
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r, the pressure increase inside the VIP during the aging is
alculate the mass permeance by Eq. (5):

· Vpores
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· dpa,int
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· 1

A ·
(
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) (5)

/dt = evolution of the internal pressure of air with time

 pa,int = difference of the partial pressure of air outside and
e VIP

olar mass of air (kg mol−1)
= porous volume of the VIP core (m3)
iversal gas constant (8.314 m3 Pa K−1 mol−1)

perature (K)
alue required for the calculation of the air permeance is
l pressure of dry air in the panel after aging. Two  different

 were used to determine it:

st is the more indirect, it needs the total pressure inside
el and the partial pressure of water vapor, obtained via

ter vapor sorption isotherm. The air pressure is therefore:

,int − pwv,int (6)

cond uses the determination of the pressure inside the
t low temperature (< −20 ◦C) that approximates the partial
re of air.

uppose that the initial pressure of the VIP is due to air.
rning the first method, the measurement of the total inter-
ure of the VIP was made at EDF with the lift-off method
velope in a vacuum climatic chamber [9,16]. The mea-

t principle is based on the lift-off of the barrier film as
he internal pressure of the VIP becomes higher than the
ing pressure.
ater vapor pressure was  assessed thanks to the weight
surement, �mw − assumed to be due only to water – that
d next on the water vapor adsorption isotherm of the core
o find the equilibrium pressure pwv,int.
cond method, lift-off at low temperature, is to our insights

 used in this scientific paper, as it was just published [17].
iple is to perform the lift-off method on VIPs at very low
ure that is the temperature where the saturation pressure
(psat) is lower than the needed accuracy on the pressure.

 at T < –20 ◦C, Psat for water vapor is less than 1 mbar. In
, the partial pressure of air can be approximated by the
rnal pressure. The air pressure must then be converted at
perature by Eq. (7) (temperatures expressed in K):
C = Pt,int@T<−20 ◦C
296.15

T
(7)

er to calculate the air permeance (Eq. (5)), the pressure
 temperature T and the porous volume Vpores should be
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; a simple way is to express the three parameters at ambi-
tions or STP conditions.

 the classical method the true volume of pores must be
e volumes of the solid skeleton as well as the volume of
bed water must be subtracted from the total volume of

 the equilibrium pressure Vpores = Vtotal@Pt:

total@Pt − mcore

�s
− mw

�w
(8)

and �s = mass and skeleton density of the core (
∑ mi

�0i
if

contains several constituents). Remark: The real mass of
s calculated from the mass of the VIP by subtracting that
.

d �w = mass and density of water
Pt = total volume of the VIP at the equilibrium pressure
fluence of the temperature on the skeleton and water

 and on the core thermal expansion are neglected.
tal volume at the equilibrium pressure Vtotal@Pt is classi-
ined by the dimensions of the VIP core at atmospheric

 In the lift-off method at low temperature, the mechan-
vior of the core and the expansion of volume due to the
of the pressure are taken into account. For the silica based
near elastic behavior is observed:
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(

1 + Patm − Pt,int

E

)3

(9)

Patm = total volume of the VIP at the atmospheric pressure
 by the dimensions of the core)
ng modulus of the core
ung modulus of the core can be determined by compres-

 or during the decompression of the VIP in the vacuum
chamber by the slope of the curve d = f(p) if the laser

 system at the vacuum chamber is done in a way that there
mall influence of the vacuum chamber wall deformation.

s

ht, pressure and conductivity increase over 10 years

olutions of the mass, internal pressure and conductivity
ver 10 years are listed in Tables 2a and 2b. After aging at
ow and high humidity levels over 10 years, the VIPs were
EDF at (23 ◦C, 50 %RH).
g aging, the mass and pressure of the VIPs increase because
ater vapor and air permeations through the envelope
). For the VIPs aged at (23 ◦C, 33 %RH), these increases
rate (0.57 % mass, 5 mbar), but relatively important for
ged at 80 %RH (about 3.25 % mass, 17.5 mbar). The weight

 be compared to the one of a fully aged fumed silica core
uld uptake about 5 % of mass or more at 80 %RH (cf. [5]
sults hereafter). The pressure inside the VIPs places them
lways on the lower plateau of conductivity versus pres-
e aging at 33 %RH and in the beginning of the increase for

 at 80 %RH. As a consequence of this water and pressure
he conductivity of the panels increases respectively by 0.6
W/(m.K) (Table 2b). In comparison with vented VIPs, the
ity values remained low and the insulation performance

 was good even after 10 years at (23 ◦C, 80 %RH).
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ged 1”) and at EDF (“aged 2”) could come from the differ-
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 the same conditions had the same thermal conductivity.
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eight loss of the core dried 2 h at 140 and 200 ◦C is given
 (% of the wet initial mass).
ount of physisorption �phys is about 1.2 % for the VIPs

3 %RH and 2.5 % for the VIPs aged at 80 %RH.
ding to the results obtained for the samples aged at 33 %RH,
noted that after drying at 140 ◦C some physisorbed water
0.32 % of the sample mass), which corresponds mainly to
gy physisorption. The amount of high energy physisorbed
lower for samples aged at 80 %RH (0.17 %). The results
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f water.
ives the details of the water mass content of the VIP cores,

 from the weight measurements during aging and from
g tests at 200 ◦C. As the humidity inside samples #12 and

 (< 33 %RH thanks to the external conditions and ≈21 %
 the weight gain and the water adsorption isotherm Fig. 3,
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◦
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idity corresponds to a water content lower than



202 E. Pons et al. / Energy and Buildings 162 (2018) 198–207

Table  2a
weight gain and pressure increase in the VIP after low and high humidity aging in climate chambers over more than 10 years.

Aging minitial (g) maged1 (g) �m (%) pinitial (mbar) paged1 (mbar) �p (mbar)

Sample # Conditions
T ◦C − RH %

Duration (days)

12 23–33 3948 964.61 970.07 0.57 0.94 6.02 5.1
13  23–33 3948 948.61 954.05 0.57 0.99 5.80 4.8
3  23–80 3902 508.27 524.95 3.28 0.91 – –
4  23–80 3899 477.81 494.21 3.43 1.10 – –
6  23–80 3881 956.23 986.47 3.16 0.96 18.62 17.8
7  23–80 3881 940.06 969.26 3.11 0.89 18.39 17.5

In italics: weighing performed at EDF laboratory after storage at (23 ◦C, 50 %RH) during 213 days.

Table 2b
weight gain, pressure increase in the VIP and conductivity evolution after low and high humidity aging over more than 10 years.

Aging Storage

Sample # �cop initial

(mW  m−1 K−1)
Conditions
T ◦C − RH %

Duration
(days)

�cop aged 1

(mW  m−1 K−1)
��cop

(mW m−1 K−1)
Conditions
T ◦C − RH%

Duration
(days)

�cop aged 2

(mW m−1 K−1)

12
3.9

23–33 3969
4.5 0.6

23–50 199 4.8
13  23–33 3969 23–50 199 4.8
3  – 23–80 3902 – – 23–50 218 7.0
4  – 23–80 3899 – – 23–50 218 7.0
6

3.9
23–80 3902

6.1 2.2
23–50 200 6.6

7  23–80 3902 23–50 211 6.6

Table 3
weight loss of the core by drying (assessment of the physisorbed water �phys) and comparison with the weight gain during aging.

VIP Sample # Aging Test sample Weight loss by drying (%) �m  (%)*

Conditions T ◦C − RH % Duration (days) at 140 ◦C at 200 ◦C

12 23–33 3969 12–1 0.85 1.16 0.57
13  23–33 3969 13–2 0.94 1.25 0.57

Mean 12-1/13-2 0.89 1.21 0.57

3  23–80 3902 3−1 2.29 2.38
3−3 2.32 2.56
Mean 3-1/3-3 2.30 2.47 3.13

* From the weight measurements of VIPs. For the conditions (23 ◦C, 80 %RH), the value comes from the largest VIPs # 6 & # 7, because the uncertainty is lower.
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Table  4
water content deducted from the adsorption isotherm.

Sample # Aging �ads@50%RH (%)

1st cycle 2nd cycle

12 10 years at (23 ◦C, 33 %RH) 2.43 3.45
13  10 years at (23 ◦C, 33 %RH) 2.44 –
13  10 years at (23 ◦C, 33 %RH) 2.34 –

3  10 years at (23 ◦C, 80 %RH) 2.79 2.87
4  10 years at (23 ◦C, 80 %RH) 2.88 3.04
4  10 years at (23 ◦C, 80 %RH) 2.94 3.05
3  10 years at (23 ◦C, 80 %RH) + core during 1 month at (50 ◦C, 90 %RH) 3.9 –

Table 5
BET specific area (nitrogen measurements) of the core and estimation for the silica.

Sample # Aging ABET core measured (m2 g−1) ABET silica calculated (m2 g−1)

12 10 years at (23 ◦C, 33 %RH) 219–220 235

3  10 years at (23 ◦C, 80 %RH) 205 219

4  10 years at (23 ◦C, 80 %RH) 199–205 216

3  10 years at (23 ◦C, 80 %RH) + core during 1 month at (23 ◦C, 90 %RH) 168 180
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Table  6
permeance of water vapor assessed from weight and permeance of air/gas from pressure increases over 10 years (mean values over 2 VIPs).

Sample # Aging �wv (kg m−2 s−1 Pa−1) �g (kg m−2 s−1 Pa−1) �a (kg m−2 s−1 Pa−1)

12/13 10 years at (23 ◦C, 33 %RH) 3.2E-14 1.8E-18 7.1E-19 9.8E−19 *

3/4 10 years at (23 ◦C, 80 %RH) 7.5E-14 – – –
6/7  7.4E-14 6.2E-18 1.3E-18 –

Based on weight
gain data of
whole VIP

(1) Based on
pressure increase
data of whole VIP

(2) Based on
estimation of the
dry air pressure
inside the VIP (cf.
§.  Water vapor
sorption)

(3) Based on the
measurement of
the total pressure
at low
temperature

* The value of the total pressure considered here (8.2 mbar) was  measured at EDF by the lift-off method at 25 ◦C (equal if converted to 23 ◦C) at the same time than the
measurement was  done at low temperature (−39.6 ◦C) to assess the air pressure, so after 3 years additional aging at (23 ◦C, 50 %RH).
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Table  7
assessment of the surface hygrophilicity of the VIP core.

Sample # Aging �ads (�g m−2)

12 VIP 10 years at (23 ◦C, 33 %RH) 102
3  VIP 10 years at (23 ◦C, 80 %RH) 136
4  VIP 10 years at (23 ◦C, 80 %RH) 145

4bis  VIP 10 years at (23 ◦C, 80 %RH) 143
Reference fumed silica silica not aged 47

silica, 30 days at (23 ◦C, 80 %RH) 170
silica, 24 h at (70 ◦C, 90 %RH) 185

Table 8
calculated values by the model Eq. (10) and measured values of the thermal conductivity increase.

Sample # Aging �m �pint ��calc ��meas

(%) (mbar) (mW  m−1 K−1)

12 3948 days at (23 ◦C, 33 %RH) 0.57 5.1 0.5 0.6
13  3948 days at (23 ◦C, 33 %RH) 0.57 4.8 0.5 0.6

6  3881 days at (23 ◦C, 80 %RH) 3.16 17.8 2.2 2.2
7  3881 days at (23 ◦C, 80 %RH) 3.11 17.5 2.2 2.2

Table 9
mass and pressure increase rates and permeances for different VIPs aged at 23 ◦C.

Sample # Aging Size �m/�t  �pint/�t �wv �g �a

(cm3) (% y−1) (mbar y−1) (kg m−2 s−1 Pa−1) (kg m−2 s−1 Pa−1) (kg m−2 s−1 Pa−1)

12/13 3948 days at (23 ◦C, 33 %RH) 50 × 50 × 2 0.05 0.5 3.2E-14 1.8E-18 7.1E-19 9.8E-19

[10,22] 180 days at (23 ◦C, 50 %RH) 25 × 25 × 2 0.16 1.4 6.0E-14 4.0E-18
25  × 50 × 2 0.13 1.3 5.1E-14 3.8E-18
50  × 50 × 2 0.12 1.0 4.9E-14 3.0E-18

3/4 222 days at (23 ◦C, 80 %RH) [22] 25 × 50 × 2 0.22 1.1 5.6E-14 4.1E-18
4115 days at (23 ◦C, 80 %RH) 0.30 – 7.5E-14 –

6/7 236 days at (23 ◦C, 80 %RH) [22] 50 × 50 × 2 0.21 1.3 5.3E-14 4.8E-18
3881 days at (23 ◦C, 80 %RH) 0.30 1.7 7.4E-14 6.2E-18 1.3E-18

Based on pressure
increase data of
whole VIP

Based on estimation
of the dry air
pressure inside the
VIP

Based on the
measurement of the
pressure at low
temperature

Table 10
mass and pressure increase rates for different VIP aged at 23 ◦C; comparison of the calculated and measured conductivity increases.
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the short-term tests, it is finally possible to estimate the
 conductivity increase using Eqs. (10) and (11). For this
ion, the parameter �W∞ is taken equal to 8 % (Fig. 4).2 The
on with the measured conductivity increase is done for

 and 7 in Table 10. The two methods underestimate this
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 underestimation with Eqs. (10) and (11) should increase
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usions and outlook

aluation of VIPs after mild artificial aging during 10 years
that the silica core has not been fully aged, even at high rel-
idity (80 %RH). This was highlighted by different results:
ount of chemisorbed water, ii) the moisture content at
m, which is below the moisture content that could be
y short-term additional aging at higher humidity levels,
crease of the specific area, iv) the increase of the surface
licity, and v) the validity of the parameters B and G for the

 model.
ater sorption isotherm indicates that the moisture content

 VIPs, deducted from the weight increase, corresponds to
ty level of 40–50 % for the VIPs aged at 80 %RH. So the
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an even be dried, if the environmental conditions change,
onfirmed by the weight loss of the VIPs over the last year,
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