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Background: Skin temperature (Tskin) is commonly measured using Tskin sensors affixed

directly to the skin surface, although the influence of setup variables on the measured

outcome requires clarification.

Objectives: The two distinct objectives of this systematic review were (1) to examine

measurements from contact Tskin sensors considering equilibrium temperature and

temperature disturbance, sensor attachments, pressure, environmental temperature,

and sensor type, and (2) to characterise the contact Tskin sensors used, conditions

of use, and subsequent reporting in studies investigating sports, exercise, and other

physical activity.

Data sources and study selection: For the measurement comparison objective, Ovid

Medline and Scopus were used (1960 to July 2016) and studies comparing contact Tskin

sensor measurements in vivo or using appropriate physical models were included. For

the survey of use, Ovid Medline was used (2011 to July 2016) and studies using contact

temperature sensors for the measurement of human Tskin in vivo during sport, exercise,

and other physical activity were included.

Study appraisal and synthesis methods: For measurement comparisons,

assessments of risk of bias were made according to an adapted version of the Cochrane

Collaboration’s risk of bias tool. Comparisons of temperature measurements were

expressed, where possible, as mean difference and 95% limits of agreement (LoA). Meta-

analyses were not performed due to the lack of a common reference condition. For the

survey of use, extracted information was summarised in text and tabular form.

Results: For measurement comparisons, 21 studies were included. Results from these

studies indicated minor (<0.5◦C) to practically meaningful (>0.5◦C) measurement bias

within the subgroups of attachment type, applied pressure, environmental conditions,

and sensor type. The 95% LoA were often within 1.0◦C for in vivo studies and 0.5◦C for
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physical models. For the survey of use, 172 studies were included. Details about Tskin

sensor setup were often poorly reported and, from those reporting setup information,

it was evident that setups widely varied in terms of type of sensors, attachments, and

locations used.

Conclusions: Setup variables and conditions of use can influence the measured

temperature from contact Tskin sensors and thus key setup variables need to

be appropriately considered and consistently reported.

Keywords: skin temperature, thermometry, measurement error, comparability, agreement, validity, bias

INTRODUCTION

Heat exchanges at the skin surface can both contribute to and
challenge thermal homeostasis. Accordingly, quantification of
skin temperature (Tskin) is important in many research and
applied settings and using sensors affixed directly to the skin
surface is common for this purpose. While measuring Tskin in
this way is simple in terms of access to the measurement site,
an inherent challenge is that accurate measurements of surface
temperature are difficult to accomplish (Hardy, 1934b; Malone,
1963; Boetcher et al., 2009). Understanding measurement
limitations benefits users by supporting decisions during sensor
selection and setup, use, and interpretation of resultant data, and
can assist in the development of future sensor systems.

Human Tskin data are used widely, including for evaluating
thermal strain (Moran et al., 1999; International Organization
for Standardization, 2004; McLellan et al., 2013), estimating
mean body temperature (Burton, 1935; Colin et al., 1971;
Lenhardt and Sessler, 2006) and body heat content and storage
by thermometry (Tucker et al., 2006) (although with limitation
compared to whole body calorimetry; Jay et al., 2007, 2010),
and validating psychophysical and thermophysiological models
(Zhang et al., 2010; Martinez et al., 2016). Further, Tskin is used
for understanding the mechanisms of acute thermoregulatory
and cardiovascular responses (Rowell et al., 1969; Nadel et al.,
1971; Libert et al., 1978; Cotter and Taylor, 2005) and adaptation
to thermal stress (Regan et al., 1996), understanding how
perturbations of body temperature, and strategies to mitigate
or recover from such perturbations, influence aspects of sports,
and occupational performance (Daanen, 2009; Sawka et al., 2011,
2012; Schlader et al., 2011a; Caldwell et al., 2012; Levels et al.,
2012; Ross et al., 2013; Lee et al., 2015; Stevens et al., 2017),
and understanding effects of the ambient environment (Gagge
et al., 1967; Galloway and Maughan, 1997) or body coverings
(Gagge et al., 1938; Nielsen et al., 1985; White and Hodous, 1987;
Ruckman et al., 1999; Rossi, 2003; Barwood et al., 2016). With
growing interest in wearable technology and body monitoring,
the prospects for applied uses of Tskin data are also expanding
and include monitoring of individuals during sport and exercise
or working under extreme conditions.

Contact thermometry consists of a temperature sensor
positioned in direct contact with the skin surface and, therefore,
relies on conductive heat exchanges between skin and sensor.
Contact thermometry is popular for measuring Tskin in both
research and applied settings with reasons including commercial

sensor availability and relative low cost, small sensor size and
potential robustness, ease of measurement continuity within a
measurement period, the ability to position sensors at a selection
of body sites, and that measurements can be made at sites under
coverings like clothing and protective equipment. These sensors,
however, can differ in terms of the underlying measurement
principle (e.g., electrical resistance for thermistors, Seebeck effect
for thermocouples), sensor size and shape, constituent materials,
and resultant thermal properties. The method of attachment
to the skin also varies, with tape or other adhesive common
in research settings (Buono and Ulrich, 1998; Psikuta et al.,
2014). With the variety of contact Tskin sensors and attachments
commonly used, it is necessary to recognise if equivalent
measurements can be expected irrespective of the sensor type and
setup variables.

Issues regarding validity of data from contact Tskin sensors
also require consideration. That is, do these sensors actually
measure what they are supposed to be measuring? Due to
inherent skin contact and coverage at the measured sites, a
disadvantage of contact thermometry is that the sensors and
their attachments modify the immediate environment for the
underlying skin. The effects of such a modification may manifest
as a disturbance of the temperature that would otherwise exist
in the undisturbed case (Henriques, 1947; Childs et al., 2000;
Boetcher et al., 2009; Taylor et al., 2014). Further, the Tskin

is not measured directly: the temperature measured is that of
the sensor itself (Malone, 1963; Childs, 2001) and, therefore,
it is important to consider whether the sensor temperature
is at equilibrium with the underlying skin temperature. Non-
contact techniques utilising electromagnetic radiation emitted
from the skin surface—therefore, able to measure temperature
from a distance—can overcome certain difficulties associated
with sensor contact and coverage (Hardy, 1934a,b; Hardy and
Soderstrom, 1937), but have difficulties of their own, including
limited practicality during movement or field use, influences of
changes in the emissivity of the skin surface (Bernard et al., 2013),
and unclear validity of common commercial devices, particularly
during exercise (Bach et al., 2015b). Thus, no method is without
limitation and, while imperfect, the general practicality of contact
thermometry likely means it will remain a desirable method for
quantifying Tskin in the foreseeable future.

To elucidate relevant considerations for the measurement of
Tskin using contact thermometry, we systematically reviewed the
literature in accordance with two distinct objectives. The primary
objective, objective 1, was to examine measurements from
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contact Tskin sensors considering sensor-surface equilibrium
temperature and surface temperature disturbance, and
considering whether setup variables (sensor type, attachments,
applied pressure, or environmental conditions) meaningfully
influence the measured temperature. The secondary objective,
objective 2, was to survey and characterise the contact Tskin

sensors used, conditions of use, and subsequent reporting of
Tskin in published scientific studies investigating sport, exercise,
and other physical activity.

METHODS

A protocol was developed before the formal searches were
performed, specifying the literature searches, screening,
inclusion, and data synthesis. The review was conducted in
general accordance with PRISMA guidelines (Moher et al.,
2009).

Search Strategy
The search strategies (including full lists of search terms)
used for both objectives are given in Supplementary Material
Tables 1, 2. In brief, terms including and relating to skin,
temperature, and thermometry were used for the measurement
comparisons (objective 1), and terms including and relating to
skin, temperature, sport, exercise, and physical activity were used
for the survey of use (objective 2). Searches were performed
13.07.2016.

The electronic databases Ovid Medline and Scopus were
used for objective 1. Reference lists of studies meeting inclusion
criteria were searched for other relevant articles and Google
Scholar was used to identify any relevant articles citing included
studies. The electronic database Ovid Medline was used for
objective 2. One database was considered appropriate because,
given the purpose of this objective and the breadth of journals
included in Medline, the practicality was considered to outweigh
the risk of bias for publication sampling. No further articles were
added for objective 2 from other search means. No language
restrictions were imposed for the searches. Studies published
in the grey literature or in truncated form (e.g., abstracts only,
posters) were not considered.

Study Eligibility Criteria
Measurement Comparisons
We sought temperature data from contact temperature sensors.
Studies using “conventional” contact temperature sensors—those
that can be affixed to the skin surface to measure Tskin—were
included; other contact sensors (including those temporarily
held against the skin) were included only in cases where
they provided insight into setup considerations for affixable
sensors. Measurements from liquid-crystal thermometers or
other colour-change materials and measurements from non-
contact methods were excluded. Studies were included if human
or other animal Tskin was measured in vivo; surface temperature
(Tsurface) measurements of a physical model were also included
if the model was used in the context of understanding
human Tskin measurement and if the temperatures investigated
were physiologically relevant for humans. Included studies

were required to report the measurement of a suitable
comparison temperature, typically another Tskin or Tsurface

(the comparator determined to what outcome subgroup
the data belonged; see data synthesis below). Comparisons
performed simply for the purpose of validating or correcting
a prototype sensor system were excluded (e.g., Chen et al.,
2015). Comparisons with non-contact methods or numerical
models, while useful in their own right, were beyond the
scope of this article. (The comparison of contact and infra-
red devices for measuring Tskin has been reviewed elsewhere;
Bach et al., 2015b.) Studies investigating Tskin or Tsurface

during clinical or rehabilitation treatments/conditions were
excluded (e.g., cryotherapy, ultrasound therapy, radiotherapy,
other hyperthermia therapy). Studies published from 1960
(until 13.07.2016) were considered for inclusion, which was a
modification from the unrestricted date range specified in the
protocol (see Supplementary Material Appendix 1).

Survey of Use
We sought general information about Tskin sensors and their use
in published research (e.g., sensor type, attachments, conditions
of sensor use, and use of the Tskin data). Studies included were
those that used contact temperature sensors for the measurement
of human Tskin in vivo during experimental studies involving
sport, exercise, and other physical activity (PA; hereafter for
practicality, sport, exercise, occupational and other PA will be
collectively termed PA). The sensors had to be affixed to the skin
surface in some way and remain in place during the PA. While
measurement of Tskin is relevant beyond situations involving
PA (e.g., clinical use, passive heat stress, sleep studies, circadian
rhythm studies), measurements in these contexts were beyond
the scope of this review.

For inclusion, studies needed to report Tskin data recorded
during or immediately following PA, or use that data to calculate
another variable that was reported in the results. Studies were
excluded if they involved only “trivial” PA, such as standing
tasks. Studies in which it was clear the Tskin data had been
previously published in article form and studies involving daily
monitoring were excluded unless that monitoring was part of a
specific occupational routine including an expected component
of PA. For objective 2, only studies published in the years 2011–
2016 (until 13.07.2016) were included to be reflective of current
practice at the time of review.

Study Selection and Data Extraction
All records were screened against the eligibility criteria first
by title and abstract then, for those remaining, by full
text. For measurement comparisons, duplicates were removed
and preliminary inclusion of studies was performed by one
investigator (BM). Final inclusion was performed after a
systematic cross-check (SA or CS); disagreements were resolved
by discussion among the three investigators. For the survey
of use, one investigator (BM) performed preliminary inclusion.
Final inclusion was performed after a systematic cross-check (SA)
and any disagreements were resolved by discussion with a third
investigator (CS).
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For measurement comparisons, one investigator (BM)
extracted study information and temperature data, with a
second investigator (SA) verifying the accuracy. Disagreements
were solved by discussion including a third investigator (CS).
Temperature data were typically extracted from text or tables;
for eight studies it was necessary to extract data, at least in part,
from figures (Flesch et al., 1976; Dollberg et al., 1994; Buono
and Ulrich, 1998; van Marken Lichtenbelt et al., 2006; Deng
and Liu, 2008; Youhui et al., 2010; McFarlin et al., 2015; Priego
Quesada et al., 2015) and original data were available for two
studies (Psikuta et al., 2014; Bach et al., 2015a). Data extracted
from figures was done so using a computer-based extraction tool
(http://arohatgi.info/WebPlotDigitizer/). For the survey of use,
one investigator extracted study information (BM) and at least
one other investigator was consulted to discuss uncertainties.
Spreadsheets were produced and refined during piloting work
with input from multiple investigators and common problems
were discussed before formal data extraction. Further details
about the extracted data information are given in Supplementary
Material Appendix 2.

Assessments of Risk of Bias
For measurement comparisons, assessments of risk of bias were
made at the outcome subset level according to an adapted
version of the Cochrane Collaboration’s risk of bias tool (Higgins
et al., 2011) (see Supplementary Material Table 3 for the specific
criteria used). Seven sources of bias were assessed: four that
are widely used (sequence generation, blinding of participants
and personnel, incomplete outcome data, selective reporting)
and three specific “other” sources of bias (consistency of test
conditions, calibration/baseline comparability of sensors, and
study support). Assessments were made independently by two
investigators (BM, SA); a third investigator was available for
mediation but was not required. Sources of bias were judged
as low, unclear, or high risk of material bias (Supplementary
Material Table 3). Insufficient detail to make an assessment was
considered an unclear risk of bias. Information that was reported
but with an unclear influence on bias was also classified as unclear
risk of bias. Risk of bias was assessed from the perspective of
this review, which may differ from the perspective of the original
study. Assessments of risk of bias were not applicable for the
survey of use (objective 2) due to scope.

Data Analysis and Synthesis
For the survey of use, the collected information was compiled
in Microsoft R© Excel and summarised in text and table form.
The remaining information on data analysis and synthesis below
applies to the measurement comparisons.

The identified temperature measurement comparisons were
categorised according to six pre-defined concept-based outcome
subgroups for presentation and synthesis (1. temperature
disturbance of the surface underlying a surface sensor, 2.
thermal equilibrium of the surface sensor with the underlying
temperature, 3. influence of the attachment on surface sensors,
4. influence of the pressure applied by surface sensors, 5.
influence of the environmental conditions on surface sensors,
6. influence of the type of surface sensor; descriptions in

Supplementary Material Appendix 3). Specific details about
comparisons differed from study to study (e.g., number of
sensors and sites used, timing of comparison measurements) and
therefore such information was retained.

Comparisons were expressed as mean temperature differences
(estimate of measurement bias; calculated as comparator
2–comparator 1) and 95% limits of agreement (LoA; estimate
of random error), in ◦C. The 95% LoA were calculated, where
possible, as:

95% LoA = mean difference ± tn−1·sdiff (1)

where tn−1 is the corresponding critical value from the t-
distribution, n is the sample size, and sdiff is the standard
deviation of the differences. Due to being typically limited to
summary data, heteroscedasticity and normality of the individual
differences were assumed and not directly assessed. We used
the critical value from the t-distribution for the calculation of
LoA (cf. 1.96 or 2; Bland and Altman, 1986) because the sample
sizes here were commonly <15 (Williamson et al., 2002). There
were cases in which the sdiff was not available. In cases without
any form of variance presented, the point estimates were used
without LoA. In cases where other suitable parameters were
reported (e.g., confidence interval for the mean difference, the
standard deviation of each comparator separately), we were able
to estimate sdiff (for further detail see Supplementary Material
Appendix 4).

Studies that were unable to be presented in figures were
acknowledged in narrative form (a lack of information in the
original study was the typical reason). For practicality reasons,
for cases in which there were more than two comparators
within a specific study outcome (e.g., a comparison of seven
levels of applied pressure; Jirak et al., 1975), one was designated
as the “common comparator” from which the others were
compared (in this example, at five body sites separately, the
measured temperature with an applied pressure of 136 mmHg
was compared to the measured temperature using, in series, the
same sensor at the same body site with applied pressures of 34–
681 mmHg). The common comparator was either dictated by
the data presentation in the original article (e.g., data from Jirak
et al., 1975) or it was selected by the review investigators after
considering the original context of the data and the purpose of the
comparison in the context of this review (e.g., data from Psikuta
et al., 2014).

The interpretation of mean differences was made cognizant
of the lack of a universal reference Tskin or Tsurface. Thus,
comparisons were typically relative, without one measurement
being consideredmore accurate (a better estimate of the so-called
“true” value; an exception here is the temperature disturbance
and thermal equilibrium subgroups in which the reference
temperatures were assumed to be superior to the surface Tskin

sensor). Similarly, the LoA were not considered to be a perfect or
complete indicator of random error, but rather a reasonable and
familiar estimate. The threshold for being considered practically
meaningful was beyond ±0.5◦C for mean difference (in vivo
and physical models) and, for LoA, ±1.0◦C for in vivo Tskin
(similar to those used elsewhere; Harper Smith et al., 2010; James
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et al., 2014) and ±0.5◦C for physical models. These thresholds
were a simplification of reality but necessary for practicality. The
thresholds for human Tskin were supported by retest reliability
data from contact temperature sensors (thermistors; for mean
Tskin during rest and exercise in sessions separated by 1 week,
mean differences were<0.5◦C and LoA typically<1.0◦C) (James
et al., 2014). The physiological relevance of these thresholds will,
in practice, depend upon a particular application (e.g., purpose
of the measurement, number of sites used, the requirement
for external validity of absolute values). Lower LoA thresholds
were used for the physical models assuming greater experimental
control of a model versus human skin. Meta-analyses were not
performed due to inconsistency across studies, particularly in
terms of reference condition (comparator sensor type, setup, and
experimental conditions).

Data were displayed, where possible, in forest plots
(Supplementary Material) and condensed into summary
plots (main text). Summary plots were used for initial data
display to facilitate an accessible overview while the forest plots
were given in the Supplementary Material to retain the option
for a more detailed examination of specific comparisons. Data
for summary plots (mean, minimum, and maximum for mean
differences and LoA) were calculated from the data presented
in the forest plots with the mean differences first converted
into absolute values (i.e., mean absolute error). Therefore, mean
differences in the summary plots indicate only the magnitude
of the difference, whereas mean differences in the forest plots
indicate both the magnitude and relative direction.

RESULTS

For the measurement comparisons objective, study
characteristics, assessment of risk of bias, and outcomes
are presented in separate sections below. For the survey of
use objective, the outcomes of interest were simply study
characteristics and, therefore, all results are contained within
section Study Characteristics.

Study Characteristics
An overview of the literature search and study screening for the
two objectives is given in Figure 1.

Measurement Comparisons
The search yielded 4,299 records (Figure 1). Following removal
of duplicates (n = 1,095) and exclusion during screening (n =

3,184), 20 studies remained. An additional study was located
from searches of the reference lists. Thus, 21 studies were finally
included (Yakovlev and Utekhin, 1965, 1966; Guadagni et al.,
1972; Jirak et al., 1975; Flesch et al., 1976; Mahanty and Roemer,
1979a,b; Krause, 1993; Dollberg et al., 1994; Lee et al., 1994;
Buono and Ulrich, 1998; van Marken Lichtenbelt et al., 2006;
Deng and Liu, 2008; Harper Smith et al., 2010; Youhui et al.,
2010; Tyler, 2011; James et al., 2014; Psikuta et al., 2014; Bach
et al., 2015a; McFarlin et al., 2015; Priego Quesada et al., 2015).
From these 21 studies, 31 distinct subsets of comparisons were
identified. A subset is considered here as data from a particular
study that addresses a distinct aspect of one (or more) of the

outcome subgroups. Four subsets (Buono and Ulrich, 1998; van
Marken Lichtenbelt et al., 2006; Harper Smith et al., 2010; Tyler,
2011) were applicable to two outcome subgroups and one study
(Psikuta et al., 2014) was applicable to four, giving 38 subsets in
total.

Selected general information from the included studies is
given in Supplementary Material Table 4. From the 21 studies
included, the relevant outcome data comprised measurements
from a physical model in nine studies (Yakovlev and Utekhin,
1965, 1966; Flesch et al., 1976; Mahanty and Roemer, 1979a;
Krause, 1993; Lee et al., 1994; James et al., 2014; Psikuta et al.,
2014; Priego Quesada et al., 2015) and measurements from the
skin of human subjects in 17 studies (Yakovlev and Utekhin,
1965, 1966; Guadagni et al., 1972; Jirak et al., 1975; Mahanty
and Roemer, 1979a,b; Dollberg et al., 1994; Lee et al., 1994;
Buono and Ulrich, 1998; van Marken Lichtenbelt et al., 2006;
Deng and Liu, 2008; Harper Smith et al., 2010; Youhui et al.,
2010; Tyler, 2011; James et al., 2014; Bach et al., 2015a; McFarlin
et al., 2015). In human studies, Tskin data was reported from
single body sites in 10 studies (Yakovlev and Utekhin, 1965,
1966; Jirak et al., 1975; Mahanty and Roemer, 1979a,b; Dollberg
et al., 1994; Lee et al., 1994; Deng and Liu, 2008; Youhui et al.,
2010; McFarlin et al., 2015) and as the mean of multiple sites in
seven studies (Buono and Ulrich, 1998; van Marken Lichtenbelt
et al., 2006; Harper Smith et al., 2010; Youhui et al., 2010; Tyler,
2011; James et al., 2014; Bach et al., 2015a); in two studies
it was unclear if the data represented single sites or a mean
of multiple sites (Yakovlev and Utekhin, 1966; Mahanty and
Roemer, 1979b). The range for the number of skin sites used
within a study was 1–14 (3–14 for those that reported mean
Tskin).

Survey of Use
This second search yielded 313 records (Figure 1). Following
removal of duplicates (n = 9) and exclusion during screening (n
= 132), 172 studies were retained (see in-text Appendix). These
studies included 2,267 participants (2014 male, 213 female, 40
not specified). Tskin data were reported for participants cycling
in 84 studies (49% of included studies), running in 40 studies
(23%), walking in 40 studies (23%), occupational PA in 7 studies
(4%), and other PA in 18 studies (11%). Most studies (90%) also
reported resting Tskin data.

A summary of the information about the sensors, attachments,
and data use is given in Table 1. The type of contact sensor used
(e.g., thermistor, thermocouple) was reported in 84% of studies.
Of the studies reporting sensor type, thermistors were the most
common (89 studies) followed by thermocouples (30 studies)
and iButtons (oscillator-based digital thermometer; 26 studies).
Identifying the sensor manufacturer (e.g., Grant Instruments
Ltd, Cambridge, UK) and model (e.g., EUS-UU-VL3-0) was
not always possible: in 34 studies (20%) no manufacturer or
supplier information was reported and in 65 studies (38%) no
sensor model information was reported. Details about sensor
calibration were rarely reported with 94% of studies providing no
or unclear information. Similarly, most studies (89%) reported
no error-related information about the sensor (e.g., uncertainty,
precision). Over half of the studies reported no information

Frontiers in Physiology | www.frontiersin.org 5 January 2018 | Volume 9 | Article 29

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


MacRae et al. Skin Temperature by Contact Thermometry

FIGURE 1 | Screening flow diagram for objectives 1 and 2. Only one reason for exclusion is given per study but multiple reasons may have applied.

about the method of sensor attachment: of the 73 studies (42%)
reporting clear information, 63 studies used tape. It was possible
to determine whether the sensors were covered or uncovered
in 40% of studies, with the remaining 60% unclear or not
reported. Most studies reported mean Tskin (83%) and almost all
studies reported absolute temperature values (97%). Irrespective
of the number of measurement sites used, 57 studies (33%)
reported some data from single measurement sites or single
sensor.

The number and location of body sites used are given in
SupplementaryMaterial Tables 5 and 6, respectively. The number
of body sites per participant ranged from one to sixteen, with four
sites most commonly used (46%). Chest (74%), anterior thigh
(71%), lower leg (70.3%), and upper arm (56%) were the most
common sites used.

Risk of Bias within Studies—Measurement
Comparisons
Risk of bias for measurement comparisons was assessed
at the subset level within each outcome subgroup. These
assessments (given in full in Supplementary Material
Figure 1) are summarised in Figure 2. In total, the risk
of bias was typically unclear (72%), with only a quarter
(24%) judged as low risk of bias; the remaining 5% were
judged as high risk of bias. The domains most frequently
judged as high risk of bias were calibration/baseline
comparability of the sensors (11%) and selective reporting
(8%). Making the assessment was often challenging due
to limited reporting in the original articles: this limitation
contributed to the high proportion judged as unclear risk of
bias.

Outcomes—Measurement Comparisons
The ways in which individual studies or experiments were
conducted and reported were diverse and inconsistent across
studies (e.g., model surfaces or skin sites used, types of sensors
and attachments, environments and procedures; pooled mean
or individual measurement sites or timings). Therefore, meta-
analyses were not performed.

The included data are presented in summary plots
(Figures 3–8) and corresponding forest plots (Supplementary
Material Figures 2–7). Data from six subsets from five studies
(Yakovlev and Utekhin, 1965, 1966; Guadagni et al., 1972;
Mahanty and Roemer, 1979a,b) were unable to be presented
visually due to a lack of information and, therefore, are
summarised briefly in the text. The LoA were not included
in seven subsets from six studies due to unreported variance
estimates (Yakovlev and Utekhin, 1966; Jirak et al., 1975; Flesch
et al., 1976; Mahanty and Roemer, 1979b; Deng and Liu, 2008;
Youhui et al., 2010).

Temperature Disturbance of the Surface Underlying a

Surface Sensor
Data from one study were identified (Mahanty and Roemer,
1979a) (n = 1 subset, giving 2 comparisons; Figure 3).
The surface temperature of a physical model was estimated
from a thermocouple 0.4mm below the surface, without
and with a surface temperature sensor directly above
(undisturbed and disturbed states, respectively). The
undisturbed surface temperature was similar to both the
disturbed temperature and the surface thermistor probe acting
as the disturbance (mean differences of <0.1◦C for the point
estimates).
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TABLE 1 | Information from survey of sensor usage in studies involving physical

activity (n = 172 studies); data are study count with percentage in parentheses.

Reported Unclear or not reported

Type of contact temperature

sensor

144 (84%)a 28 (16%)

Sensor calibration 10 (6%) 162 (94%)

Sensor attachment method 73 (42%)b 99 (58%)

Something reported Not reported

Sensor accuracy,

uncertainty, precision, etc.

19 (11%) 153 (89%)

Covered Uncovered

Sensor coverage by

attachmentc
65 (38%) 3 (2%)

Yes No or unclear

Calculations using skin

temperature data

Mean skin temperature 142 (83%) 30 (17%)

Mean body temperature 39 (23%) 133 (77%)

Other calculations 56 (33%) 116 (67%)

Absolute Change score

Skin temperature data

presentation

166 (97%) 30 (17%)

aSensor types reported were: thermistors [n = 89; the most common manufacturer

reported was Grant Instruments Ltd., Cambridge, UK (n= 29) followed by YSI Inc., Yellow

Springs, OH, USA (n = 18); 10 studies reported no manufacturer or supplier information],

thermocouples [n = 30; the most common manufacturer or supplier reported was

Concept Engineering, Old Saybrook, CT, USA (n= 5) followed by Omega Engineering Ltd,

Stamford, CT, USA (n = 3); 17 studies reported no manufacturer or supplier information],

iButtons (an oscillator-based digital thermometer; n = 26; Maxim Integrated Products,

CA, USA), and resistance thermometers (n = 2). Three studies each used two types of

contact temperature sensors so the total of sensor types here is 147 (cf. 144 in the table

above).
bOf the 73 reported, 63 studies used tape and 33 of those studies specified the tape

type: 3M Transpore (n = 13), 3M Tegaderm (n = 9), BSN Medical Fixomull (n = 4),

3M Blenderm (n = 2), 3M Medipore (n = 2), BSN Medical Hypafix (n = 2), Hy-Tape

international Hy-Tape (n = 2), Leuko Sportstape (n = 1).
cThe remaining (n=104, 60%) were unclear or not reported.

Thermal Equilibrium of the Surface Sensor with the

Underlying Temperature
Data from three studies were identified (Mahanty and Roemer,
1979a; Lee et al., 1994; Psikuta et al., 2014) (n = 4 subsets,
giving 96 comparisons; Figure 4 and Supplementary Material
Figure 3). Temperature of the externally applied surface sensors
was typically lower than invasive Tskin in vivo (Lee et al.,
1994) and lower than the model reference temperature (Lee
et al., 1994; Psikuta et al., 2014), although the magnitude of the
mean differences was variable, ranging from <0.5◦C (Mahanty
and Roemer, 1979a; Lee et al., 1994; Psikuta et al., 2014) to
5.8◦C (Psikuta et al., 2014). For surface Tskin sensors and
attachments commonly used in non-clinical human research
studies (Psikuta et al., 2014), greater differences were observed

with a greater surface-environment gradient (see also influence
of the environmental conditions). The data from Krause (1993)
was not included here because the reference temperature sensors
within the physical model are not described and no plate
temperature data is reported.

Influence of the Attachment on Surface Sensors
Data from six studies were identified (Dollberg et al., 1994; Buono
and Ulrich, 1998; Deng and Liu, 2008; Tyler, 2011; Psikuta et al.,
2014; Priego Quesada et al., 2015) (n = 6 subsets, giving 19
comparisons; Figure 5 and Supplementary Material Figure 4).
The type of attachment used had mixed effects on the mean
differences of Tskin or Tsurface with absolute mean differences
ranging from 0.1 to 1.4◦C. The LoA were typically within±1.0◦C
for measurements on human skin, while those on physical
models ranged from 0.3 to 1.5◦C.

Using an attachment resulted in numerically greater measured
temperatures by 0.1–1.3◦C compared to the same sensors
“uncovered” for human skin (Buono and Ulrich, 1998; Tyler,
2011) or a model surface (Priego Quesada et al., 2015). With
increasing environmental temperature, the differences of covered
versus “uncovered” sensors became smaller in one study (mean
difference of 1.3◦C in a 23◦C environment, decreasing to 0.4◦C
in 42◦C) (Buono and Ulrich, 1998) but tended to become
larger in another study (mean difference of 0.1◦C increasing
to 0.5◦C for one layer of tape, 0.8◦C increasing to 0.9◦C for
two layers of tape plus bandage, environments of 24◦ and
35◦C, respectively; Supplementary Material Figure 4) (Tyler,
2011). Shielding the sensor (Dollberg et al., 1994), increasing the
attachment thickness (Deng and Liu, 2008), or increasing the
number of attachment layers (Tyler, 2011) tended to increase
the measured temperature. One study with pre-term infants
inside incubators had a pertinent risk of bias in that the
measured Tskin itself influenced the environmental conditions
within the incubator (Dollberg et al., 1994). In that study, higher
measured temperature caused lower environmental temperatures
and so this risk of bias likely mitigated the magnitude of the
observed difference: indeed, the net effect was a 0.8◦C greater
skin-to-environment temperature gradient when the shielding
attachment was used. Elsewhere, aluminium tape typically
resulted in higher measured temperatures than other common
surgical tapes (>1◦C for pooled mean differences), although
interestingly, these higher Tsurface were typically closer to the
expected Tsurface of the aluminium plate (Psikuta et al., 2014) (see
also section Thermal Equilibrium of the Surface Sensor with the
Underlying Temperature).

Influence of the Pressure Applied by Surface Sensors
Data from four studies were identified (Yakovlev and Utekhin,
1966; Guadagni et al., 1972; Jirak et al., 1975; Mahanty and
Roemer, 1979b) (n = 4 subsets; 2 subsets displayed, giving
43 comparisons; Figure 6 and Supplementary Material Figure
5). Absolute mean differences ranged from 0 to 1.33◦C for
the pressure comparisons available (Figure 6). The measured
temperature tended to increase with increasing pressure over the
range of 2–681 mmHg (Jirak et al., 1975; Mahanty and Roemer,
1979b). Halving or doubling the applied pressure resulted in
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FIGURE 2 | Risk of bias across all included subsets (n = 38 subsets).

FIGURE 3 | Temperature disturbance of the surface underlying a surface sensor (absolute mean difference and 95% limits of agreement). LoA, limits of agreement; TC,

thermocouple. Dashed vertical lines indicate the thresholds for guiding practical significance. aFrom the forest plots in the Supplementary Material; mean differences

are presented here as absolute values, indicative of magnitude but not relative direction. bThermocouple 0.4mm below the plate surface; temperature at the surface

calculated by assuming linear variation in temperature through the plate. cTemperature as in “b,” but while a surface temperature probe is in contact with the surface.

FIGURE 4 | Thermal equilibrium of the surface sensor with the underlying temperature (absolute mean difference and 95% limits of agreement). FO, fibre optic; LoA,

limits of agreement; PRT, platinum resistance thermometer; TC, thermocouple. Filled squares indicate mean and open circles indicate the range (minimum and

maximum values). Dashed vertical lines indicate the thresholds for guiding practical significance. aFrom the forest plots in the Supplementary Material; mean

differences are presented here as absolute values, indicative of magnitude but not relative direction.

mean differences consistently within ±0.5◦C (note that the
common comparison pressures were used as presented in the
original articles) (Jirak et al., 1975; Mahanty and Roemer, 1979b).
For example, for a circular sensor at the forehead the mean
differences, versus 136 mmHg, were −0.31◦C at 68 mmHg and
+0.36◦C at 272mmHg (Jirak et al., 1975; SupplementaryMaterial
Figure 5). From the data of one subset (Jirak et al., 1975), the LoA
were typically greater when the higher pressures were included
(409, 545, and 681 mmHg), although all within±1.0◦C.

One of the subsets not able to be displayed in the plots
(Guadagni et al., 1972) was simply summarised in the original
article as a statement that the effect of pressure on steady
state skin temperature (human participants; sites not reported)
was <0.01◦C at pressures between 31 and 52 mmHg, and that
at pressures beyond this range, the steady state temperature
becomes pressure-dependent and increases with increasing
pressure. For the other subset not able to be displayed (Yakovlev
and Utekhin, 1966), differences of 0.1–0.7◦C were reported for
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FIGURE 5 | Influence of the attachment on the temperature measured by surface sensors (absolute mean difference and 95% limits of agreement). Al, aluminium; L,

layer; LoA, limits of agreement; PRT, platinum resistance thermometer. Filled squares indicate mean and open circles indicate the range (minimum and maximum

values). Dashed vertical lines indicate the thresholds for guiding practical significance. aFrom the forest plots in the Supplementary Material; mean differences are

presented here as absolute values, indicative of magnitude but not relative direction. bPRT100 foil, thermistor, insulated PRT100, and iButton.

FIGURE 6 | Influence of the pressure applied by surface sensors (absolute mean difference and 95% limits of agreement). LoA, limits of agreement; NA, not

applicable. Filled squares indicate mean and open circles indicate the range (minimum and maximum values). Dashed vertical lines indicate the thresholds for guiding

practical significance. aFrom the forest plots in the Supplementary Material; mean differences are presented here as absolute values, indicative of magnitude but not

relative direction. bNot presented here due to limited detail in the original article; see text for information.

the seven sensor types tested on human skin (sites not reported)
whereby the pressure was generated by 5 and 70 g weights (sensor
surface areas were not reported, therefore the pressures are
unknown). Notwithstanding, the authors did state, without the
supporting data, that pressure effects can be disregarded when
the maximum pressure of the sensor on the skin does not exceed
15–37 mmHg.

Influence of the Environmental Conditions on Surface

Sensors
Data from six studies were identified (Yakovlev and Utekhin,
1966; Buono and Ulrich, 1998; van Marken Lichtenbelt et al.,
2006; Harper Smith et al., 2010; Tyler, 2011; Psikuta et al., 2014)

(n = 6 subsets; five subsets displayed, giving 38 comparisons;
Figure 7 and Supplementary Material Figure 6).

For the subsets in which human participants were used
(Buono and Ulrich, 1998; van Marken Lichtenbelt et al., 2006;
Harper Smith et al., 2010; Tyler, 2011), potential influences of
the environment can be examined indirectly via the relative
differences for the same two comparators under different
environments—here, the different environments cannot be
directly compared because the Tskin will also change. (Because
these indirect comparisonsmay be confounded by other variables
such as the differences in absolute Tskin, they are interpreted
cognizant of this possible but unclear risk of bias.) Irrespective of
the underlying cause, the mean difference between the same two
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FIGURE 7 | Influence of the environmental conditions on surface sensors (absolute mean difference and 95% limits of agreement). Al, aluminium; env, environment;

LoA, limits of agreement; NA, not applicable; PRT, platinum resistance thermometer. Filled squares indicate mean and open circles indicate the range (minimum and

maximum values). Dashed vertical lines indicate the thresholds for guiding practical significance. aFrom the forest plots in the Supplementary Material; mean

differences are presented here as absolute values, indicative of magnitude but not relative direction. bNot presented here due to limited detail in the original article; see

text for information. cData from all sensors (PRT100 foil, thermistor, insulated PRT100, and iButton) and attachment types (aluminium, Fixomull, Tegaderm, and

Micropore tapes) are pooled here.

comparators were often different when the comparison wasmade
under different environmental temperatures in three subsets
(Buono and Ulrich, 1998; van Marken Lichtenbelt et al., 2006;
Harper Smith et al., 2010): for example, relative mean differences
of 1.3 and 0.4◦C for the same attachment comparison under 23
and 42◦C environmental temperatures (Buono andUlrich, 1998).
In other words, the magnitude of mean difference for a given
comparison of sensor setups showed some dependence on the
environmental temperature. For the influence of air movement
during rest, the pattern of relative differences at 10, 20, and
30◦C environmental temperatures was similar under both 0.2 and
2.3 m/s air velocities (e.g., relative mean differences of 0.70 and
0.79◦C for the two velocities, respectively, in a 20◦C environment;
Supplementary Material Figure 6) (Harper Smith et al., 2010).

For one subset in which a model was used (Psikuta et al.,
2014), data are presented in Figure 7 as pooled estimates for
main effects of the environmental variables. In this subset
(Psikuta et al., 2014), compared to Tsurface measurements in the
35◦C environment, the cooler environments resulted in lower,
and more variable, measured values despite the plate being
maintained at ∼36.5◦C; the magnitudes of mean differences
were often of practical relevance (>0.5◦C). Comparing wind
velocity within the same environmental temperature indicates
that the influence of an increase in wind velocity (from 0.5 to

1.2 m/s) was negligible when the environmental temperature
(35◦C) was close to the Tsurface (36.5

◦C) but became increasingly
relevant as the environmental temperature diverged further
from the plate temperature (relative differences of −0.4 and
−1.0◦C for the point estimates in environments of 26 and 16◦C,
respectively). Data from the other subset using a physical model
are not presented due to uncertainties in interpretation of the
environment and the reference Tsurface but the authors did state
effects of the ambient air temperature being 0.2–6.0◦C for seven
different sensor types (Yakovlev and Utekhin, 1966).

Influence of the Type of Surface Sensor
Data from 14 studies were identified (Yakovlev and Utekhin,
1965, 1966; Jirak et al., 1975; Flesch et al., 1976; Mahanty and
Roemer, 1979a,b; Krause, 1993; van Marken Lichtenbelt et al.,
2006; Harper Smith et al., 2010; Youhui et al., 2010; James et al.,
2014; Psikuta et al., 2014; Bach et al., 2015a; McFarlin et al., 2015)
(n = 17 subsets; 14 subsets displayed, giving 87 comparisons;
Figure 8 and Supplementary Material Figure 7). The risk of bias
for calibration of these sensors used was considered high for four
subsets [in vivo (McFarlin et al., 2015) and models (Flesch et al.,
1976; Krause, 1993), (James et al., 2014) model uncorrected],
unclear for five subsets [in vivo (Yakovlev and Utekhin, 1965,
1966; Mahanty and Roemer, 1979a; Youhui et al., 2010), and
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FIGURE 8 | Influence of the type of surface sensor (absolute mean difference and 95% limits of agreement). Al, aluminium; env, environment; LoA, limits of agreement;

NA, not applicable; PRT, platinum resistance thermometer; TC, thermocouple; thermom, thermometer. Filled squares indicate mean and open circles indicate the

range (minimum and maximum values). Dashed vertical lines indicate the thresholds for guiding practical significance. aFrom the forest plots in the Supplementary

Material; mean differences are presented here as absolute values, indicative of magnitude but not relative direction. bNot presented here due to the limited information

reported in original article; see text for information. cData from all attachment types (aluminium, Fixomull, Tegaderm, and Micropore tapes) and environments

(15–35◦C, 0.5 m/s) are pooled here.

model (Yakovlev and Utekhin, 1965)], and low for eight subsets
[in vivo (Jirak et al., 1975; Mahanty and Roemer, 1979b; van
Marken Lichtenbelt et al., 2006; Harper Smith et al., 2010; James
et al., 2014; Bach et al., 2015a) and models (Psikuta et al., 2014;
James et al., 2014) model corrected].

Absolute mean differences for some subsets were almost
consistently within (Youhui et al., 2010; James et al., 2014) or
beyond 0.5◦C (Yakovlev and Utekhin, 1965, 1966; Jirak et al.,
1975; Krause, 1993;McFarlin et al., 2015). For four in vivo studies,
the LoA were almost consistently within ±1.0◦C (van Marken
Lichtenbelt et al., 2006; Harper Smith et al., 2010; James et al.,
2014; Bach et al., 2015a) and in two studies consistently greater
than±1.0◦C (Yakovlev and Utekhin, 1965; McFarlin et al., 2015).

Data from three subsets were not able to be presented in
the plots due to insufficient information [human participants
at rest (Mahanty and Roemer, 1979a,b) and a model (Yakovlev
and Utekhin, 1965)]. According to the text of the original
articles, a thermocouple taped to the skin and a thermistor probe
“agreed within±0.15◦C (maximum difference)” on one occasion
(Mahanty and Roemer, 1979a) and had a mean difference of
0.03◦C on the other occasion (Mahanty and Roemer, 1979b).
For the physical model (Yakovlev and Utekhin, 1965), a nickel
wire sensor and a “point” sensor (diameter 0.3–1mm) were
compared following the wetting of the suede surface of a
model: the temperature from the nickel wire sensor decreased
by approximately 4◦C over the subsequent 2min whereas the
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temperature from the “point” sensor decreased by <1◦C over the
same period.

DISCUSSION

In comparison measurements from various contact Tskin sensor
setups—using human participants or relevant physical models—
mean differences exceeding 0.5◦C were observed for some
comparisons of attachment, applied pressure, and sensor type.
Additionally, there was indication that the environmental
conditions can influence the measured temperature and that the
surface sensor is not always sufficiently at thermal equilibrium
with the underlying surface. Thus, the sensor type used and
how it is used can meaningfully influence the measured value.
For users of contact Tskin sensors, emphasis should be placed
on consistency of sensor setup parameters (at least within a
study) and the limitations of knowing an absolute Tskin must
be recognised, particularly for comparability across studies. The
survey of contact Tskin measurements here illustrates that, for the
range of sensor setups used in different studies involving sport,
exercise, and other PA, important information about features like
calibration and the attachment method are often unreported.
For the continuing improvement of research and clinical
measurements, and with growing commercial and consumer
interest in wearable technology and personal body monitoring,
this review demonstrates that even routine measurements are not
necessarily as simple as they may otherwise seem.

Measurement Comparisons
Strengths and Limitations
This is the first systematic review to comprehensively collate data
from comparisons of measurements made using contact Tskin

sensors. A strength of this work is the breadth of information
included and the ability to examine specific outcomes of interest
in detail.

While comparisons of outcome data were typically possible,
meta-analyses were not performed due to the appreciable variety
of test conditions, sensor setups, and types of temperature data
used (e.g., single site versus mean Tskin; multiple measurements
within a period versus period grand mean), and the resultant lack
of a common reference condition. Further, the lack of a universal
gold-standard method for measuring Tskin limited the ability to
judge one comparator Tskin sensor setup as being more accurate
than the other. For this reason, emphasis was typically placed on
the magnitude of effects rather than the direction of the effect.

The often limited reporting of methodological information
contributed to the number of “unclear” judgements within
the risk of bias assessments and made extraction of study
information or data challenging at times. To guide both study
design and reporting of study information in future studies
comparing temperature measurements, we recommend authors
to prospectively think about how their work will be judged
during a subsequent risk of bias assessment. Details to consider
include—but are not limited to—sequence generation, any
blinding, completeness of outcome data (e.g., detachment of
sensors, sensor malfunctions), selective reporting (data that
was intended to be reported but was not), consistency of test
conditions, sensor calibration details, and study support.

We used threshold values to indicate practical significance
throughout this review (human skin in vivo, ±0.5◦C for mean
difference and ±1.0◦C for 95% LoA; physical models, ±0.5◦C
for mean difference and 95% LoA). This was a necessary
simplification for feasibility and is intended as a general guide
only. It is likely that, in practice, these thresholds will need
to be adjusted according to specific measurement contexts
and objectives. For example, multiple spot measurements from
contact Tskin sensors are often used to calculate a mean Tskin,
ostensibly representative of the body as a whole. Temperature
differences due to the sensor setup itself may in some cases be
within differences due to other experimental decisions such as
site selection, replication of sensor placement, or the weightings
used (Livingstone et al., 1987; Choi et al., 1997).

It is acknowledged that additional descriptive statistics are also
useful for making inferences in method comparisons (e.g., typical
error of the estimate, regression and correlation coefficients).
Finally, not considered here was any influence of the signal
processor/data logger setup (Jutte et al., 2005).

Validity of the Surface Measurement
While the skin surface is an accessible site for measurement, it
presents difficulties for accurate quantification of temperature
in that the surface is an interface between distinct mediums,
with each medium having its own thermal properties and
temperature gradients. Accordingly, the sensor system is in
partial contact with medium of interest (i.e., the skin) and
partial contact with the adjacent environment (e.g., microclimate
air, liquids, clothing). Accurate knowledge of Tskin requires the
sensor temperature to be in equilibrium with the corresponding
skin temperature and for the sensor setup itself to have
negligible additional effect on heat exchanges between the
underlying skin and its adjacent environment(s) (Bedford
and Warner, 1934; Hardy, 1934b; Childs, 2001; Taylor et al.,
2014). Demonstrable differences among various Tskin sensor
setups may reduce, at least in part, to how well each
respective sensor setup achieves this balance between thermal
equilibrium and temperature modification. Selected sources
of error that may be expected during Tskin measurements
are given in Figure 9, along with suggestions for how
such an error may be minimised (Michalski et al., 2001;
Nicholas and White, 2001). Considering sources of error and
error minimisation can assist Tskin sensor design or assist
sensor selection for those measuring Tskin. Notwithstanding,
ideal dimensions or thermal properties of sensors and their
attachments cannot govern sensor design or setup selection
alone as these devices must also be robust and suitable
enough for practical use (Youhui et al., 2010; Webb et al.,
2013).

The data identified within this review were limited and
incompletely address the question of validity of common
Tskin sensors and so future work is warranted. In particular,
estimates of uncertainty during Tskin measurements and the
magnitude of any effects of the sensor and attachment disturbing
the underlying Tskin are unclear. From data of the only
study identified, there was no demonstrable effect of thermal
disturbance of the site underlying a surface sensor (Mahanty
and Roemer, 1979a). However, it is unlikely this finding is
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FIGURE 9 | Measurement of skin temperature using a contact sensor attached to the skin surface is associated with a number of potential sources of error, some of

which are illustrated and described here (Michalski et al., 2001; Nicholas and White, 2001). The schematic represents, in the case of undisturbed skin (left) and

disturbed skin (right), cross sections with hypothetical isotherms (top) and the corresponding temperature profiles at the line of symmetry (bottom).

generalizable to conventional Tskin sensor types and across
environmental conditions as the surface probe used was designed
specifically to minimise any such modification of Tsurface and
the environmental temperature used (∼22◦C) represented a
moderate difference from the surface temperature (29–33◦C).
Notwithstanding, this finding does illustrate the promise of
sensor design based on error minimisation (Figure 9). Key
characteristics of this sensor included using a small sensing
component (thermistor) housed in a stainless steel disc (19mm
diameter, 0.13mm thick), which was partially painted matte

black (high emissivity, similar to skin) and partially covered with
reflective silver coating to compensate for addition heat losses
due in part to the surface area of the sensor system being greater
than that of the skin itself (Mahanty and Roemer, 1979a).

Numerical modelling has indicated that insulated Tskin

sensors can cause the temperature of the underlying skin to be
higher than it would otherwise be because insulating the sensor
from the adjacent environment also insulates the underlying
skin (Boetcher et al., 2009). On the contrary, sensors with high
thermal conductivity and no insulating layer can lower the
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underlying Tskin by inducing a fin effect whereby the total surface
area of the sensor exposed to the environment is greater than
that of the skin it covers and, in this way, heat conducted from
the skin to the sensor can be lost by convection to the adjacent
environment at a rate that exceeds that of the undisturbed skin
itself (Guadagni et al., 1972; Boetcher et al., 2009). Heat transfer
from the sensor to the environment by radiation may be greater
or lesser than that of the undisturbed skin because, despite the
greater surface area available for radiating heat in the case of
the sensor, the emissivity of the skin is itself very high (∼0.98;
Steketee, 1973).

The skin has a boundary layer of air that mitigates the
temperature difference directly adjacent to its surface. This
difference under warm-hot conditions (relatively still air, ambient
temperature of 28–29◦C) may be <0.5◦C for air within 1mm,
and <1◦C for air up to 6mm from the skin surface (McGlone
and Bazett, 1927). In cooler conditions or with forced air
convection (e.g., wind or body movements), this gradient
increases and the temperature difference can become appreciable
within the height of commonly used Tskin sensors and their
attachments. For surface Tskin sensor equilibrium with the
underlying temperature, a range of magnitudes was observed
from <0.5◦C (Mahanty and Roemer, 1979a; Lee et al., 1994;
Psikuta et al., 2014) up to 6◦C (Psikuta et al., 2014). However,
details about the ambient environment were not clear from the
two of the studies included here (Mahanty and Roemer, 1979a;
Lee et al., 1994).

Psikuta et al. (2014) observed that ambient temperature,
and thus the surface-environment gradient, can influence the
estimated error: while few sensor-attachment combinations were
within 1◦C of the plate temperature in the 16◦C environment, all
were within this range in the 35◦C environment. The temperature
of the aluminium plate was reported as 36.5±0.03◦C in this
experiment and, therefore, it is intuitive that errors tend to reduce
as the ambient temperature approaches the surface temperature.

Although numerical modelling and non-contact methods
can also add insight, it was not feasible to also cover these
in detail here and contact versus non-contact methods have
been discussed elsewhere (Bach et al., 2015b). As mentioned
previously, numerical modelling has indicated that, at a
simulated environmental temperature of 22◦C and Tskin of
∼31.7◦C, errors approaching 0.5◦C can be expected with
insulated contact sensors (Boetcher et al., 2009). Numerically
modelling performed by Deng and Liu (2008) indicated that, for
the attachment material, decreasing the thickness and increasing
the thermal conductivity decreased the measurement error.
These results are consistent with experimental observation of
aluminium tape tending to better reflect the underlying plate
temperature, particularly at low wind velocities (0.5 m/s) (Psikuta
et al., 2014). For improving absolute temperature measurement,
more work is required to delineate measurement errors in the
context of human skin, especially during sweating.

Comparisons of Setup Variables
Sensor setup variables can influence the measured values
from Tskin sensors. Examples of both small and practically
significant effects (less than or greater than 0.5◦C absolute mean

difference, respectively) can be found for the outcome subgroups
of attachment type, sensor-applied pressure, environmental
conditions, and sensor type. The 95% LoA were often, though
not always, within ±1.0◦C for human skin in vivo and ±0.5◦C
for physical models. An implication of these observations is
that equivalent measurements of Tskin cannot be assumed
when different components of the sensor setup or different
environments are used. Thus, these setup variables (e.g.,
sensor type, attachment, environmental conditions) should
be considered prior to measurement and clearly reported to
assist subsequent interpretation of Tskin measurements. Further
work could identify or experimentally justify particular setups
or conditions in which measurement biases are mitigated
(Figure 9).

Relative temperature differences between sensor types can
vary with the environmental temperature, activity, and time
(van Marken Lichtenbelt et al., 2006; Harper Smith et al.,
2010; Bach et al., 2015a), although this is not always the case
(James et al., 2014). In other words, two different setups may
not simply be a consistent offset from each other, but rather
vary in magnitude with other parameters. Physical properties
of the sensors and their attachments likely contribute to the
consistency, or inconsistency, of relative differences, particularly
during transients.

Some patterns in temperature differences during changes
in environmental temperatures could reflect an influence of
thermal inertia (Supplementary Material Figure 7A): iButtons
appeared to either have a reduced response time to a true
change in Tskin or, alternatively, they were less influenced
by the change in environment and better reflected the true
change in Tskin (van Marken Lichtenbelt et al., 2006; Bach
et al., 2015a). The practical consequences due to the thermal
inertia of the sensor setup will likely depend on the time
course of the expected change in Tskin. The response time of
the sensor on the skin surface should be a key consideration
when relatively fast changes in Tskin are expected (Arunachalam
et al., 2008), but may be of lower importance compared to
other considerations when a relatively stable Tskin is expected.
In research settings it is common—and good practice—for
participant instrumentation to occur well before experimental
recordings are made, which should mitigate any transient effects
of initial sensor temperature before application and the duration
of a sensor to reach a thermal steady state once applied (Guadagni
et al., 1972).

Surface pressure is known to influence skin perfusion,
however, studies here indicated that the measured Tskin

temperature almost invariably increased with increasing pressure
whereas skin perfusion tends to decrease, even with a little
as 5 mmHg (Holloway et al., 1976). Physical effects of the
surface sensor pressing into the skin were investigated further by
Mahanty and Roemer (1979b) using numerical modelling and the
calculated effects agreed closely with their experimental results,
suggesting these physical factors associated with depression
are a suitable explanation. While increasing the sensor-applied
pressure may lead to temperature errors, the thermal contact
must also be sufficient and, therefore, there is likely a trade-
off between the two. Unstable temperature readings were
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attributed to insufficient thermal contact at pressures lower
than 31 mmHg in one study (Guadagni et al., 1972), but
such instability issues were not apparent in another study
investigating pressures of 2–20 mmHg (Mahanty and Roemer,
1979b). In the latter study, the authors suggested that 2
mmHg was sufficient for measuring Tskin and used numerical
modelling to support this observation (Mahanty and Roemer,
1979b).

Controlling the applied pressure is a challenge for measuring
Tskin in vivo. While sensor-applied pressure variations during
normal use are not clear, it is notable that mean differences
in Tskin due to halving or doubling a given applied pressure
were <0.5◦C. This finding was consistent across the wide range
of pressures investigated (2–681 mmHg). Increasing the sensor
surface area can be considered with respect to limiting the
applied pressure and associated depression into the skin, but
any such increases in area may have consequences for modifying
evaporative and non-evaporative heat exchanges between the
skin and the environment.

A challenge for measurement comparisons on human skin
is that Tskin varies by time and location (Pennes, 1948;
Kaufman and Pittman, 1966; Webb, 1992). Possible comparisons
on human skin include using identical measurement sites at
different times, or simultaneous measurements at different sites.
While some authors compare results from single sites, others
use multiple measurement sites and compare the resultant mean
Tskin. With respect to temporal changes in Tskin of human
participants, Guadagni et al. (1972) observed that after 2.5–
3 h rest in a room temperature of 24.5◦C, changes in Tskin

at a given site were <0.01◦C within 2 or 3min periods. A
different approach was used by Mahanty and Roemer (1979b)
whereby throughout a measurement period involving different
experimental sensor-applied pressures, adjacent temperature
sensors remained in place to allow minor temperature changes
not due to experimental sensor pressure to be compensated for.
Irrespective of the approach, care needs to be taken to minimise
risks of systematic temperature bias.

With the expanding interest in wearable technology for
day-to-day applications, there should be an expectation of
acceptable validity for any measurements being taken (Sperlich
and Holmberg, 2017). A direct outcome here is that sensor
location and the effects of the carrier devices or attachments will
need to be taken into account for such applications.

Survey of Use
Strengths and Limitations
Here we have collected information about how contact Tskin

sensors are currently (2011–2016) used and reported in published
studies involving sport, exercise and other PA. Thus, this
work provides context and a basis for integrating the findings
delineated above in more challenging conditions than rest. These
findingsmay, however, only provide limited information on these
aspects in other research or clinical conditions.

General Implications
In human studies, details about Tskin sensor setup details
were often poorly reported and, from those reporting setup

information, it was evident that the setups often varied in terms of
the sensors, attachments, and locations used. Key setup variables
need to be considered further and consistently reported. For
example, the sensor attachment method was clear in only 42%
of the articles sampled yet attachment can bias the measured
values (Buono and Ulrich, 1998; Psikuta et al., 2014). Similarly,
clear information about sensor calibration was present in only
6% these studies.

Absolute Tskin values are used often in research with 97% of
the studies sampled here reporting some form of absolute Tskin

and 17% reporting change scores (some reported both, but not
necessarily for all the data). While common inferential statistical
approaches end up treating absolute values as relative differences
(e.g., within-subject differences for repeated measures, difference
between group means for independent samples), the point
remains that absolute values are of interest to researchers and
other users of Tskin information. Thus, clearer reporting of
setup variables may also improve awareness about the external
validity of published absolute Tskin data, such as for inter-study
comparisons or applied use of Tskin (e.g., temperature thresholds
during heat stress).

Sensors used in the comparisons of measured temperatures
(objective 1) only partially represented the sensors currently
used in human studies involving PA. The outcome of some
comparisons may be more generally applicable, such as effects of
the sensor pressure, whereas the outcomes of other comparisons
may be restricted to specific setups or environments, such
as sensor type or a particular skin-environment temperature
gradient. A reason contributing to specificity of comparison
outcomes is that different sensor setups likely vary in variables
not taken into account here, such as sensor and attachment
composition (and resultant thermal properties), dimensions, and
surface contact. Future work will benefit from the identification
of setup variables suitable for widespread use.

Summary
This work serves to establish a base from which users of
contact Tskin measurements can make better-informed decisions
about setup of the sensor-attachment system with relevance
to their particular measurement objectives and the expected
measurement conditions. Some potentially relevant components
within the measurement system are summarised in Table 2.

For those performing studies comparing different Tskin

sensors or sensor setup variables (e.g., method agreement
studies), key points of consideration include:

• There is currently no universally applicable gold-standard
Tskin measurement, which likely contributes to the general
lack of a common reference condition across studies.
In lieu of a specific sensor setup available to be used
consistently among studies, key features of the setups
used need to be described. This information includes the
sensor manufacturer and model, type (e.g., thermistor), some
physical characteristics (e.g., insulated or uninsulated, physical
dimensions), attachment, and calibration details.

• We recommend that authors consider criteria used in risk of
bias assessments to help guide study design and reporting.
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TABLE 2 | Summary of some relevant considerations for the measurement of skin

temperature.

Component of system Consideration for component

Skin • Selection of sites and consistency of

placement

• Homogeneity of surface skin temperature

• Temperature gradients within the skin itself

• Lateral heat transfer from skin adjacent to the

site being measured

• Sweating

• Sensor pressure (depression into the skin)

Skin-sensor interface • Thermal contact resistance

• Contact surface area

Sensor • Physical dimensions (including surface area of

the sensor versus that of the skin site covered)

and thermal properties (including the resultant

thermal resistance)

• Obstruction of evaporative heat loss from skin

• Calibration method and range

Attachment • Physical dimensions and thermal properties

(including thermal resistance and water

vapour resistance)

• For tapes covering the sensor, emissivity and

wetting characteristics for distributing liquid

sweat

• Effectiveness of remaining in place during

prolonged use or physical activity

Clothing or coverings and

associated microclimate

• Present or not

• Temperature gradients (microclimate

temperature will typically be closer to

skin temperature where clothing/coverings

used than without)

• Air velocity

• Humidity

Wider environment for

uncovered sites

• Temperature gradients (difference from skin

temperature) including air temperature and

radiant temperature

• Air velocity

• Humidity

This list is not complete and not all of the factors will be relevant in each case.

This information includes sequence generation, any blinding,
completeness of outcome data (e.g., detachment of sensors,
sensor malfunctions), selective reporting (data that was
intended to be reported but was not), consistency of test
conditions, sensor calibration details, and study support.

• There is scope for future work to better clarify the
measurement validity of commonly used Tskin sensor
setups, particularly under conditions in which the skin-to-
environment gradient becomes large and when relatively fast
changes in Tskin are expected. Practical effects of surface Tskin

sensors on modification of heat and mass transfer from the
skin surface require experimental investigation.

For those measuring Tskin for research, clinical, or applied
purposes, points of consideration include:

• Accurate quantification of an absolute Tskin (e.g., 35.5◦C) is
difficult and caution needs to be applied when taking and
interpreting such data, particularly when comparing Tskin

across studies when the method of measurement varies.
• Equivalent measurements of Tskin cannot be assumed when

different components of the sensor setup or different
environments are used. Thus, for sensor setup, emphasis
should be placed on consistency of sensor setup parameters, at
least within a study. This consistency includes the sensor used,
attachment, and (as much as practicable) the sensor-applied
pressure.

• Special care needs to be taken when the temperature
gradients within the measurement system are high (e.g., low
environment temperature) because errors can become more
influential.

• As above, reporting sensor setup variables, calibration
information, and clear site details better facilitates the
interpretation and external use of Tskin data.

• The information in Figure 9 may be used to assist sensor
selection based on principles of minimising errors.

• In the design of future Tskin sensor systems, consideration
should be given to retaining the practicality of simple affixable
sensor systems while mitigating any temperature effects
associated with the modification of skin coverage.

CONCLUSION

Contact Tskin sensor setups and conditions used vary
considerably and reporting of this information is often
incomplete. The range of measurement comparisons examined
here indicated that (1) the basic validity of commonly used
surface Tskin sensors for accurately measuring Tskin remains
unclear, and (2) the sensor type used and how it is used
can meaningfully influence the measured value. Key setup
variables need to be appropriately considered and consistently
reported.
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APPENDIX
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et al., 2013; Gagnon et al., 2014a,b; Gagnon and Kenny, 2011;
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