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(Received 10 November 2017; accepted 12 January 2018; published online 30 January 2018)

Addition of alkali dopants is essential for achieving high-efficiency conversion effi-
ciency of thin film solar cells based on chalcogenide semiconductors like Cu(In,Ga)Se2

(CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe also called kesterite). Whereas the treatment
with potassium allows boosting the performance of CIGS solar cells as compared to
the conventional sodium doping, it is debated if similar effects can be expected for
kesterite solar cells. Here the influence of potassium is investigated by introducing the
dopant during the solution processing of kesterite absorbers. It is confirmed that the
presence of potassium leads to an enhanced grain growth and a ten-fold lower potas-
sium concentration is sufficient for obtaining grain size similar to sodium-containing
absorbers. Potassium is located predominantly at grain boundaries and it suppresses
incorporation of sodium into the absorber layer. The potassium doping increases the
apparent carrier concentration to ∼2×1016 cm-3 for a potassium concentration of
0.2 at%. The potassium-doped solar cells yield conversion efficiency close to 10%,
on par with only sodium-doped samples. Co-doping with potassium and sodium has
not revealed any beneficial synergetic effects and it is concluded that both dopants
exhibit similar effects on the kesterite solar cell performance. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5013114

I. INTRODUCTION

Kesterite solar cells achieved up to 12.6 % conversion efficiency1 but still suffer under a pro-
nounced reduction of the open circuit voltage (VOC), often expressed as VOC – deficit, which is defined
as VOC – deficit = Eg/q – VOC with Eg the bandgap and q the elementary electric charge. Alkali doping
of the kesterite absorber layer is a promising approach to tackle the high VOC-deficit, but so far only in
the case of sodium thorough investigations were conducted, revealing grain size enhancement, pas-
sivation of grain boundaries and an increase in net hole concentration.2–4 Potassium post deposition
treatment (KF-PDT) resulted in a tremendous improvement for the related Cu(In,Ga)(S,Se)2 (CIGS)
solar cells,5 however similar results for a KF-PDT in kesterite solar cells could not be reproduced.6

Concerning potassium doping, first theoretical studies showed that potassium will be incorporated
mostly as a substitutional defect for copper. The formation energy for KCu is higher compared to
NaCu due to the larger size of potassium and therefore it is suggested that potassium is unlikely
to replace sodium.7 Theoretical calculations and APT measurements show that potassium is pre-
dominantly located in grain boundary and interfaces.8–10 Experiments revealed that compared to
sodium already ten-fold lower concentration of potassium results in a similar increase in grain size.11

Potassium addition can enhance the 112 preferred orientation and reduce ZnS secondary phases in
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solution processed CZTS absorber layers.12 For solar cell devices, a reduction in the series resistance
was observed upon potassium addition12 whereas the carrier concentration could be increased for
potassium as compared to sodium, rubidium, cesium or undoped samples.9,13

In this study we investigate the impact of potassium addition on the kesterite absorber mor-
phology, composition, lattice structure and the photovoltaic parameters of resulting kesterite solar
cells. This approach exploits the advantage of solution processing which enables a controlled and
homogeneous incorporation of alkali elements in to the precursor layer. Potassium was added to the
precursor solution in various concentrations in the form of KCl which has a high solubility in the
precursor solution. The subsequent process steps were conducted equally for all samples. It has to
be pointed out that for these samples no sodium was added and a barrier layer of SiOx between
the soda-lime glass and Mo back contact was used to inhibit the diffusion of sodium from the SLG
substrate. Nevertheless, due to the long annealing times at high temperatures sodium was still present
in the absorber layer due to possible transport through the gas phase.14 Finally, in order to explore
any synergetic effects between potassium and sodium, controlled amounts of KCl were added on top
of a constant amount NaCl, and results are compared to the samples with only KCl addition.

II. EXPERIMENTAL DETAILS

The CZTSSe precursor solution consisted of thiourea (99%+, Sigma-Aldrich), SnCl2·2H2O
(98%, Sigma-Aldrich), ZnCl2 (99.99%, Alfa Aesar), CuCl2 (98%+, Alfa Aesar), KCl (99.999%,
Alfa Aesar) and NaCl (99.99%, Alfa Aesar), dissolved in Dimethyl sulfoxide (DMSO) (99.9%,
Alfa Aesar). The precursor solution contained 0 – 100 mM KCl and for the second sample series
100 mM NaCl. A 200 – 300 nm thick SiOx layer was sputtered onto a 1 mm thick soda-lime glass
with a subsequent deposition of 1 µm of molybdenum. The precursor solution was spin-coated onto
the Mo layer and dried on a hotplate at 320 ◦C in air. The spin-coating and drying steps were repeated
12 times in order to obtain the desired precursor film thickness of 1.5 – 2 µm. All samples were
annealed in an Annealsys AS ONE 150 RTP furnace inside a closed graphite box with additional
selenium pellets (800 mg). The temperature gradient employed for annealing was the 3-stage process
with holding temperatures at 300 ◦C, 500 ◦C and 550 ◦C. After selenization the absorbers were
immersed for 30 s in a 10 wt% KCN solution in order to clean the surface from contaminations
and oxides. A 50-70 nm thick CdS buffer layer was deposited by chemical bath deposition, and a
70 nm/250 nm i-ZnO/Al:ZnO bi-layer was sputtered. A Ni/Al top grid and an AR coating of MgF2

were deposited by e-beam evaporation. Individual solar cells were mechanically scribed with an area
of 0.30 ± 0.02 cm2.

Metal ratios were measured by inductively coupled plasma mass spectrometry (ICP-MS), for
which approximately 1 cm2 of the kesterite solar cells were etched for 60 s in 5 wt% acetic acid
solution in order to remove the window layer. Then kesterite absorber material was detached from
the thin-film solar cell at the Mo/CZTSSe interface, directly transferred into 50 mL trace metal-
free polyethylene tubes and fully dissolved in a mixture of 2.5 mL H2O2 30% MERCK suprapure,
4 mL HNO3 67% MERCK ultrapure, and 2.5 mL HCl 32% MERCK ultrapure. After filling to 25 mL
with 18 MΩcm de-ionized water, the sample was diluted 1:10 with 18 MΩcm de-ionized water for
analysis. Metal determinations were performed on an Agilent 8800 triple quadrupole ICP-MS with
different reaction modes such as He and O2 and external calibration using certified metal standards
(1000 µg mL�1, Alfa Aesar Specpure). For quality assurance, analysis of reference materials and
spiking experiments were performed, with recoveries between 90 and 110%.

All absorber layers were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD),
secondary electron microscopy (SEM), time-of-flight secondary-ion-mass-spectrometry (ToF-SIMS)
for structural and compositional characterization. SEM measurements were performed on a Hitachi
S-4800 electron microscope using 20 kV acceleration voltage which results in an interaction volume
of >1 µm. Cross section images were taken from mechanically cleaved samples. SIMS is used for
depth profiles of complete solar cell stacks as well as imaging to reveal the lateral distribution of
trace alkali metals. The measurements were recorded on a ToF-SIMS system from ION-TOF using
O2

+ primary ions with 2 keV of ion energy, a current of 400 nA, and a raster size of 400 x 400 µm2.
An area of 100 x 100 µm2 in the case of depth profiles and 20 x 20 µm2 for the imaging mode was
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analyzed using Bi+ ions with 25 keV of ion energy. XRD patterns were recorded in 2θ \ θ scan mode
using a Bruker D8 diffractometer with CuKα radiation (λ = 1.5418 Å, beam voltage: 40kV, beam
current: 40 mA, calibrated using Si100 and Si111 single crystals), a step size of 0.04◦ and a scan rate of
0.5 s/step for the full pattern and a step size of 0.004◦ and a scan rate of 2s/step for the detailed pattern.

The J-V characterization of solar cell devices was performed under standard test conditions
(100 mWcm-2, 25 ◦C, AM1.5G) using a solar simulator calibrated with a certified Si diode. The
external quantum efficiency (EQE) spectra were recorded using a chopped white light source
(900 W halogen lamp) with a LOT MSH-300 monochromator, which was calibrated with certi-
fied Si and Ge diodes. The illuminated area on the sample was 0.1 cm2 including grid lines. C-V
measurements were carried out with a LCR-meter from Agilent (E4990A) with an AC-voltage of
30 mV at room temperature. For T- JV measurements the solar cells are placed on a temperature
controlled copper stage inside an evacuated cryostat cooled with liquid nitrogen and illuminated
by a 100 W halogen lamp. The intensity of the incident light can be varied by two orders of mag-
nitude from approximately 1 – 142 mWcm�2 using neutral density filters. From illumination and
temperature dependent J-V measurements the reversed saturation current J0 and the ideality factor A
were calculated. Reflectance measurements were conducted with a Shimadzu UV-3600 UV-Vis spec-
trophotometer with an integrating sphere and performed against a BaSO4 or Spectralon (SRS-99-010,
AS-01160-060) reference.

III. RESULTS AND DISCUSSION

The nominal concentrations of KCl added to the precursor solutions are 0, 1, 5, 10, 50 and
100 mM, which correspond to K/(Cu+Zn+Sn) ratios in percent of 0, 0.07 %, 0.35 %, 0.7 %, 3.5 %
and 7 %. For simplicity the samples are denoted with molarity values throughout the article even
though it is worth stressing that actual alkali concentrations inside kesterite absorbers measured by
ICP-MS are significantly lower than nominal and do not exceed 0.2 at%.

A. Morphology, structure and composition

Fig. 1 shows the SEM cross section images of full devices with different amounts of KCl. For
0, 1 and 5 mM KCl the absorber layer exhibits a distinct bi-layer structure, which vanishes for KCl
concentrations of ≥10 mM and the grain size increases to up to 1 – 2 µm. We suggest a similar
mechanism for a potassium assisted grain growth improvement as was suggest earlier for sodium:15

Chemisorption of gaseous Se during the high temperature selenization step leads to the formation of

FIG. 1. SEM cross section images of full devices with increasing KCl concentration (no sodium addition). The morphology
of the CZTSSe absorber layers exhibits a distinct bi-layer structure for 0 – 5 mM KCl. For ≥10 mM KCl amount the grain
size in the lower part of the absorber is increasing, yielding grains that span over the whole absorber layer thickness.
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TABLE I. Metal ratios of the absorber layers with varying amounts of potassium measured by ICP-MS.

Sample Cu/Sn Cu/Zn Cu/(Zn+Sn) Zn/Sn

None 1.84 1.42 0.80 1.30
1 mM KCl 1.87 1.44 0.81 1.30
10 mM KCl 1.82 1.37 0.78 1.32
100 mM KCl 1.76 1.32 0.75 1.34

liquid potassium-polyselenide phases. These liquid phases act as a fluxing agent, thereby promoting
selenium transport into the precursor layer and enhancing diffusion processes of less mobile phases
during crystallization, resulting in increased grain size and overall improved morphology of the
absorber layer.16

The formation of a Mo(S,Se)2 layer during the high temperature annealing in chalcogen atmo-
sphere can be estimated from the increase in the Mo/Mo(S,Se)2 layer thickness and the appearance
of the characteristic XRD Bragg reflexes. From SEM cross sections and overall back contact layer
thickness a Mo(S,Se)2 thickness of 200 – 300 nm is deduced, which is not affected by different KCl
concentrations. The absorber layer thickness decreases with increasing KCl concentration due to the
denser morphology of the absorber layer.

The precursor solution composition for all samples is identical – apart from the KCl concentration.
Compositional measurements in Table I of copper (Cu), zinc (Zn) and tin (Sn) by ICP-MS show a
lower copper content for 100 mM KCl compared to the lower concentration, which could be attributed
to a reduced loss of tin and zinc during the high temperature annealing. The relatively lower copper
content of the 100 mM KCl sample affects the bandgap and order/disorder of the Cu/Zn sublattice
and will be discussed later.

In order to investigate the depth distribution inside the absorber layer potassium and sodium,
SIMS measurements were performed. Traces of sodium stem from the SLG substrate, transported via
the gas phase during the high-temperature annealing step.14 Additionally, minor diffusion of sodium

FIG. 2. a) Sodium and potassium content measured by ICP-MS. b) K/Cu and Na/Cu counts from SIMS measurements
integrated over the whole absorber layer. ICP-MS and SIMS measurements exhibit similar results. In c) and d) the distribution
of potassium and sodium inside the absorber layer is shown. The CdS/CZTSSe interface is located at the normalized absorber
depth of 0 and the CZTSSe/Mo(S,Se)2 interface at 1.
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through the SiOx blocking layer cannot be ruled out. Fig. 2a) and b) show the relative amounts
of potassium and sodium (the samples with 5 and 50 mM KCl were not measured by ICP-MS).
Both measurement techniques reveal qualitatively the same results. For the SIMS measurements the
integrated sodium and potassium counts were divided by the integrated copper counts inside the
absorber layer. Copper is chosen as the reference element because the copper amount is constant
throughout the absorber depth and exhibits similar quantities in all samples. A higher nominal KCl
concentration leads to an increase in the measured potassium amount, which demonstrates the suc-
cessful incorporation of potassium into the absorber layer by simply adding KCl to the precursor
solution. While for the quantity of 1 mM KCl 85% of the nominal KCl content in the precursor solu-
tion is still present in the final absorber layer, for 10 mM 45 % and for 100 mM 4 % are still present in
the final layer. How potassium is lost during the solar cell synthesis was not further investigated in this
study.

Interestingly, the amount of sodium is first increasing followed by a decrease with subsequently
increased KCl concentrations. The reduction of sodium concentration upon addition of potassium
was also observed in highly efficient CIGS thin film solar cells.5,17 The distribution of both alkali
elements is depicted in Fig. 2c), d) and reveals that for the samples with a distinct bi-layer structure
the alkali metal concentrations are increased in the small-grained, lower part of the absorber layer.
The profile flattens for the samples with large grains and no bi-layer structure (≥10 mM). The signal
increase in the front of the absorber layer from 0 to 100 mM KCl for both potassium and sodium
suggests that the alkali elements accumulate predominantly at the grain boundaries. An accumula-
tion of potassium at the front interface between the buffer and absorber layer reported by Li et al.9

cannot be confirmed by this study. Alloying of potassium within the kesterite lattice is unlikely due
to the large size of 1.66 Å of the potassium ion and thus high migration and substitution energies of
≥ 0.3 eV and 1.53 eV, respectively.8 Previous studies about the localization of potassium in chalco-
genide absorber layers by APT revealed that potassium is segregating at the grain boundaries10,18 and
SIMS imaging on the sample with 100 mM KCl concentration also indicates segregation of potassium
(see Fig. 1 of the supplementary material).

Fig. 3a) shows the XRD patterns of the full devices including CdS, i-ZnO/Al:ZnO, Ni/Al grid and
MgF2. All samples produce equivalent kesterite specific Bragg reflexes at 14.7 ◦, 17.4 ◦ and 22.1 ◦.
For the sample with 100 mM KCl a Sn(S,Se)2 Bragg reflex at 14.07 ◦ can be observed.19 The FWHM
of the main 112 Bragg reflex in Fig. 3b) is lower for samples with ≥10 mM KCl concentration,
suggesting an increase in grain size and crystal quality which is in agreement with the SEM cross
section images in Fig. 1.

B. Opto-electronic properties

The internal quantum efficiency (IQE) patterns of the samples are presented in Fig. 4 and
were calculated using the reflectance measured on the whole device including metal grid lines with
IQE(λ) = EQE(λ)/(1-R(λ)). The bandgap determined by the inflection points in the long-wavelength

FIG. 3. a) XRD patterns of the full devices including CdS, i-ZnO/Al:ZnO, MgF2 and Ni/Al grid. The FWHM of the main
112 Bragg reflex is presented in b).

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-081801
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FIG. 4. a) IQE of all samples calculated from EQE and reflectance measurements. b) Results of SCAPS simulations including
a back barrier with a height between 0.30 eV – 0.36 eV, which can reproduce the observed IQE behavior in a).

region increases from 1.00 eV for 0 mM KCl up to 1.04 eV for 100 mM KCl. The bandgap increase
is connected to the decrease in Cu/(Zn+Sn) ratio leading to an increase in ordering of the Cu/Zn
sublattice, which leads to a higher bandgap.20 Detailed measurements of the 400/008 Bragg reflexes
in Fig. 2 of the supplementary material were conducted, but due to the change in FWHM of the XRD
Bragg peaks, a deconvolution to extract the tetragonal distortion and confirm the increase in ordering
was not possible.

The shape of the IQE curves in the long wavelength region does not indicate a strong change in the
collection efficiency with increasing KCl concentration. This implies an almost constant space charge
region (SCR) width, which is in agreement with room-temperature C-V measurements in Fig. 5,
which reveal only a slight increase in the apparent carrier concentration. A significant decrease of the
apparent carrier concentration was measured with decreasing relative copper content.21 Therefore, the
slight increase in apparent carrier concentration in combination with the decrease in relative copper
content for this sample series indicates that potassium doping increases the carrier concentration. This
result is in agreement with reported effects of potassium doping in kesterite solar cells by Li et al.
and Hsieh et al.9,13

The IQE value is rising from 0.85 to 0.97 in the wavelength range from 550 – 700 nm and
could be explained by a removal of a barrier between the absorber layer and back contact for holes
towards the back contact. SCAPS simulations22 with a barrier height between 0.30 eV– 0.36 eV
can reproduce the observed IQE behavior (Fig. 4b).23 In the simulations the focus was solely
to investigate the increase in the IQE and the increase in bandgap was therefore not simulated.

FIG. 5. Apparent carrier concentrations and SCR widths for samples prepared with 0 – 100 mM KCl concentration, derived
from room temperature C-V measurements.

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-081801


015133-7 Haass et al. AIP Advances 8, 015133 (2018)

The increase of the IQE value could also stem from other effects, e.g. a spike in the conduction
band alignment of the kesterite absorber and CdS buffer layer. However, due to the high series resis-
tance that is reduced and the bi-layer structure that is transformed into a well crystallized absorber
layer for ≥10 mM KCl concentrations, a hole barrier stemming from the small grained layer in the
vicinity of the back contact offers the best explanation for the overall lower EQE and higher series
resistance.

C. PV properties

Fig. 6 and Fig. 7 exhibit the photovoltaic parameters for all 6 samples with different KCl concen-
trations. Each sample consists of 9 cells, represented by box plots, with a cell size of 0.30±0.02 cm2.
The series resistance in a) is reduced with increased KCl concentrations, which is in agreement with
the improved crystallization of the absorber layer in the vicinity of the back contact. The paral-
lel resistance is constant for lower and decreases rapidly for 50 and 100 mM KCl concentrations.
The sample with 100 mM KCl exhibits average values for the parallel resistance below 100 Ωcm2.
The shunting behavior coincides with the appearance of Sn(S,Se)2 secondary phase identified by
XRD and shown in Fig. 3. The ideality factor A is rising for increasing KCl concentrations and J0

shows a minimum value for the 10 mM sample, indicating that undesirable recombination is lowest
in this sample. From these parameters it can be assumed that 10 mM KCl is the optimal concentration
due to reduced series resistance, improved morphology and lowest J0 but without the formation of
secondary phases that deteriorate the device performance.

Fig. 7 shows the best device with 9.7 %, 432 mV VOC, 61 % FF and 36.7 mAcm�2 for 10 mM KCl.
Taking the increase in bandgap into account, the VOC - deficit remains constant around 0.62 – 0.64 V
for all samples with the exception of the sample with 10 mM KCl concentration, which exhibits the
lowest VOC - deficit of 0.59 V. The higher JSC value of the 10 mM KCl sample is partly due to an
overall lower reflectance of the sample as shown in Fig. 4a).

FIG. 6. a) The series resistance decreases with increasing KCl amount. b) The parallel resistance is decreasing from nominal
50 mM KCl onwards. c) The ideality factor A rises with increasing KCl content. d) The reversed saturation current J0 shows
a minimum for 10 mM and increases for 50 and 100 mM KCl concentrations.
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FIG. 7. a) – d) PV parameters with increasing KCl content yielding efficiencies of up to 9.7 % for 10 mM KCl. Experiments
with different metal ratios21 and alkali elements reveal that 10 mM is the optimal concentration for the metal ratios used for
this study, because of Sn(S,Se)2 formation at higher than 10 mM KCl concentration.

The improvement of the FF can be attributed predominantly to the reduction of the series resis-
tance RS (Fig. 6a). It should be noted that the comparably high performance of the sample with
100 mM KCl is surprising when taking the low parallel resistance, high J0 and the appearance of
Sn(S,Se)2 secondary phase into account. However, experiments with different metal ratios and alkali
elements revealed that indeed 10 mM is the optimal concentration for the metal ratios used for this
study, and with higher than 10 mM KCl concentration formation of Sn(S,Se)2 deteriorates the device
performance.21

D. Comparison to sodium doping

In order to reveal if addition of potassium to CZTSSe exhibits any additional effects on sodium-
containing samples, a series of samples with different amount of KCl (0 – 100 mM KCl) and 100 mM
NaCl was studied. Kesterite solar cells grown with 100 mM NaCl added to the precursor solution
are described elsewhere.24 The morphology of the samples with 100 mM NaCl and different KCl
concentrations are shown in the SEM cross sections in Fig. 8, and they exhibit that NaCl is less
effective in promoting grain growth compared to KCl. This can be due to the lower melting point of
KxSe phases (160 ◦C) as compared to NaxSe phases (255 ◦C),16,25 which both act as a fluxing agent
and improve the grain growth.11,15

Fig. 9a) and b) show the device performance and VOC - deficit for added KCl concentrations
varying from 0 to 100 mM. From 0 to 50 mM KCl both efficiency and VOC - deficit show a similar
trend with average efficiencies of >9 % and VOC - deficits below 0.6 V. For the 100 mM KCl sample
a drop in efficiency below 6 % and a high VOC – deficit of 0.7 V are observed and correlated to the
appearance of Sn(S,Se)2 secondary phase with the associated decrease in parallel resistance and VOC,
similar to the sample with only 50 or 100 mM KCl.

The IQE patterns of the 100 mM NaCl samples with different KCl amounts are shown in Fig. 9c).
In contrast to the sample series without NaCl no reduction of the IQE value in the wavelength range
of 550 - 700 nm can be observed here, suggesting that the presence of sodium lowers or removes
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FIG. 8. SEM cross section images of the full devices including the window layer. The added KCl amount is increasing from
0 – 100 mM while the NaCl concentration remains at 100 mM for all samples.

the back barrier by either improving the morphology of the lower part of the absorber layer or
increasing the hole conductivity of the back interface and grain boundaries. The decrease in the
collection in the long-wavelength region for the sample with 100 mM KCl concentration is con-
nected to the reduced VOC and therefore assumed lower minority carrier lifetime. The reason for
the similarly low collection in the long-wavelength region for the 50 mM KCl sample is unclear.

FIG. 9. a) – c) The PV parameters and IQE spectra of samples with 100 mM NaCl and 0 – 100 mM KCl.
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TABLE II. Comparison of PV parameters for the best samples with no alkali addition, KCl only and NaCl only. The KCl and
NaCl samples both exhibit efficiency close to 10% and comparable PV parameters.

Sample Eff. (%) FF (%) VOC (mV) JSC (mAcm-2) A J0 (mAcm-2) Eg-qVOC (eV) NC (cm-3)

No alkali addition 6.4 51.6 364 33.8 1.21 4.3E-04 0.63 6.6E15
10 mM KCl 9.7 61.0 432 36.7 1.24 7.0E-5 0.59 1.6E16
100 mM NaCl 10.1 65.0 428 36.5 1.27 1.3E-04 0.57 2.2E16

A shift to higher bandgaps of up to 1.04 eV can also be observed, similar to the sample series only
containing KCl.

Finally, Table II presents a comparison of the best cells obtained from nominally alkali-free, KCl-
and NaCl-containing absorbers. The addition of either alkali element can yield high-efficiency devices
around 10 % with comparable photovoltaic properties. However, a ten-fold lower concentration of
potassium is sufficient for achieving similar efficiencies to the sodium-containing sample.

IV. CONCLUSIONS

It has been confirmed that the addition of potassium into the kesterite absorber layer leads to an
enhanced grain growth and improved PV properties, however the potassium-containing devices do
not outperform sodium-containing counterparts. Compared to sodium, a ten-fold lower potassium
amount is sufficient to achieve similar grain size and device performance. The reduction of series
resistance of solar cells previously reported is confirmed by this study. Potassium doping increases
the carrier concentration as derived from C-V measurements. Higher nominal Potassium concen-
trations require an adjustment of the tin content in the absorber layer in order to avoid formation
of Sn(S,Se)2 secondary phase and thus deterioration of the device performance. Synergetic effects
between potassium and sodium are not observed and both alkali elements exhibit similar beneficial
effects on the kesterite solar cell performance.

SUPPLEMENTARY MATERIAL

See supplementary material for the SIMS image of the inhomogeneous potassium distribution
inside the absorber layer and the detailed measurements of the 400/008 Bragg reflexes of the KCl
only and NaCl + KCl samples and.
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