
Future Generation Computer Systems 86 (2018) 199–210

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Sustainable software products—Towards assessment criteria for
resource and energy efficiency
Eva Kern a,b,*, Lorenz M. Hilty c,d,e, Achim Guldner b, Yuliyan V. Maksimov c,f,
Andreas Filler b,g, Jens Gröger h, Stefan Naumann b

a Leuphana University Lueneburg, Universitätsallee 1, 21335 Lueneburg, Germany
b Institute for Software Systems in Business, Environment, and Administration, Trier University of Applied Sciences, Environmental Campus Birkenfeld, P.O.
Box 1380, 55761 Birkenfeld, Germany
c Department of Informatics, University of Zurich, Zurich, Switzerland
d Technology and Society Lab, Empa Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
e KTH Royal Institute of Technology, Stockholm, Sweden
f i4Ds Centre for Requirements Engineering, University of Applied Sciences Northwestern Switzerland (FHNW), Windisch, Switzerland
g Institute of Technology Management, University of St. Gallen, Dufourstrasse 40a, 9000 St. Gallen, Switzerland
h Sustainable Products & Material Flows Division, Oeko-Institut, Schicklerstraße 5-7, 10179 Berlin, Germany

h i g h l i g h t s

• A causal model linking software properties to sustainability conditions is proposed.
• A set of criteria to evaluate a software product’s sustainability is presented.
• Application of selected criteria demonstrates practicability of the set of criteria.

a r t i c l e i n f o

Article history:
Received 7 July 2017
Received in revised form 9 January 2018
Accepted 25 February 2018
Available online 18 April 2018

Keywords:
Environmental criteria for software
Green software
Resource efficiency
Sustainability indicators
Model of software impacts
Energy-aware software

a b s t r a c t

Many authors have proposed criteria to assess the ‘‘environmental friendliness’’ or ‘‘sustainability’’ of
software products. However, a causal model that links observable properties of a software product to
conditions of it being green or (more general) sustainable is still missing. Such a causal model is necessary
because software products are intangible goods and, as such, only have indirect effects on the physical
world. In particular, software products are not subject to any wear and tear, they can be copied without
great effort, and generate no waste or emissions when being disposed of. Viewed in isolation, software
seems to be a perfectly sustainable type of product. In real life, however, software products with the same
or similar functionality can differ substantially in the burden they place on natural resources, especially
if the sequence of released versions and resulting hardware obsolescence is taken into account. In this
article,wepresent amodel describing the causal chains fromsoftware products to their impacts onnatural
resources, including energy sources, froma life-cycle perspective.We focus on (i) the demands of software
for hardware capacities (local, remote, and in the connecting network) and the resulting hardware energy
demand, (ii) the expectations of users regarding such demands and how these affect hardware operating
life, and (iii) the autonomy of users in managing their software use with regard to resource efficiency.
We propose a hierarchical set of criteria and indicators to assess these impacts. We demonstrate the
application of this set of criteria, including the definition of standard usage scenarios for chosen categories
of software products. We further discuss the practicability of this type of assessment, its acceptability for
several stakeholders andpotential consequences for the eco-labeling of software products and sustainable
software design.

© 2018 Published by Elsevier B.V.

* Corresponding author at: Leuphana University Lueneburg, Universitätsallee 1,
21335 Lueneburg, Germany.

E-mail address:mail@nachhaltige-medien.de (E. Kern).
URL: http://www.green-software-engineering.de (E. Kern).

1. Introduction

This article presents the results of a project on sustainable soft-
ware design commissioned by the German Federal Environment
Agency.1 The project builds on the results of earlier projects [1,2].

1 ‘‘Sustainable software design—Development and application of criteria for
resource-efficient software productswith consideration of existingmethods.’’ UFO-
PLAN project no. 3715 37 601 0.https://doi.org/10.1016/j.future.2018.02.044

0167-739X/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.future.2018.02.044
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.02.044&domain=pdf
mailto:mail@nachhaltige-medien.de
http://www.green-software-engineering.de
https://doi.org/10.1016/j.future.2018.02.044


200 E. Kern et al. / Future Generation Computer Systems 86 (2018) 199–210

Fig. 1. Life cycles of hardware and software (horizontal dimension) and the resource
demand induced by the life cycles (vertical dimension)

The goal of the present project is to develop a method for
evaluating the environmental impacts of software products and
to provide recommendations to software engineers for developing
software with low environmental impact. The evaluation method
is intended to support both the procurement of software products
with the consideration of environmental criteria and the devel-
opment of resource-efficient software. In particular, the method
is supposed to enable a comparison of two given software prod-
ucts with similar functionality, where the comparison will focus
on the impacts of their use on natural resources. Based on the
formulation of ambitious minimum standards, the method will
help to define criteria for the awarding of an environmental or
quality label to sustainable software products. The potential effect
of exploiting the software functionality, such as the carbon emis-
sions saved by using videoconferencing software to avoid flights
(as demonstrated by Coroama et al. [3]), which may be much
larger, are not in the focus of this research. In the given example,
we would distinguish among a set of software products instead,
all providing videoconferencing functionality, by the amount of
natural resources consumed per hour of using them.

Thus, the projectmakes a contribution to expanding the focus of
‘‘Green IT’’ beyond the hardware level to include the software level
as the place where hardware requirements emerge and expand.
Since software products are immaterial goods, it is a challenge to
capture the indirect material and thus environmental impacts of
these products in conceptual and methodological terms.

A product’s environmental impacts generally occur through the
use of natural resources2 during the life cycle of the product. We
take this life-cycle perspective into account in relation to software
products, as well (see Fig. 1, upper part). We further consider
that the hardware needed to operate a software product must be
produced, supplied with electricity, and disposed of at the end of
its useful life (Fig. 1, middle part). Thus, every software product
is responsible for a quantifiable fraction of the life cycle of all
the hardware products required for its operation (programmable
devices of any kind, peripheral devices, and storagemedia). During
production, use and disposal, these hardware products demand a
quantifiable part of natural resources.

Because it takes a life-cycle perspective, this approach can be
expanded to include social aspects of sustainability, e.g. when
producing the raw materials for the hardware (or producing the
software) as well as the working conditions in hardware produc-
tion and disposal; however, our focus is on the environmental
aspects.

2 In this article, we reserve the term ‘‘resource’’ for natural resources and mostly
avoid the technical term ‘‘hardware resource’’ by describing hardware resources
in terms of their capacities, i.e., quantifiable aspects of their performance such as
computing power, storage capacity, or transmission bandwidth.

Fig. 2. The two main physical flows to be reduced by sustainable software.

At the software level, we intentionally limit our perspective to
the use phase when developing the criteria. Although the produc-
tion (development) and disposal (uninstallation) of software also
has its indirect environmental impacts, they are not considered
in this project. One exception is that we take into account the re-
sources that can be wasted due to a software product’s incomplete
uninstallability.

Focusing on the use phase of software products is justified for
standard software that is installed and run in millions or billions
of cases. Minor changes of software properties decided by the
developers can have a huge impact in terms of resource demand
when the software product is being used, just because of the high
multiplication factor that has to be applied due to the large number
of installations and executions.

The purpose of the set of criteria is to evaluate a software
product on the basis of characteristics that are observable in its
use phase, be it by the users themselves or by persons conducting
professional tests. We excluded software production because as-
sessing the process of software development seems less important
to us than influencing it, in particular bymaking recommendations
addressed to those responsible for software development.

The evaluation of widespread software products requires more
than a snapshot, ideally an observation of the software prod-
uct over longer periods of time which cover several versions.
From this long-term perspective, questions concerning software-
induced purchasing of new hardware become more relevant, for
example.

Expressed in abstract terms, our analysis focuses on two essen-
tial flows caused by the use of a software product (see Fig. 2):

• the flow of energy through the hardware running the soft-
ware (electricity to waste heat),

• the flow of hardware through the organization using it (new
hardware to electronic waste).

The impact of both flows on natural resources can be deter-
mined by using standard life-cycle assessment (LCA) methods. Life
cycle inventories for production and disposal of the most impor-
tant hardware components exist for this purpose, and we take
them as given without entering a detailed discussion [4,5]. Energy
flow can also be evaluatedwith LCAmethods; the variousmethods
for generating electricity have been examined sufficiently; that is
why we take these results for granted as well [6,7].

If a software product causes significantly lower hardware and
energy flows than competing products with similar functionality,
it can be considered ‘‘relatively sustainable’’.3

3 The functionality of a software product, and thus its utility, will not be evaluated
here. Our goal is restricted to estimating and evaluating the amount of resource use



E. Kern et al. / Future Generation Computer Systems 86 (2018) 199–210 201

That is why it is sufficient to address the impact of software
on the required hardware capacities. If one imagines a chain of
impacts from software characteristics to natural resource use, we
exclusively analyze the section of this causal chain from the soft-
ware characteristics to the hardware products and their electricity
consumption, because it is the only part of the causal chain that can
vary among software products. In other words, a software product
has usually no impact on the way hardware is manufactured or
electricity is generated, but only on the amount of hardware and
electricity consumed for its running. Exceptionsmay occur in cases
of co-design of hardware and software or when an operating sys-
tem and the hardware are optimized together. However, our focus
is on standard application software. This does not exclude that the
criteria or subsets of them can in principle be applied to a broader
class of software products.

Additional hardware that is not directly involved in executing
the programs of a software product, but indirectly used, such as the
Internet nodes routing the traffic generated by the software, may
not even be known; in such cases, using average impact factors like
‘‘Internet energy intensity’’ in kWh/GB [8] is better than implicitly
assuming a zero impact.

Thus, operational criteria are necessary to be able to assess
the sustainability of software with reference to the hardware and
energy flows it induces. Then these criteria can be applied, e.g., to
inform people responsible for software development or software
procurement—or to award an eco-label for software products [9].

The set of criteria proposed here focuses on environmental
impacts resulting from the operation of a software product. As
already mentioned, this does not rule out that the awarding of
eco-labels also includes social criteria regarding the process of
software development (e.g., compliancewith ILO4 standardswhen
outsourcing programming work), the functionality of the software
(e.g., accessibility, or exclusion of particular categories such as
violent games), or other aspects. It seems important to us, however,
to treat the impacts of software characteristics on natural resource
consumption as a clearly defined object of research from the outset
and not to confound it with other issues. Studies and criteria are
available for many of these neighboring issues and can be used to
complement our set of criteria [10,11].

A tree of criteria was developed during the first phase of the
project. The leaves of this tree are indicators serving to opera-
tionalize the parent criterion. An overview of the set of criteria
is provided in Section 3. The full set of criteria is available in the
supporting information to this article, which will be also pub-
lished online. We will provide updates at: http://green-software-
engineering.de/criteria-catalog, add a revision control on thisweb-
site and invite for comments and feedback. In addition, we will
keep the version to which this article directly refers as supple-
mentary information constant and accessible. The set of criteria is
intended to beused as a catalog fromwhich a selection canbemade
depending on the goal and scope of the assessment task. Direct
comparisons of software products are of course only possible if the
same selection is used in all cases investigated.

2. Criteria for software sustainability and related approaches in
literature

Many fields of research are addressing interactions between
ICT and the goal of sustainable development. Hilty and Aebischer
provide a general framework for this type of research [12]. As
a special case, research on software sustainability is focusing on
the software part of ICT systems, looking for interdependencies

it induces. A given amount of useful work can be related to the amount of resource
use induced to determine efficiency.
4 International Labor Organization.

between software engineering and sustainability issues. A first
literature review in this contextwas done by Penzenstadler et al. in
2012 [13]. Based on their data, at that time ‘‘little research coverage
on the different aspects of sustainability in software engineering’’
was found. This seemed to have changed two years later, when a
similar study by the almost same authors came to the conclusion:
‘‘The topic of SE4S [Software Engineering for Sustainability] has
received wide-spread attention in the software engineering com-
munity over the past fewyears’’. [14] Thus, the interest for the issue
is widening.

Addressing a more specific topic, Calero et al. [15] analyze
publications dealing with software sustainability measurements.
In addition to measurements, metrics are an issue in evaluating
software products. Here, Bozzelli et al. [16] describe and classify
metrics regarding the so-called ‘‘greenness’’ of software while re-
viewing existing literature in this context. However, they do not
definewhat ismeant by ‘‘greenness of software’’. According to their
results, the ‘‘research community is focusing on metrics strictly
related to energy consumption and saving dimensions’’.

Nevertheless, many authors working on criteria andmetrics for
‘‘green’’ or ‘‘sustainable’’ software have a broader understanding
of the issue, e.g. addressing the ‘‘impacts on economy, society,
human beings, and [the] environment that result from develop-
ment, deployment, and usage of the software.’’ [1,17] Several other
definitions of ‘‘sustainable software’’ [18–20] discuss the issue
from different perspectives. Summarizing, all of them address the
protection of resources, among other issues. However, a standard-
ized understanding of ‘‘green’’ or rather ‘‘sustainable’’ software
is still missing. As set out in the introduction, we will focus on
environmental sustainability.

2.1. Strategies on finding criteria for sustainable software

The following strategies on how to find and summarize criteria
for sustainability or ‘‘greenness’’ of software products can be iden-
tified in literature:

i. Taking existing software quality criteria (such as maintain-
ability) or quality models (such as ISO 25010) and interpret-
ing them in the context of environmental sustainability,

ii. taking existing sustainability criteria (such as energy effi-
ciency) and clustering them to categories (bottom-up ap-
proach), and

iii. taking an LCA approach and defining software sustainability
criteria for software life cycle phases (top-down approach).

Table 1 summarizes literature that can be categorized into
methods (i)–(iii). The list is not intended to be exhaustive.

2.2. Research design

In order to create the set of criteria presented in this article,
we used a procedure combining methods (i)–(iii): We first col-
lected available extensions of quality models, findings of litera-
ture reviews (including scientific and practical publications), and
additional ideas in the context of software sustainability (expert
discussions). We then related the collected elements to each other
and clustered them (bottom-up approach). This resulted in a struc-
tured collection of criteria which was reassessed for consolidating
overlapping ideas. Then we mapped the criteria to software life
cycle phases and to the sustainability aspects resulting from the
causalmodel of the impact of software on natural resource use that
was developed in parallel (Fig. 3). Consequently, only a subset of
the consolidated set of criteria has been followed up.

The resulting set of criteria will be presented in Section 3.
The practical application of example criteria is demonstrated with
existing software products in Section 4.

http://green-software-engineering.de/criteria-catalog
http://green-software-engineering.de/criteria-catalog
http://green-software-engineering.de/criteria-catalog


202 E. Kern et al. / Future Generation Computer Systems 86 (2018) 199–210

Table 1
Comparison of approaches on criteria for sustainable software.

Approach by Objectives Outcomes Criteria (Examples)

Method (i)

Albertao [21]
Albertao et al. [22]

Assessing properties of software for
environmental, economic and social
aspects; Introducing a set of metrics to
assess the sustainability of software
products, demonstration how to use the
metrics

Sustainability performance metrics and
strategy how to improve follow-up releases
by using the metrics

Modifiability, Reusability, Dependability,
Usability, Efficiency, and Predictability

Calero et al. [18]
Calero et al. [23]

Extending the ISO 25010 quality model by
including sustainability aspects; definition
of ‘‘greenability’’

Model for software sustainability that can
be added to the ISO software product
quality model

Energy efficiency, Resource Optimization,
Capacity Optimization, Perdurability

Method (ii)

Taina [24] Developing the criteria set ‘‘green software
factors’’

Framework for green quality factors:
related to software development and
execution

Feasibility (Carbon Footprint, Energy,
Travel, . . . ), Efficiency (CPU-intensity,
Idleness, . . . ), Sustainability (Reduction,
Beauty, . . . )

Kern et al. [25] Summarizing existing approaches in a
‘‘quality model’’ for green and sustainable
software

Quality model to classify green software
and its engineering and exemplary
corresponding metrics

Feasibility, Social Aspects, Portability,
Efficiency, Reflectivity, Product
Sustainability

Method (iii)

Abenius [26] Evaluation of ‘‘Green IT’’, especially ‘‘Green
Software’’, and pointing out possibilities to
use software in a more energy-saving way

Examples of actions towards Green IT,
mapped to software life cycle phases

Choice of Material, Reuse Refurbish
Recycle, Production Logistics

Naumann et al. [1] Mapping potential effects of software to
sustainable development

Life cycle model for software products
including effects relevant to sustainability

Working Conditions, Manuals, Data
Medium, Download Size, Accessibility,
Hardware Requirements, Backup Size

Fig. 3. The model describing the causal chains leading from software properties (blue) to the natural resources required for using the software (green). A link means ‘‘has
impact on’’. The central node ‘‘Hardware capacities used‘‘ is structured into several types of local, transmission and remote hardware capacities procured and operated to
run the software product. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. A set of criteria to assess the resource efficiency of software
products

As a guideline to structure the criteria collected from the litera-
ture, we developed a causal model describing the principal mech-
anisms by which a software product can influence the demand for
natural resources (inspired by [27]). Each of these mechanisms is

a direct path (representing a causal chain) from observable prop-
erties of the software product to the use of hardware capacities
and, finally, to the demand for natural resources that is induced by
producing and running the hardware. This causal model is shown
in Fig. 3. We will first explain the model and then provide an
overview of the set of criteria we formulated on its basis.



E. Kern et al. / Future Generation Computer Systems 86 (2018) 199–210 203

Table 2
Software properties (corresponding to the five top nodes of Fig. 3) and example criteria. The numbers in brackets refer to the set of criteria provided as supporting
information and described in Table 3.

Software property Rationale Example criterion

Support for self-directed management of
the software product (user autonomy)

If the organization or individual using the software
product wants to save resources, the software should
support this intention.

Uninstallability [3.2].

Configurability and default settings The default settings for configuring the software
product may have a substantial influence on the
resources used.

This aspect can be viewed as overarching, it affects
several criteria by creating awareness for default
settings, e.g., Resource Management [1.3].

Hardware requirements The hardware required to run the software product
have a crucial influence on the hardware capacities
the user will procure and on the load and energy
consumption when using the product.

Electricity consumption for a standard usage scenario
and a standard configuration [1.2].

Resource management functionality This is the capability of the software product to
manage the hardware capacities (and thus the natural
resources needed to provide them) in a way that
avoids wasteful use.

Resource Management [1.3].

Continuity and further development of the
software product

Backward compatibility of a software product
mitigates the obsolescence effect that can be created
by new versions.

Backward compatibility [2.1].

The observable properties of the software product are repre-
sented by the five (blue) nodes in the upper part of the graph. The
most important property is the hardware requirements, i.e., the
amount of hardware capacities the software product requires (both
declared by the producer and actually measured, as partly shown
in Section 4).

The amount of natural resources (including energy resources)
demanded for running the software is represented by the two
(green) oval nodes labeled ‘‘Resources required for production and
disposal of hardware’’ and ‘‘Resources required for operation of
hardware’’ (lower right part of the figure).

Each path leading from a software product property to the
natural resource demand represents a possible way for software
developers to influence the natural resource consumption thatwill
be caused by their products. All paths happen to cross the node
‘‘Hardware capacities used’’—except one.

This exceptional path starts at ‘‘Continuity and further devel-
opment of the software product’’, which has a direct impact on
the ‘‘Operating life of the locally used hardware products’’, which
then affects the ‘‘Resources required for production and disposal of
hardware’’. The idea behind this causal chain is that the evolution
of a software product has an influence on hardware obsolescence.
If, for example, a new version is more demanding with regard to
hardware capacities, it can shorten the useful life of the hardware
equipment in use even when this is still fully functional, which
then increases the amount of natural resources required to produce
the hardware per unit of used hardware capacity ∗ time.

All the other paths from software properties to natural re-
sources cross the (orange) node ‘‘Hardware capacities used’’. Note
that we assume that there are – in the general case – three spheres
of hardware capacities involved in running application software:

• local capacities provided by end consumer devices,
• transmission capacities provided by network infrastructure,

which includes hardware such as routers, switches and links
(e.g., optical fibers), and

• remote capacities provided by servers.

Even if the software product under test runs only locally, it may
require and access remote and transmission capacities which have
to be assessed as well.

Another important feature of the model is that some of the
causal chains reach the ‘‘Hardware capacities used’’ via (red) be-
havioral and organizational aspects of using the software product.
This includes everything that may influence the ‘‘actually used
configuration of the software product’’ or the ‘‘Usage patterns’’.

This reflects that the actual configuration and the way of using the
software product both influence the hardware capacity it requires.
This is where users and the organizational structures inwhich they
act come into play as influencers of the software-induced resource
demand. Software developers cannot (and probably should not
want to) determine user behavior and organizational structures,
but they do define the decision space for organizations and indi-
vidual users to optimize resource consumption when using the
software. If this decision space is too constrained to allow users
who intend to save resources to do so, this is less sustainable than
providing such options. The gray nodes are intermediate nodes in
the causal network.

In Table 2, we briefly explain the five software properties used
in our model and provide examples for the criteria addressing
them. Please note that the criteria numbers shown in brackets
refer to Table 3 and to the full set of criteria that is provided as
supporting information to this article.

To provide an overview of the full set of criteria, Table 3 shows
the levels one and two of the hierarchy. There are three main
criteria, ‘‘Resource efficiency’’, ‘‘Potential hardware operating life’’
and ‘‘User autonomy’’. They have different numbers of sub-criteria.
Some of the sub-criteria are further refined to a third level. The
leaf criteria are operationalized by indicators which can be directly
used to measure or qualitatively assess properties of the software.
Third-level criteria and indicators are not shown in Table 3 to keep
it short. Please refer to the supporting information for the full
documentation.

The next section describes the application of four example
criteria to demonstrate their practicability in the real word.

4. Exemplary application of the criteria set

In order to show how the set of criteria can be used to compare
software products with similar functionality in terms of resource
efficiency, we will demonstrate the application of selected criteria.

The example criteria, for which we will demonstrate the op-
erationalization here, were selected using the following require-
ments: at least one from each of the main criteria (level 1), poten-
tially high relevance in terms of natural resource use, and different
methodological challenges for applying the criteria. This led to the
following selection:

• ‘‘Electricity consumption for a standard usage scenario and
a standard configuration’’ [1.2],

• ‘‘Default settings supporting resource conservation’’ [1.3.3],
• ‘‘Backward compatibility’’ [2.1], and



204 E. Kern et al. / Future Generation Computer Systems 86 (2018) 199–210

Table 3
Levels one and two of the criteria tree. For the full description of the criteria set
please refer to the supporting information to this article.

1 Resource efficiency
1.1 Hardware efficiency: Which hardware capacities must be available
for operating the software product and what is the degree of capacity
utilization during operation?
1.2 Energy efficiency: How much electricity does the hardware
consume when the software product is used to execute a standard
usage scenario?
1.3 Resource management: Does the software product have an energy
management feature, and how effective is it when using the product in
a standardized context?

2 Potential hardware operating life
2.1 Backward compatibility: Does the manufacturer of the software
product guarantee that the current release can be executed on a
reference system that is n years old?
2.2 Platform independence and portability: Can the software product
be executed on different currently prevalent productive system
environments (hardware and software), and can users switch between
them without disadvantages?
2.3 Hardware sufficiency: Does the amount of hardware capacity used
remain constant over time as the software product is developed
further and additional functions are added?

3 User autonomy
3.1 Transparency and interoperability: Can users understand
resource-relevant aspects of the software product with a reasonable
amount of time and effort? Are they free to re-use data they produced
with this software product with other software products?
3.2 Uninstallability: Can the software product be uninstalled easily,
without leaving traces, and without avoidable disadvantages?
3.3 Maintenance functions: Does the software product provide
easy-to-use functions permitting users to repair damage to data and
programs?
3.4 Independence of outside resources: Can the software product be
operated as independently as possible of resources not subject to the
users’ control?
3.5 Quality of product information: Does the information provided
about the software product support its resource-efficient use?

• ‘‘Uninstallability of programs’’ [3.2.1].

For criteria with quantitatively measurable indicators (only the
first one in our example), we use a measurement setup (following
ISO/IEC 14756, as introduced in [28], see Fig. 4) to record the usage
of the hardware capacities and energy consumption of a reference
computer system to derive the hardware utilization and energy
consumption induced by the software products. To demonstrate
the applicability of themethod, we used themeasurementmethod
of previous work, which used different measurement scenarios
and focused on energy issues. The measurement setup is briefly
described in Section 4.1.

The assessment of criteria for which no measurable indicators
can be defined depends on observations of the software products’
behavior, expert and user opinions, visual inspections, black-box
tests and reviews of software manuals and other documents.

To evaluate the practicability of the criteria, we established a
measurement procedure for each indicator. We then conducted
case studies with 11 software products from the product groups
‘‘word processors’’, ‘‘web browsers’’, ‘‘content management sys-
tems’’, and ‘‘database systems’’. Thus, the four chosen software
types represent three different software architecture patterns:
local applications, applications with remote data processing, and
server applications (see Table 4). The definition of the software ar-
chitecture patterns is a result of the aforementioned prior research
activities, a review of relevant literature, and expert interviews.

Based on the decision to select software products representing
the different software architecture patterns, we chose the specific
products for the case studies. Table 4 shows the resulting selection
of software product groups. In order to find the products that
should be tested, the following aspects were considered:

• High installation or user count
• Long useful life
• Different user groups
• Different devices used to run the products
• Different operating systems used to run the products
• Different licenses.

The specific selection is based on statistics on private and pro-
fessional usage and market shares of the products. We chose from
a large range of software product groups to test the applicability of
the indicators over a large scope.

4.1. Example criterion ‘‘Electricity consumption for a standard usage
scenario and a standard configuration’’

To measure the energy consumption of software for the first
sub-criterion of criterion 1.2, which is ‘‘Electricity consumption
for a standard usage scenario and a standard configuration’’, we
let the system execute the same task with a set of comparable
software products and monitor the consumption behavior of the
system under test (SUT) at the hardware level in a standardized
test environment.

Fig. 4 depicts an exemplary measurement setup, introduced
in [29], that allows recording the utilization of hardware capaci-
ties induced by a software product and the resulting energy con-
sumption. Previous work showed the comparison of the energy
consumption of different configurations of a web content manage-
ment system, using caching and compression technologies, and of
different ways of using web browsers on two well-known tools,
based on black box measurements [29]. In addition, we applied
white box measurements to sorting applications and multi user
web applications [30].

The software product is installed on the SUT, which can be a
desktop computer or server. The workload generator then per-
forms the tasks defined in the usage scenario (see below). The
power supply of the SUT is monitored by a power meter. The SUT
itself collects the data on the utilization of its hardware capacities.
All data is aggregated in a centralized data storage and then ana-
lyzed.

In order to produce comparable results, we record several mea-
surements: the baseline consumption of the operating system, the
consumption of the operating system plus the software product in
idlemode, and a standard usage scenario. To ensure a fair appraisal
system, the standard usage scenario needs to be devised for each
software product group in a way that it does not favor one product
over the other. Thus, the scenarios thatwedescribe here aremerely
suggestions that we used to prove the viability of the method. The
creation of the scenarios, which are later used e.g. for awarding
eco-labels, should be devised by the respective entity, like the
certifier.

For a non-interactive product group (e.g. database systems),
we propose to use or devise a benchmark that puts load on the
system. This can be done in several steps (low, medium, and high
load) to ensure an equitable comparison. For an interactive product
group (e.g. word processors), we propose to create a standard
usage scenario in a way that it emulates a user as realistically as
possible. To do so,wepropose the following steps: First,we analyze
which tasks users typically carry out with the software product
and which functions of the software are used most frequently in
this process. Additionally, we consider expert opinions on func-
tionalities whichmay induce high energy demand or high resource
utilization.With this information,we define individual actions that
then are scheduled in a flow chart. We test the scenario with each
software product of the product group to ensure that the execution
of the whole scenario is possible with each one. This way, when
the energy consumption and hardware utilization of the SUT is



E. Kern et al. / Future Generation Computer Systems 86 (2018) 199–210 205

Table 4
Selection of software products for the case studies.

# Product group Software architecture pattern Platform Products and Licenses

1 Word processors Local application Desktop/ Mobile One proprietary and one open source word processor
were selected

2 Web browsers Application with remote data
processing

Desktop/ Mobile One proprietary and two open source web browsers
were selected

3 Content Management
Systems

Application with remote data
processing

Desktop/ Server Three open source browsers were selected

4 Database systems Server application Server One proprietary and two open source database
systems were selected

Fig. 4. Exemplary setup for measuring hardware utilization and energy consumption of a software system.

measured while performing the scenario, the same useful work is
done with each software product and we can compare the results
for each one of the scenarios.

After the design of a standard usage scenario, we prepare the
SUT. In order to reduce side effects from remnants of previous
installations, we overwrite the whole hard drive with a predefined
standardized disk image including the desired operating system,
before installing the software product. In this system, all possible
background processes – such as automatic updates, virus scanners,
indexing- and backup processes – are deactivated. With this stan-
dardized configuration, we measure the baseline consumption of
the operating system several times and average the results in order
to ensure that the fewest possible number of other processes are
interfering with the scenario measurements.

By means of a macro software, we repeat the measurement
of the standard usage scenario several times in order to generate
a representative sample. In the following, we present exemplary
results of themeasurements from the case studies. Table 5provides
some technical details.

For each measurement, we record the power input and hard-
ware utilization data, averaged per second. We store the measure-
ment data together with the log data from the load generator in a
database, in order to be able to analyze which action causes which
resource consumption. By way of example, we present the results
of the indicator ‘‘measured power input’’ (an indicator for criterion
1.2.1) for two word processors executing the same standard usage
scenario (see Fig. 5).

The measured values are averaged per second over the 30
repetitions. It can be seen that the two word processors take a
different amount of time to finish the same scenario within the 10-
min. interval.

From these measurements, we calculate the average consumed
electrical energy [Wh] per standard scenario and decide whether
the two candidates’ mean values differ significantly via a t-test.

In this case, word processor 2 uses significantly more electrical
energy (16.72 Wh) than word processor 1 (14.43 Wh) on aver-
age (confidence interval: 95%). Similarly, we also calculate and
compare the work that the software demands from the available
hardware capacities, such as ‘‘processor work’’ (processor load
integrated over time) to evaluate other criteria, in particular 1.1,
‘‘Hardware efficiency’’: Which hardware capacities must be avail-
able for operating the software product and what is the degree of
capacity utilization during operation?

4.2. Further example criteria

All considerations about the evaluation of the criteria are made
with the default settings of the software product to be assessed in
order to locate the optimization potentials.

4.2.1. Example criterion ‘‘default settings supporting resource conser-
vation’’

Criterion 1.3.3 (a sub-criterion of 1.3 Resource management)
requires that ‘‘the default settings of the software product are
selected in such a way that they also take the goal of resource
conservation into account’’. This is assessed bymeans of observing
the default settings of the software product and a reviewer’s as-
sessment. In this case, it is important to check settings both during
and after the software installation and, if necessary, tomeasure the
default settings with a separate scenario and compare the results
with those of the other software products in the same group.



206 E. Kern et al. / Future Generation Computer Systems 86 (2018) 199–210

Table 5
Details of the measurement procedure.

System Under Test (SUT) We use two SUT, a desktop computer for local software (e.g. word
processors) and a server for distributed software (e.g. content
management systems).

Sampling rate All data is collected with a sampling rate of one kilohertz.
(1000 data points/s)

Scenario length The time interval of each scenario is set to 10 min.

System configuration We use two standard configurations of hardware and operating
system, one for each SUT (client and server). All software products of
one product group are installed on the same reference system.

Synchronization The analysis software synchronizes all measured data by means of
time stamps.

Sample size All measurements are repeated 30 times and then averaged. Assuming
a normally distributed population [28], and given the controlled test
environment described in the text, 30 measurements are usually a
sufficient sample size, as ‘‘the sampling distribution will tend to be
normal regardless of the population distribution in samples of 30 or
more’’ [31].

Fig. 5. Comparison of the power input of two word processors.

As mentioned in Table 2, this criterion is a special case because
it is implicitly linked to other criteria and indicators addressing a
broad variety of settings relevant for resource demand. Examples
of such settings are sleep mode settings (indicator for 1.3.2, en-
ergy options (indicator for 1.3.1), data compression and transfer
options.)

As a starting point, the reviewer can look out for hardware-
intensive modules identified in criterion 1.1.5 ‘‘Economical use of
hardware through adaptability and support for users when adapt-
ing the software product’’. In some cases, it may also be necessary
to rely on other assessment methods like reviewing manuals or
visual inspections (e.g., in case of web browsers: which is the
default page the browser opens at every start?).

For the case studies with software products from the ‘‘word
processor’’ group,we found that forword processor 1, the default is
to install all office tools (likeword processor, spreadsheet program,
presentation program, etc.) and some extensions (approximately
140 megabytes in size, including, e.g., dictionaries for the spell

checker). Word processor 2 also includes the standard office tools.
In addition, it installs several programs, plugins, and add-ons (ap-
proximately 1000 megabytes in size).

4.2.2. Example criterion ‘‘backward compatibility’’
Criterion 2.1 requires that ‘‘the manufacturer of the software

product guarantee[s] that the current release can be executed on
a reference system that is n years old’’. The maximum number n is
the result.

To apply this criterion, two indicators are evaluated:

(a) Use the specification by the manufacturer (hardware, old
operating systems, old frameworks), since no standard con-
figurations have been defined for previous years.

(b) When this criterion has been applied for at least one year,
execute the standard usage scenario on earlier standard
configurations as well. Can the standard usage scenario still



E. Kern et al. / Future Generation Computer Systems 86 (2018) 199–210 207

be executedwith the current release of the software product
under the standard configurations from n years ago?

For indicator (a), we review the manufacturer’s specification to
identify how many years have passed since the most current ver-
sion of the minimum requirements (hardware, operating systems,
frameworks, etc.) to operate the software product was released.
For example: If the minimum requirements are Windows 2000
and php 5 (released in 2006), this would yield n = 11 today
(in 2017). For the case studies with software products from the
‘‘word processor’’ group, we found that for word processor 1, the
current release can be executed on a system that is 8 years old.
For word processor 2 we found n = 7. In the following iterations
of the assessment of the software product, when a new version is
available, the evaluation of indicator (b) can start by experimen-
tally testing whether the standard usage scenario can be executed
on earlier standard configurations as well. This may then provide
more robust results.

4.2.3. Example criterion ‘‘uninstallability of programs’’
Criterion 3.2.1 requires that ‘‘the user receives sufficient sup-

port to uninstall the program without leaving traces’’. In order to
test this criterion, we propose a black-box test that shows if after
installing and uninstalling of the software product under study, the
condition will be identical to that prior to the installation.

To achieve this, we first make a copy of the standardized disk
image with exclusively the desired operating system. Then, we
install the software product, perform the standard usage scenario
and uninstall the software product again, following the instruc-
tions in the user manual (if available). We then create another
disk image and compare it to the image we created before the
installation. This way, we find all files and changes to files that
remain after uninstalling. The reviewer then traces which files
were created by the software product. Additionally, we search for
remaining entries in the registry of Windows.

For the case studieswith software products from the ‘‘word pro-
cessor’’ group, we found that after uninstalling word processor 1,
there were no related files left except user-generated documents.
After uninstallingword processor 2 however, therewere 14 related
empty folders and 1 file remaining on the disk image and over 100
entries in the registry. The manufacturer also provides a manual
for completely removing the registry entries. Indeed, this can only
be accomplished with administrator rights andmay be difficult for
unexperienced users.

As exemplarily in Section 4 demonstrated, we verified all crite-
ria during our case studies. In conclusion, our studies show that all
criteria can be utilized with varying effort. As described, we chose
these examples to be presented in the paper, because they are a
cross section of the criteria set, potentially have a high impact in
terms of resource consumption, and pose differentmethodological
challenges. The general goal is not to establish a fixed methodol-
ogy, but to show the viability of the criteria. Themethods should be
adapted by the entities that use the set of criteria e.g. for awarding
eco-labels.

5. Potential use cases for the criteria set

In this section, we discuss the set of criteria and its potential
future application from the perspective of different stakeholders.

5.1. Software user perspective

Software users are those who use software products without
usually needing skills in developing or administrating software
products. Thus, this group comprises everyone using a desktop
PC, laptop, smartphone or similar end-user devices in private or

professional contexts. A software user is not necessarily identical
with the software purchaser (see Section 5.2).

From the perspective of software users, the criteria for sus-
tainable software products provide information about the envi-
ronmental impacts of the products. They inform about the idea
how to characterize and evaluate the sustainability of a software
product, and give hints how to use and configure software products
to achieve higher energy and resource efficiency. Informing about
these issues by exemplary demonstrations of this set of criteria
(like the one presented in Section 4) might, hopefully, lead tomore
transparency and awareness for the topic.

Additionally, the set of criteria could be the basis for the de-
velopment of a label for green software products (see Section 5.5).
Such a label can be seen as an information medium supporting
transparency in the relation between software usage and environ-
mental impacts by presenting the information created by applying
the set of criteria in a maximally aggregated form. The awareness
for environmental impacts of software can support ‘‘greener’’ user
behavior with regard to ICT products, especially software. Besides
protecting the environment, the behavioral changes can also result
in economic advantages for the users.

5.2. Software purchaser perspective

Software purchasers are thosewho care about searching for and
buying new software products for their organizations. In private
households, purchasers and users are often identical. In a com-
pany, the purchaser may be responsible for ordering vast amounts
of software products. In any case, someone must decide which
software product is to be bought because there are competitive
products with similar functionality.

If a purchaser is interested in sustainability issues, he or she
can include our set of criteria or a selected part of it to evaluate
candidate products or rely on test results provided by independent
sources (NGO’s, journalists) that have applied the criteria or by a
public authority providing an eco-label.

Besides that, the set of criteria can inspire purchasers to include
additional requirements for new software products in their calls
for tenders. Such requirements can become part of procurement
guidelines.

In the long run, our set of criteria can help companies reducing
their CO2 footprints by purchasing sustainable software products.
At the same time, there may be economic benefits by reducing
hardware capacities and obsolescence.

5.3. Software administrator perspective

The software administrators do not only use the software prod-
ucts, but also care about configuration and related technical as-
pects. Thus, the set of criteria can be a source of inspiration and
deeper understanding, a guideline and an argumentation aid for
administrators to configure software products in an environment-
friendly way. In large organizations with thousands of users, the
impacts of an increased administrators’ awareness for software
sustainability issues can be huge both in environmental and in
economic terms.

5.4. Software developer perspective

The group of software developers includes both individual de-
velopers and software companies.

For a software company, creating sustainable software and
following marketing trends may be conflicting goals (e.g., creating
customer lock-in effects or monitoring user behavior to sell this
datamight notworkwith sustainable software). However, both the
individual developer as well as a future-oriented company, can use



208 E. Kern et al. / Future Generation Computer Systems 86 (2018) 199–210

the idea of sustainable software to create a unique selling point.
Considering our criteria in software development expands the
spectrum of non-functional requirements for the software prod-
ucts. As soon as sustainability becomes a highly rated requirement
for software purchasers, software manufacturers who are able to
deliver sustainable products will have an advantage.

Recommendations for software developers that can be directly
or indirectly extracted from the criteria may be transformed into
a guideline for resource-efficient software development. The rec-
ommendations and the guideline can help to spread the ideas of
caring about sustainability issues in software engineering.

5.5. Software certifier perspective

Software certifiers are people or organizationswho are involved
in developing and awarding eco-labels or sustainability labels for
software products.

Software certifiers may use the set of criteria as a basis for
awarding a label. In order to create guidelines on how to im-
plement test procedures, the method of exemplary application
(Section 4) could be formalized. To do so, our set of criteria provides
a reliable basis.

Providing a label for sustainable software products extends the
number of certified products in the context of responsible con-
sumption. It extends the spectrum of software properties that can
be certified, e.g., quality, security, and usability. As a consequence,
the portfolio of software certifiers grows, strengthening their role
in contributing to market transparency and supporting users in
responsible behavior.

6. Discussion

The previous section already shows possible use cases for the
presented set of criteria and assigns them to the different user
perspectives. However, in order to be able to assess the criteria
of sustainable software products in such a structured way as pre-
sented, we had to set priorities in (i) the scope, (ii) the application
area, and (iii) product selection. This can be interpreted both as
strength and as limitation.

As described in the introduction, we decided to focus on the
usage phase of software. This reduces the complexity of gathering
software products as immaterial goods and provides a starting
point that is easier to handle. Nevertheless, we are aware of the
connection between the different life cycle phases. Thus, we def-
initely speak out in favor of addressing the other phases and the
connection between them in futurework. Overall, the set of criteria
presents a balanced selection of possible criteria since it is the
result of literature reviews and working sessions of a team of
seven researchers and practitioners with different backgrounds.
Additionally, the selection has been evaluated by external experts.

Defining standard usage scenarios and taking this scenario as
a basis for the measurements done (see Section 4.1), allows us
to compare the energy consumption and hardware requirements
of software products of the same product classification. How-
ever, as described, the standard usage scenarios are one viable
approach to the assessment of the software products, especially for
interactive product groups. Nevertheless, a certifier (as described
in Section 5.5) who uses the criteria catalog must decide which
scenarios are to be established within the community. To evaluate
the exemplary criteria, we used a measurement setup including
specific hardware and software tools (Fig. 4). However, the porta-
bility of the measurement method is ensured since the results are
repeatable by using comparable tools.

In order to be able to test the suggested criteria, we had to
select software products the criteria could be applied to. We chose
11 products representing (a) the defined software architecture

patterns and (b) popular products of these classes. It turned out
that there are some limitations in the application of the set of
criteria that are caused by the software architecture. For example,
local applications do not transfer data in the network. Thus, we
do not need to estimate the energy consumed in the network for
the data traffic. This (energy consumed in the network) is one of
the indicators of the criterion 1.2 Energy efficiency (see Table 3).
Overall, we are satisfied that the set of criteria can be applied
to additional software products representing one of the software
architecture patterns.

7. Conclusion and outlook

In this article, we described how we developed a set of criteria
for software sustainability and demonstrated the application of
a subset of them. This research is one step towards awarding a
sustainability label for software products by comparing products
with similar functionality. If it turns out that one of the products
causes less pressure on natural resources than others in its class,
then it can be labeled ‘‘sustainable’’. The basic causal model and
the criteria we developed go beyond energy demand at runtime by
also covering themechanisms that drive the increasing demand for
hardware capacities, including software-induced obsolescence.

The criteria were developed with a combined approach includ-
ing an extensive literature search, the selection and transfer of
existing software quality criteria and the derivation of software-
specific criteria from general sustainability indicators. The pilot
application of core criteria addressing electricity consumption,
default settings, backward compatibility and uninstallability of
software products revealed that there are significant differences
between products that may look quite similar at a first glance.
We conclude that the criteria have a high relevance and offer
practical benefit to any stakeholder who wants to distinguish sim-
ilar software products with respect to their resource efficiency or
environmental impact.

So far, the criteria are unweighted. The set of criteria provides
no statement about what is more relevant and which minimum
standardsmust bemet to characterize sustainable software.When
the criteria set should be further developed into an eco-label or
procurement requirements, it will have to be expanded to a rating
system. One can imagine that sustainability properties of software
can finally be described, e.g., on a single scale from 0 to 100. This
would make it easy to rank products according to their environ-
mental friendliness. However, this step towards standardization
should be done by experts of the certification field since it is a
political decision leading to issues of environmental policy.

Next to moving forward in creating a standardized label for
sustainable software products, future work contains an extension
of the measurements, e.g. evaluating further software products
and including mobile devices as SUT. A vision for the future is to
integrate the measurements of software sustainability directly in
the development process andwhen releasing new versions of soft-
ware products. Thus, in future, we will pay attention to providing
recommendations for software engineers and an integration of the
knowledge on sustainability characteristics for software products
into teaching and education.

Acknowledgments

There have been many contributors to shape the set of criteria.
The authors are thankful to each of them. We specifically would
like to thank Marina Köhn, Dr. Hans-Jürgen Baumeister (both
German Environment Agency), and Prof. Dr. Benno Schmidt from
Bochum University of Applied Sciences.



E. Kern et al. / Future Generation Computer Systems 86 (2018) 199–210 209

This work was supported by the German Environment Agency
under project number 3715 37 601 0.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.future.2018.02.044.

References

[1] S. Naumann, M. Dick, E. Kern, T. Johann, The GREENSOFT model: A reference
model for green and sustainable software and its engineering, SUSCOM 1 (4)
(2011) 294–304.

[2] L. Hilty, W. Lohmann, S. Behrendt, M. Evers-Wölk, K. Fichter, R. Hintemann,
Green Software: Final Report of the Project: Establishing and Exploiting Poten-
tials for Environmental Protection in Information and Communication Tech-
nology (Green IT). Report Commissioned By the Federal Environment Agency,
Berlin, Förderkennzeichen 3710 95 302/3 (23) (2015).

[3] V.C. Coroama, L.M. Hilty, M. Birtel, Effects of internet-based multiple-site
conferences on greenhouse gas emissions, Telemat. Inform. 29 (4) (2012) 362–
374.

[4] P.A. Wäger, R. Hischier, R. Widmer, The material basis of ICT, in: L.M. Hilty,
B. Aebischer (Eds.), ICT Innovations for Sustainability: Advances in Intelligent
Systems and Computing, Springer, Switzerland, 2015, pp. 209–221.

[5] R. Hischier, V.C. Coroama, D. Schien, M.A. Achachlouei, Grey energy and envi-
ronmental impacts of ICT hardware, in: L.M. Hilty, B. Aebischer (Eds.), ICT In-
novations for Sustainability: Advances in Intelligent Systems and Computing,
Springer, Switzerland, 2015, pp. 171–189.

[6] E.G. Hertwich, T. Gibon, E.A. Bouman, A. Arvesen, S. Suh, G.A. Heath, J.D.
Bergesen, A. Ramirez, M.I. Vega, L. Shi, Integrated life-cycle assessment of
electricity-supply scenarios confirms global environmental benefit of low-
carbon technologies, Proc. Natl. Acad. Sci. 112 (20) (2015) 6277–6282.

[7] R. Turconi, A. Boldrin, T. Astrup, Life cycle assessment (LCA) of electricity
generation technologies: overview, comparability and limitations, Renew.
Sustain. Energy Rev. 28 (2013) 555–565.

[8] V.C. Coroama, L.M. Hilty, Assessing Internet energy intensity a review of
methods and results, Environ. Impact Assess. Rev. 45 (2014) 63–68.

[9] E. Kern, M. Dick, S. Naumann, A. Filler, Labelling sustainable software products
and websites: Ideas, approaches, and challenges, in: V.K. Johannsen, S. Jensen,
V. Wohlgemuth, C. Preist, E. Eriksson (Eds.), Proceedings of EnviroInfo and
ICT for Sustainability 2015: 29th International Conference on Informatics for
Environmental Protection (EnviroInfo 2015) and the 3rd International Confer-
ence on ICT for Sustainability (ICT4S 2015) Copenhagen, September 7–9, 2015,
Atlantis Press, Amsterdam, 2015, pp. 82–91.

[10] M. Al Hinai, R. Chitchyan, Building social sustainability into software: Case
of equality, in: Requirements Patterns (RePa), 2015 IEEE Fifth International
Workshop on, 2015, pp. 32–38.

[11] T. Johann, W. Maalej, Position Paper: The Social Dimension of Sustainability in
Requirements Engineering, in: Proceedings of the 2nd InternationalWorkshop
on Requirements Engineering for Sustainable Systems, 2013.

[12] L.M. Hilty, B. Aebischer, ICT for sustainability: An emerging research field,
in: L.M. Hilty, B. Aebischer (Eds.), ICT Innovations for Sustainability: Advances
in Intelligent Systems and Computing, Springer, Switzerland, 2015, pp. 3–36.

[13] B. Penzenstadler, V. Bauer, C. Calero, X. Franch, Sustainability in software
engineering: A systematic literature review, 2012.

[14] B. Penzenstadler, A. Raturi, D. Richardson, C. Calero, H. Femmer, X. Franch,
Systematic Mapping Study on Software Engineering for Sustainability (SE4S) -
Protocol and Results, Irvine, 2014.

[15] C. Calero, M.F. Bertoa, M. Angeles Moraga, A systematic literature review for
software sustainability measures, in: 2nd International Workshop on Green
and Sustainable Software (GREENS), 2013, pp. 46–53.

[16] P. Bozzelli, Q. Gu, P. Lago, A systematic literature review on green software
metrics, 2013.

[17] M. Dick, S. Naumann, N. Kuhn, A model and selected instances of green
and sustainable software, in: What Kind of Information Society? Governance,
Virtuality, Surveillance, Sustainability, Resilience: 9th IFIP TC 9 International
Conference, HCC9 2010 and 1st IFIP TC 11 International Conference, CIP

2010, Held As Part of WCC 2010, Brisbane, Australia, September 20–23, 2010
Proceedings, Springer, Berlin, Heidelberg, 2010, pp. 248–259.

[18] C. Calero, M. Moraga, M.F. Bertoa, Towards a software product sustainability
model, 2013, arXiv preprint arXiv:1309.1640.

[19] B. Penzenstadler, Towards a definition of sustainability in and for software
engineering, in: Proceedings of the 28th Annual ACM Symposium on Applied
Computing, 2013, pp. 1183–1185.

[20] M. Mahaux, P. Heymans, G. Saval, Discovering sustainability requirements:
An experience report, in: Requirements Engineering: Foundation for Software
Quality: 17th InternationalWorking Conference, REFSQ2011, Essen, Germany,
March 28–30, 2011 Proceedings, Springer, Berlin, Heidelberg, 2011, pp. 19–33.

[21] F. Albertao, Sustainable Software Engineering, available at http://www.scribd.
com/doc/5507536/Sustainable-Software-Engineering#about.
(Accessed 14 April 2017).

[22] F. Albertao, J. Xiao, C. Tian, Y. Lu, K.Q. Zhang, C. Liu,Measuring the sustainability
performance of software projects, in: 2010 IEEE 7th International Conference
on e-Business Engineering, ICEBE 2010, Shanghai, China, 2010, pp. 369–373.

[23] C. Calero, M.Á. Moraga, M.F. Bertoa, L. Duboc, Green software and soft-
ware quality, in: C. Calero, M. Piattini (Eds.), Green in Software Engineering,
Springer, 2015, pp. 231–260.

[24] J. Taina, Good, bad, and beautiful software - In search of green software quality
factors, in: J.-C. Lopez-Lopez, G. Sissa, L. Natvig (Eds.), Green ICT: Trends and
Challenges, 2011, pp. 22–27.

[25] E. Kern, M. Dick, S. Naumann, A. Guldner, T. Johann, Green software and
green software engineering –definitions, measurements, and quality aspects,
in: L.M. Hilty, B. Aebischer, G. Andersson,W. Lohmann (Eds.), ICT4S ICT for Sus-
tainability: Proceedings of the First International Conference on Information
and Communication Technologies for Sustainability, ETH Zurich, February 14–
16, 2013, ETH Zurich, University of Zurich and Empa, Swiss Federal Laborato-
ries for Materials Science and Technology, Zürich, 2013, pp. 87–94.

[26] S. Abenius, Green it & green software - time and energy savings using ex-
isting tools, in: EnviroInfo 2009: Environmental Informatics and Industrial
Environmental Protection: Concepts, Methods and Tools: Proceedings of the
23rd International Conference Environmental Informatics - Informatics for
Environmental Protection, Sustainable Development and Risk Management,
September 09–11, 2009, HTWBerlin, University of Applied Sciences, Germany,
Shaker, Aachen, 2009, pp. 57–66.

[27] C. Som, L.M. Hilty, A.R. Köhler, The precautionary principle as a framework for
a sustainable information society, J. Bus. Ethics 85 (2009) 493–505.

[28] W. Dirlewanger, Measurement and Rating of Computer Systems Performance
and of Software Efficiency: An Introduction to the ISO/IEC 14756 Method and
a Guide to its Application, Kassel University Press, Kassel, 2006.

[29] M. Dick, E. Kern, J. Drangmeister, S. Naumann, T. Johann, Measurement and
rating of software-induced energy consumption of desktop PCs and servers,
in: W. Pillmann, S. Schade, P. Smits (Eds.), Innovations in Sharing Environ-
mental Observations and Information: Proceedings of the 25th International
Conference EnviroInfo October 5–7, 2011, Ispra, Italy, Shaker, Aachen, 2011,
pp. 290–299.

[30] T. Johann, M. Dick, E. Kern, S. Naumann, How to measure energy-efficiency
of software: Metrics and measurement results, in: IEEE (Ed.), Proceedings of
the First International Workshop on Green and Sustainable Software, GREENS
2012: Held in Conjunction with ICSE 2012, the International Conference on
Software Engineering, June 2–9, Zurich, Switzerland, IEEE Computer Society,
2012, pp. 51–54.

[31] A.P. Field, Discovering Statistics using SPSS, third ed., Sage, Los Angeles, 2009.

Eva Kern is a doctoral student at the Leuphana Univer-
sity of Lüneburg in cooperation with the Trier University
of Applied Sciences, Environmental Campus Birkenfeld.
She deals with the question how to evaluate and com-
municate environmental issues of software and authored
several international conference papers regarding green
software. Before starting her doctoral studies, she worked
as a research assistant for different research & develop-
ment projects, including the project ‘‘GREENSOFT - Green
Software Engineering’’. Eva Kern graduated in computer
science and media (degree: M.Sc.) at the Trier University

of Applied Sciences in 2013.

https://doi.org/10.1016/j.future.2018.02.044
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb1
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb1
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb1
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb1
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb1
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb3
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb3
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb3
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb3
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb3
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb4
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb4
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb4
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb4
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb4
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb5
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb5
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb5
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb5
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb5
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb5
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb5
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb6
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb6
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb6
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb6
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb6
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb6
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb6
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb7
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb7
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb7
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb7
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb7
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb8
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb8
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb8
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb9
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb12
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb12
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb12
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb12
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb12
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb17
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb17
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb17
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb17
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb17
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb17
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb17
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb17
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb17
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb17
http://arxiv.org/1309.1640
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb20
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb20
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb20
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb20
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb20
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb20
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb20
http://www.scribd.com/doc/5507536/Sustainable-Software-Engineering%23about
http://www.scribd.com/doc/5507536/Sustainable-Software-Engineering%23about
http://www.scribd.com/doc/5507536/Sustainable-Software-Engineering%23about
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb23
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb23
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb23
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb23
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb23
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb24
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb24
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb24
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb24
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb24
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb25
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb26
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb27
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb27
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb27
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb28
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb28
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb28
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb28
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb28
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb29
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb29
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb29
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb29
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb29
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb29
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb29
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb29
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb29
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb29
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb29
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb30
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb30
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb30
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb30
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb30
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb30
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb30
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb30
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb30
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb30
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb30
http://refhub.elsevier.com/S0167-739X(17)31418-8/sb31


210 E. Kern et al. / Future Generation Computer Systems 86 (2018) 199–210

Lorenz M. Hilty is a professor at the Department of In-
formatics at the University of Zurich, Head of Group at
Empa Swiss Federal Laboratories for Materials Science
and Technology, and affiliated professor at CESC Center
for Sustainable Communications at KTH Royal Institute
of Technology, Stockholm. He got his Ph.D. in computer
science from the University of Hamburg and has been
researching sustainability aspects of ICT for more than 20
years. He authored more than 100 peer-reviewed articles
in this field. Lorenz is the initiator of the international
conference series ICT4S, Information and Communication

Technologies for Sustainability.

Achim Guldner, M.Sc. is a researcher in the UFOPLAN -
Sustainable SoftwareDesign project at the Trier University
of Applied Sciences, Environmental Campus Birkenfeld.
Since 2013 he works as research assistant in several R&D
Projects, focusing on improving energy efficiency of and
through ICT and especially software systems. Before, he
worked as scientific assistant at the Institute for Software
Systems at the Environmental Campus Birkenfeld, where
he mainly focused on the improvement of data quality
via statistical methods. He graduated in applied computer
sciences in 2013.

Yuliyan V. Maksimov is a Ph.D. student at Blekinge In-
stitute of Technology BTH in Sweden in cooperation with
the School of Engineering at the University of Applied
Sciences and Arts Northwestern Switzerland FHNW. Cur-
rently heworks in the field of Telecommunication Systems
at BTH and in the area of Requirements Engineering at
FHNW. Before starting his Ph.D. studies, he worked as a
researcher in the field of Informatics and Sustainability
at the University of Zurich in Switzerland. He holds a
M.Sc. in Informatics and aDiploma in Information Systems
from the Hochschule Konstanz University of Applied Sci-

ences HTWG in Germany.

Andreas Filler is doctoral researcher at the Center for
Digital Health Interventions at University of St. Gallen
and ETH Zurich (Switzerland) as well as Ph.D. candidate
at the University of Bamberg (Germany) in the context
of digital health interventions. In his former position as
research associate at the Institute for Software Systems at
Trier University of Applied Sciences (Germany) he worked
on information systems for sustainable development. An-
dreas studied OnlineMedia (Dipl.-Inf.) and Computer Sci-
ence inMedia (M.Sc.) at Furtwangen University of Applied
Sciences (Germany). Within the last years he worked in

several national and EU funded research projects.

Jens Gröger is working as a Senior Researcher in the
Sustainable Products & Material Flows Division located at
Oeko-Institut in Berlin, Germany. He is the main responsi-
ble expert for Information and Communication Technolo-
gies (ICT) as well as for Green Public Procurement (GPP) at
Oeko-Institut. He is leading projects for the development
of a number of award criteria for the German Ecolabel
‘‘Blue Angel’’ as well as Green Public Procurement criteria.
Jens Gröger holds a degree in energy and process engi-
neering and is a certified technician in communication
electronics.

Stefan Naumann is a full professor for fundamentals in
computer science, mathematics, and environmental and
sustainability informatics at the Trier University of Ap-
plied Sciences (Environmental Campus Birkenfeld, Ger-
many) and a directorate member of the Institute for Soft-
ware Systems. His research interests are sustainable de-
velopment in conjunction with online communities and
the environmental impacts of information technology, es-
pecially of software. He studied computer science at the
Universities of Kaiserslautern and Saarbrücken (Germany)
and received his doctorate in natural sciences (Dr. rer. nat.)

from the University of Hamburg in 2006. Stefan Naumann authored over 50 peer-
reviewed articles in this field.


	Sustainable software products—Towards assessment criteria for resource and energy efficiency
	Introduction
	Criteria for software sustainability and related approaches in literature
	Strategies on finding criteria for sustainable software
	Research design

	A set of criteria to assess the resource efficiency of software products
	Exemplary application of the criteria set
	Example criterion ``Electricity consumption for a standard usage scenario and a standard configuration''
	Further example criteria
	Example criterion ``default settings supporting resource conservation''
	Example criterion ``backward compatibility''
	Example criterion ``uninstallability of programs''


	Potential use cases for the criteria set
	Software user perspective
	Software purchaser perspective
	Software administrator perspective
	Software developer perspective
	Software certifier perspective

	Discussion
	Conclusion and outlook
	Acknowledgments
	Supplementary data
	References


