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§ Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials
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S1 Regression Kriging Derivation

Maximum likelihood evaluation

The likelihood L to generate the set of observables y from a stochastic process with mean 1µ
and covariance matrix Cov′ (Y) = σ2 (R + Λ I) is given by:[1]

L =
1

(2π)n/2 (σ2)n/2 |R + Λ I|1/2
exp

(
−(y − 1µ)T (R + Λ I)−1 (y − 1µ)

2σ2

)
(1)

We aim to find a combination of parameters (Λ, θ1,..., θd) that maximizes the likelihood expres-
sion L (maximum likelihood evaluation, MLE). The log-likelihood, log(L), reads:

log (L) = −n
2

log (2π)− n

2
log
(
σ2
)
− 1

2
log |(R + Λ I)| − (y − 1µ)T (R + Λ I)−1 (y − 1µ)

2σ2
(2)

Derivatives of log(L) with respect to µ and σ2 are equal to zero allowing us to express these
constants as a function of the model parameters. We obtain the model mean (µ̂) from the
derivative of log(L) with respect to the mean:

d log (L)

dµ
= − 1

2σ2
· d

dµ

(
(y − 1µ)T (R + Λ I)−1 (y − 1µ)

)
= − 1

2σ2
· d

dµ

(
yT(R + Λ I)−1 y − 2µ · 1T(R + Λ I)−1 y + µ2 · 1T(R + Λ I)−11

)
= − 1

2σ2

(
−2 · 1T(R + Λ I)−1 y + 2µ · 1T(R + Λ I)−11

)
= 0

=⇒ µ̂ =
1T(R + Λ I)−1 y

1T(R + Λ I)−11

(3)

In a similar fashion, we get an estimation for the model variance σ̂2:

d log (L)

dσ2
= −n

2

1

σ2
+

(y − 1µ)T (R + Λ I)−1 (y − 1µ)

2 (σ2)2
= 0

=⇒ σ̂2 =
(y − 1µ)T (R + Λ I)−1 (y − 1µ)

n

(4)

We insert these model constants into Equation 2 and ignore constant terms to compute the
concentrated log-likelihood:[2]

logLc = −n
2

log
(
σ2
)
− 1

2
log |R + Λ I| (5)

The MLE problem is thereby reduced to maximizing the concentrated log-likelihood expression
logLc with d+ 1 parameters (Λ, θ1, ..., θd) and returns a set of parameters that fully defines the
correlation function, thus enabling the predictive capability of the model.
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MLE Summary

Parameters Λ, θ1, ..., θd are computed to maximise the log-likelihood Lc.

max
θ∈Rd

+,λ∈R+

log Lc− = −n
2

log
(
σ̂2
)
− 1

2
log |R + Λ I|

with σ̂2 =
(y − 1µ)T (R + Λ I)−1 (y − 1µ)

n

µ̂ =
1T(R + Λ I)−1 y

1T(R + Λ I)−11

Best Linear Unbiased Predictor

We seek to obtain a predictor value ŷ(x∗) at an arbitrary point x∗. To this end, we add
the (unknown) predictor ŷ(x∗) to the sampled data and define an augmented data set ỹ =
[yT, ŷ(x∗)]T.[3] The augmented correlation matrix R̃ is defined as:

R̃ =

(
R r
rT 1

)
(6)

Here, the correlation vector r(x∗) consists of elements given by ri(x
∗) = Corr(Y (x∗), Y (xi))

and quantifies the correlation of an arbitrary point with the measured data points. We assume
that the augmented data set is the realisation of a stochastic process with covariance matrix

Cov(ỹ) = σ̂2
(
R̃ + Λ I

)
.[3] Note that σ̂2 is a known model constant calculated from the measured

data (with the MLE) and is independent of the prediction. We seek the value of ŷ(x∗) maximizing
the augmented likelihood (the likelihood of generating the augmented data set). Recalling the
general log-likelihood expression (Equation 2), we see that only the last term depends on y, thus
comprising the part of the augmented likelihood La that we aim to maximize as a function of
ŷ:[3]

logLa = − 1

2σ̂2
(ỹ − 1µ̂)T

(
R̃ + Λ I

)−1
(ỹ − 1µ̂) + constant terms (7)

= − 1

2σ̂2

(
y − 1µ̂
ŷ(x∗)− µ̂

)T(
R + Λ I r

rT 1 + Λ

)−1(
y − 1µ̂
ŷ(x∗)− µ̂

)
(8)

The inverse of the augmented correlation matrix can be calculated using the Banachiewicz
inversion formula for an inverse of a non-singular partitioned matrix:[4](

R + ΛI r
rT 1 + Λ

)−1
=

(
R−1r + R−1r r(1 + Λ− rTR−1r r)−1rTR−1r −R−1r r(1 + Λ− rTR−1r r)−1

−(1 + Λ− rTR−1r r)−1rTR−1r (1 + Λ− rTR−1r r)−1

)
(9)

with Rr = R + Λ I. We insert the expression of the inverted matrix in Equation 8 and proceed
with multiplication. Keeping only terms that depend on ŷ(x∗), we get:

logLa =
1

2σ̂2(1 + Λ− rTR−1r r)

(
−(ŷ(x∗)− µ̂)2 + (ŷ(x∗)− µ̂) · 2 (y − 1µ̂) rTR−1r

)
(10)
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Taking the derivative of this expression with respect to ŷ and setting it to zero, we obtain an
expression for the best linear unbiaised predictor (BLUP), i.e. the output value with the highest
likelihood:

d logLa
dŷ

= 0 =⇒ ŷ (x∗) = µ̂+ rT (R + Λ I)−1 (y − 1µ̂) (11)

In addition, we calculate the error associated to the BLUP with a more rigorous stochastic
derivation,[5] accounting for sampling error, model uncertainty and uncertainty linked to the
estimation of µ̂ from a limited set of data.

ŝ2y(x
∗) = σ̂2

1 + Λ︸︷︷︸
sampling

− rT (R + Λ I)−1 r︸ ︷︷ ︸
distance to data points

+

(
1− rT (R + Λ I)−1 r

)2
1T (R + Λ I)−1 1︸ ︷︷ ︸

µ̂ estimate

 (12)

Conceptually, we explain the first two terms with the inverse of the second derivative of the
augmented likelihood.[1] The absolute value of the second derivative of Equation 10 is:∣∣∣∣d2 logLa

dŷ2

∣∣∣∣ =
1

σ̂2
(

1 + Λ− rT (R + Λ I)−1 r
) (13)

If the likelihood drops quickly around the optimal predictor value, i.e. the absolute value of the
second derivative is large, BLUP exhibits a small error. On the other hand, a flat likelihood
profile around the BLUP returns a large error as variations from the predictor values are very
likely.

The Kriging BLUP defines the density function f of a predicted variable Y at position x∗. The
function follows a Gaussian distribution with mean ŷ (x∗) and variance ŝ2y(x

∗):

f(Y ) =
1√

2πŝ2y(x
∗)

exp

(
− (Y (x∗)− ŷ (x∗))2

2 ŝ2y(x
∗)

)
(14)

Integrating f returns the probability of measuring an observable at the point x∗ within the
range of integration.

BLUP Summary

Predictors are computed at every point of the discretized parameter space. The predictor
and variance at an arbitrary point x∗ are given by:

ŷ (x∗) = µ̂+ rT (R + Λ I)−1 (y − 1µ̂)

ŝ2y(x
∗) = σ̂2

1 + Λ− rT (R + Λ I)−1 r +

(
1− rT (R + Λ I)−1 r

)2
1T (R + Λ I)−1 1



with r =

Corr (Y (x∗) , Y (x1))
...

Corr (Y (x∗) , Y (xn))

 =


exp

(
−
∑d

`=1 θ` |x∗` − x1`|
p`
)

...

exp
(
−
∑d

`=1 θ` |x∗` − xn`|
p`
)
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Kriging-assisted sampling

In an adaptive sampling experiment, a next sample point is selected based on previous measu-
rements. We select the point that most likely results in a targeted value y∗ using Equation 8,
under the hypothesis that ŷ (x∗) = y∗:

logLa = − 1

2σ̂2

(
y − 1µ̂
y∗ − µ̂

)T(
R + Λ I r

rT 1 + Λ

)−1(
y − 1µ̂
y∗ − µ̂

)
(15)

In this case, the log-likelihood is fully defined and is computed after the MLE, without necessarily
evaluating the BLUP.
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S2 Experimental
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Figure S1: General structure of the LabVIEW program interfacing spectrometer, syringe pump
and heater of the microfluidic reactor. Spectra processing and MARIA algorithms are imple-
mented in MATLAB and called within the LabVIEW environment.
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Reactor Stability
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Figure S2: Reactor stability over 3 h for nanocrystals synthesized with cesium doping Cs/Pb
= 0.75 and halide ratio I/(I + Br) = 0.47. PL peak wavelengths (a) are evaluated every 5
min from the measured PL spectra (b). A blue-shift of 3.7 nm is observed over the course of
more than 3 h.

S3 Particle Size Distribution
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Figure S3: Representative TEM micrograph (a) of (Cs/FA)Pb(Br/I)3 nanocrystals synthesised
in the microfluidic reactor with the corresponding size distribution (b) determined by image
analysis.
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S4 Adaptive Sampling Compared to Systematic Screening
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Figure S4: q-q plots of residuals obtained by leave-one-out cross-validation. The validation
procedure is applied to data points with PL peak in the range 660 to 700 nm. Kriging
models after 56 measurements are compared for a systematic screening approach (a) or using
the MARIA procedure with a 680 nm target value (b). Statistical indicators Q1 and Q2 are
computed in the two cases and tend to 0 and 1, respectively, for normally distributed residuals.
With a larger number of measurement in the proximity of the target output, adaptive sampling
produces a more robust response surface model.

S5 Response Surface Sensitivity
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Figure S5: First and second moments (Q1 and Q2) of standardized residuals obtained by leave-
one-out cross-validation for randomly-selected sets of measurements with increasing lengths.
A robust model with normally distributed residuals is characterized by values of Q1 = 0 and
Q2 = 1. Adaptive sampling procedures are performed in a two-dimensional parameter space
for the synthesis of (Cs/FA)Pb(Br/I)3 nanocrystals as shown in (a) and in three-dimensional
parameter space for the synthesis of (Rb/Cs/FA)Pb(Br/I)3 nanocrystals as shown in (b).
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