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S1 Regression Kriging Derivation

Maximum likelihood evaluation

The likelihood L to generate the set of observables y from a stochastic process with mean 1pu
and covariance matrix Cov’ (Y) = o2 (R + A1) is given by:!!
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We aim to find a combination of parameters (A, 61,..., 63) that maximizes the likelihood expres-
sion L (maximum likelihood evaluation, MLE). The log-likelihood, log(L), reads:
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1
log (L) = —g log (277) — glog (0%) — 5 log [(R+ AT)| - ( (2)
Derivatives of log(L) with respect to x4 and o2 are equal to zero allowing us to express these
constants as a function of the model parameters. We obtain the model mean () from the
derivative of log(L) with respect to the mean:
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In a similar fashion, we get an estimation for the model variance &2:
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We insert these model constants into Equation 2 and ignore constant terms to compute the
concentrated log-likelihood:?!

n 1
logL. = —§log (o) — 510g|R+AI| (5)
The MLE problem is thereby reduced to maximizing the concentrated log-likelihood expression

log L. with d + 1 parameters (A, 61, ...,0,) and returns a set of parameters that fully defines the
correlation function, thus enabling the predictive capability of the model.
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MLE Summary

Parameters A, 04, ..., 04 are computed to maximise the log-likelihood L..
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Best Linear Unbiased Predictor

We seek to obtain a predictor value §(x*) at an arbitrary point x*. To this end, we add
the (unknown) predictor §(x*) to the sampled data and define an augmented data set y =
T 4(x*)]7.3) The augmented correlation matrix R is defined as:

',
()

Here, the correlation vector r(x*) consists of elements given by r;(x*) = Corr(Y (x*),Y (x;))
and quantifies the correlation of an arbitrary point with the measured data points. We assume
that the augmented data set is the realisation of a stochastic process with covariance matrix

Cov(y) = 62 (f{ +A I) I Note that 2 is a known model constant calculated from the measured

data (with the MLE) and is independent of the prediction. We seek the value of §(x*) maximizing
the augmented likelihood (the likelihood of generating the augmented data set). Recalling the
general log-likelihood expression (Equation 2), we see that only the last term depends on y, thus

comprising the part of the augmented likelihood L, that we aim to maximize as a function of
~.[3]
:

1 ~ -1
log L, = ~552 ¥ —10)" (R + AI) (y —1/1) + constant terms (7)
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The inverse of the augmented correlation matrix can be calculated using the Banachiewicz
inversion formula for an inverse of a non-singular partitioned matrix: !
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with R, = R 4+ AI. We insert the expression of the inverted matrix in Equation 8 and proceed
with multiplication. Keeping only terms that depend on §(x*), we get:

1
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Taking the derivative of this expression with respect to ¢ and setting it to zero, we obtain an
expression for the best linear unbiaised predictor (BLUP), i.e. the output value with the highest

likelihood:
dlog L,

dy
In addition, we calculate the error associated to the BLUP with a more rigorous stochastic

derivation,”! accounting for sampling error, model uncertainty and uncertainty linked to the
estimation of i from a limited set of data.
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Conceptually, we explain the first two terms with the inverse of the second derivative of the
augmented likelihood.!! The absolute value of the second derivative of Equation 10 is:

- : (13)
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If the likelihood drops quickly around the optimal predictor value, i.e. the absolute value of the
second derivative is large, BLUP exhibits a small error. On the other hand, a flat likelihood
profile around the BLUP returns a large error as variations from the predictor values are very
likely.

The Kriging BLUP defines the density function f of a predicted variable Y at position x*. The

function follows a Gaussian distribution with mean § (x*) and variance §Z(X*)Z
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Integrating f returns the probability of measuring an observable at the point x* within the
range of integration.

BLUP Summary

Predictors are computed at every point of the discretized parameter space. The predictor
and variance at an arbitrary point x* are given by:
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Kriging-assisted sampling

In an adaptive sampling experiment, a next sample point is selected based on previous measu-
rements. We select the point that most likely results in a targeted value y* using Equation 8§,

under the hypothesis that g (x*) = y*:

T -1
1 (y—14 R+ Al r y—14
log Ly = — ; A 1
0g 262 <y*_u> < I‘T 1—|—A> <y*_u ( 5)
In this case, the log-likelihood is fully defined and is computed after the MLE, without necessarily
evaluating the BLUP.
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S2 Experimental
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Figure S1: General structure of the LabVIEW program interfacing spectrometer, syringe pump
and heater of the microfluidic reactor. Spectra processing and MARIA algorithms are imple-
mented in MATLAB and called within the LabVIEW environment.
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Reactor Stability
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Figure S2: Reactor stability over 3 h for nanocrystals synthesized with cesium doping Cs/Pb
= 0.75 and halide ratio I/(I + Br) = 0.47. PL peak wavelengths (a) are evaluated every 5

min from the measured PL spectra (b). A blue-shift of 3.7 nm is observed over the course of
more than 3 h.

S3 Particle Size Distribution
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Figure S3: Representative TEM micrograph (a) of (Cs/FA)Pb(Br/I)s nanocrystals synthesised

in the microfluidic reactor with the corresponding size distribution (b) determined by image
analysis.
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S4 Adaptive Sampling Compared to Systematic Screening
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Figure S4: g-q plots of residuals obtained by leave-one-out cross-validation. The validation
procedure is applied to data points with PL peak in the range 660 to 700 nm. Kriging
models after 56 measurements are compared for a systematic screening approach (a) or using
the MARIA procedure with a 680 nm target value (b). Statistical indicators Q; and Q2 are
computed in the two cases and tend to 0 and 1, respectively, for normally distributed residuals.
With a larger number of measurement in the proximity of the target output, adaptive sampling
produces a more robust response surface model.

S5 Response Surface Sensitivity
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Figure S5: First and second moments (Q; and Qg2) of standardized residuals obtained by leave-
one-out cross-validation for randomly-selected sets of measurements with increasing lengths.
A robust model with normally distributed residuals is characterized by values of Q; = 0 and
Q2 = 1. Adaptive sampling procedures are performed in a two-dimensional parameter space
for the synthesis of (Cs/FA)Pb(Br/I)3 nanocrystals as shown in (a) and in three-dimensional
parameter space for the synthesis of (Rb/Cs/FA)Pb(Br/I)3 nanocrystals as shown in (b).
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