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Abstract:
For effective integration of large amounts of renewables and high-efficiency energy technologies, their 
benefits have to be quantified. Network-level energy optimisation approaches can determine the optimal 
location of generation technologies within a region and the optimal layout of energy distribution networks to 
link them. Mixed-integer linear programming (MILP) formulations are generally employed and this is often a 
burden for large scale models as the computational time drastically increases with the problem size.
Most methods used to reduce the complexity of MILP problems focus on the temporal scale or use 
aggregated demand profiles for the spatial dimension. There is a lack of a method addressing the spatial 
complexity to assess the potential of interlinked energy networks at large scale. Therefore, this paper 
introduces a new combined clustering schema enabling quantification of the potential of district heating 
networks based on results from building scale energy optimisation problems and taking into account building 
characteristics.
A city-scale case is divided into multiple districts based on the output of a density based clustering algorithm. 
The parameters taken into account by the clustering method are the cluster density, homogeneity index and 
load magnitude. The analysis of the clustering map along with building characteristics of each cluster reveals 
the required characteristics for the installation of a district heating network or distributed energy systems.

Keywords:
Combined clustering, Energy hubs, Distributed energy systems, Genetic algorithm, MILP energy 
optimisation.

Nomenclature
CHP    combined heat and power
COP    conference of the parties
CRF    capital recovery factor, calculated with a discount rate of 3% [-]
DB     Davies-Bouldin index
DES    distributed energy systems
DHN    district heating network
EAC    equivalent annual cost
ELDC    error in the load duration curve
LP    linear programming problem
MILP    mixed integer linear programming problem
MST    minimum spanning tree algorithm
NPV    net present value
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OPTICS  ordering points to identify the clustering structure
PV          photovoltaic solar panel
REH    receding horizon
RH         rolling horizon
TS    thermal storage
TSP    travelling salesman problem

𝐺𝑟𝑒𝑒𝑘 𝑠𝑦𝑚𝑏𝑜𝑙𝑠
          weight coefficient multiplying normalised density index𝛼
          weight coefficient multiplying normalised and reversed homogeneity index𝛽
          weight coefficient multiplying normalised load magnitude index𝛾

   binary variable𝛿
    efficiency technology𝜂

   efficiency matrix coupling energy supply and energy demand of an energy hub, [-]Θ

𝑅𝑜𝑚𝑎𝑛 𝑠𝑦𝑚𝑏𝑜𝑙𝑠
   storage system charging (-) or discharging (+) efficiency, [-]𝐴
   big M constraint to reduce computational time, B is an arbitrary large number, [-]𝐵
   cost of energy resources used per technology, [CHF/kW]𝐶𝑠𝑢𝑝𝑝𝑙𝑦

   linear cost per technology, [CHF/kW]𝐶𝑙𝑖𝑛𝑒𝑎𝑟

  linear carbon emissions per energy stream, [kgCO2/kW]𝐶𝑎𝑟𝑏𝑒𝑚

   Capital Recovery Factor, calculated with a discount rate of 3% [-]𝐶𝑅𝐹
   energy storage term, [kWh]𝐸
   heat losses proportional to the distance and heat transfer between two energy hubs, [%]𝐻𝐿
   investment cost per technology, [CHF]𝐼𝑡𝑒𝑐ℎ

   energy hub loads, [kW]𝐿
n    energy dissipation, self-losses of an energy storage system, [-] 

   operating costs per technology, [CHF]𝑂𝐶𝑡𝑒𝑐ℎ

   design variable on size of a given technology, [kW]𝑃𝑚𝑎𝑥
tech

   energy exchange between two energy hubs [kWh]𝑄

   j-th member of cluster x, [-]𝑀
𝑐𝑙𝑥
𝑗

   number of members within cluster x, [-]𝑁𝑐𝑙𝑥

   number of energy hub e, [-]𝑁𝑒

𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑠
           discharging storage  +
     charging storage‒
   cluster x𝑐𝑙𝑥

    energy hub e𝑒
   j-th member of cluster x𝑗
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   time step [hour]𝑡
   technology available𝑡𝑒𝑐ℎ

1. Introduction
The COP21 conference in Paris 2015 aimed to maintain below 2 °C the rise of global temperature 
above pre-industrial levels, fixing a target of 1.5 °C [1]. This is ensured by the ratification of “Paris 
Agreement” protocol by 55 Parties responsible for at least an estimated 55% of global greenhouse 
gas emissions (GHG) [2]. Mitigating climate change by lowering GHG emissions from energy 
systems while still providing a desired level of services is possible when considering the vast range 
of renewable and highly efficient energy technologies available today [3]. However, the transition 
towards low carbon energy systems needs to be effective. This can be achieved by quantifying the 
needs for the creation, expansion or modification of energy networks in order to adequately 
integrate renewables and high-efficiency energy converters.
This paper first presents the challenge researchers face when dealing with large scale optimization 
of distributed energy systems (DES) and the solution obtained by using clustering techniques in 
order to reduce the problem complexity. The methodology employed in [4] to facilitate large scale 
modelling of DES in a bottom-up approach is presented in the next section, followed by a section 
introducing a new combined clustering method based on building characteristics. The clustering 
method developed is employed with the bottom-up framework in an iterative process involving an 
evolutionary approach to converge toward an optimal solution. An application to a case study 
assesses the computational benefits of the developed framework in handling a large-scale 
optimization problem while conserving a building level of detail on the energy model.
Finally, the parameters intrinsic to the clustering algorithm are highlighted and their importance is 
quantified. The case study reveals that the density, qualifying how distant buildings are from each 
other, and the heterogeneity in the scheduling of the energy consumption, are both important 
parameters which have to be considered. Conversely the loads magnitude indicator, representing 
how large a consumer is, appears to be of relatively minor significance for the design of district 
heating networks (DHN). An extension of this work will apply the method to multiple case studies 
to deduce the characteristics driving the requirements for the deployment of DHN.

1.1. Distributed energy systems optimisation
Evaluating the potential savings available by combining multiple energy sources and carriers is an 
energy optimisation problem, assessing the trade-off between centralised and/or distributed energy 
system infrastructures for the supply of energy at different scales. Such problems dealing with the 
design and/or operations scheduling of single or multiple energy systems are often formulated as 
Linear Programming (LP) [5]–[8] or Mixed-Integer Linear Programming (MILP) in the literature 
[6], [9]–[20]. Researchers are today moving from the single plant optimisation problem [7], [21] 
(current practice of centralised energy system for energy supply) towards the distributed energy 
systems (DES) optimisation problem where multiple energy converters and carriers can be installed 
and operated together. In this new context of multi-energy systems, finding the optimal design and 
operating strategy to increase the overall energy efficiency of a system is not straightforward. The 
benefit of decentralised energy systems (increase of overall efficiency, decrease of transport losses 
and risk minimisation [22], [23]) versus the benefits of centralised systems (economies of scale 
already existing networks) has to be carefully evaluated [24].
Tools incorporating large scale optimization problems have been developed in the past, MARKAL 
[5], TIMES [25], and more recently Calliope [26]; however aggregation schemas are often 
employed at the spatial and temporal scale to reduce the computational burden. While the first two 
tools only consider LP problem, Calliope allows MILP problems by enabling technology specific 
constraints, as purchase costs for technologies (represented as global integer variables) or on/off 
constraints (adding binary variables at every time step) employed with a Big-M formulation [27].
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1.2. Clustering methods enabling large scale energy optimisation
Considering multiple energy systems in a MILP problem becomes computationally demanding in 
terms of solving time when increasing the problem space by augmenting the number of integer 
variables (exponential increases of the solving time [9]). This is often the case when adding specific 
constraints on technologies (minimum part-loads, banded efficiencies and/or costs), or when 
increasing the spatial or temporal dimensions of the problem. Commonly in research, large scale 
optimisation of DES is made possible by applying different reduction techniques. 
Those techniques are first applied at the temporal scale for problems including more than one 
building in the energy optimisation problem, but for which the spatial scale remains limited to a 
neighbourhood scale (tens of buildings). Average days are employed in [20] to represent a full year 
of operation at hourly resolution with an average day per month. Typical days [15], [28] or periods 
[13], [29] approaches are commonly employed to reduce the temporal scale by representing a full 
year horizon using shorter periods, which may be selected using k-medoids or k-means clustering 
methods [28], [30]. Other approaches, such as rolling horizon, can also be employed to divide the 
entire problem horizon into sub-problems solved sequentially, thus reducing the number of decision 
variables per interval [9], [17]. Receding horizon techniques, derived from rolling horizon 
techniques and related to Model Predictive Control (MPC), allow an aggregated view on the full 
horizon problem for each planning interval. They have been applied in [9], [17], [31], [32], allowing 
to consider the seasonality of storage systems, often linked to optimisation problem including 
intermittent sources of energy. Those decomposition techniques, rolling or receding horizon are 
mostly used in optimisation problems looking at the optimal operating strategy of given set of 
energy carriers and sources. They have to be employed with heuristic techniques for the design of 
energy system problem, as it has been done in [33], where a rolling horizon schema is employed for 
the optimal operating scheduling problem and combined with a genetic algorithm for the design of 
the set of candidates energy technologies.
Spatial scale reduction techniques are employed conjointly with temporal reduction techniques for 
problem larger than the neighbourhood scale. Indeed, they are employed for district scale [34], [35] 
or city scale [12], [36] problems. Often aggregation techniques are employed to represent the 
energy demand of many buildings by a single node [15], [37]. Those spatial dimensionality 
reductions have been effectuated manually in previous studies by aggregating buildings and their 
energy demands based on spatial location or building use classes to compute district-level 
distributed energy systems optimisation problems [12], [34], [38], [39]. Recently, mathematical 
algorithms have been used to aggregate buildings into clusters based on specific characteristics. 
Those distance-based or density based clustering methods allow grouping buildings into clusters 
while assessing the quality of the aggregation. The k-means or k-medoids distance based clustering 
algorithms have been employed to group and aggregate buildings in districts [37] and to enable 
district-level DES design [40]. OPTICS density-based clustering algorithm [41], [42] and Self 
Organizing Maps (SOM) [35] or the Geo-Self Organising Map (Geo-SOM) tool [43] have also been 
used to cluster buildings considering their spatial location and also the homogeneity or 
heterogeneity (when clustered on dissimilarity) of their energy loads [44].
However, there is a lack of a method addressing the full spatial and temporal complexity and 
assessing the potential of interlinked energy networks at large scale, while considering a building 
scale level of detail to avoid sub-optimal solutions. In the methodology developed in [42] allowing 
to consider a building level of detail at larger scale in a bottom-up framework, a critic is emitted on 
the influence of the clustering method, purely spatially based, on the results of the energy 
optimisation problem. Indeed if in this previous study, the clustering algorithm allows to reduce the 
spatial dimensionality by dividing a large problem in sub-problems, solved iteratively, the 
limitation of the approach arose in the nesting approach, implied in a one direction clustering step, 
thus limiting the possibilities of exchange of energy at a building level within the respective 
districts delimited by the spatial clustering algorithm. 
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A novel approach has been developed in this paper to ensure a near optimal energy design solution, 
by providing a feedback loop between the energy problem and the clustering algorithm results. We 
present a method formulated as a bottom-up approach, considering each building individually, with 
their spatial location and including their temporal dimension, considering their energy demand 
profile in the optimisation problem, by combining the energy optimisation problem with a 
clustering method using an evolutionary metaheuristic genetic algorithm. The combined clustering 
algorithm is presented in Section 3. Results, in Section 4, demonstrates the effectiveness of the 
combined clustering method taking into account the spatial and temporal dimension of the load 
profiles at the building level for district or city scale problems.

2. Methodology
The multi-scale hierarchical approach for DES optimisation presented in [44] is employed and 
integrated with a combined clustering approach in order to enable solving of large scale DES 
problems while considering building scale level of detail. This is done in an iterative manner 
between the clustering method and a bottom-up optimisation framework. This section first 
introduces the optimisation problem and gives an overview of the multi-scale hierarchical approach 
used. Full details of the multi-scale approach can be found in [44]. A city-scale case is divided into 
multiple clusters based on the output of the clustering algorithm. The optimisation problem is run 
individually for each cluster before being run between clusters at the higher scale (inter-cluster) 
based on the optimal results from the cluster scale.

2.1. The energy hub approach 
The energy hub framework [45] is employed for the MILP formulation of the optimisation problem. 
The energy hub formulation allows representing the efficiency of multiple energy systems within a 
matrix coupling energy demand and supply [46] as shown in Fig. 1. 
Objective function
The objective function (1) is to minimize the equivalent annual cost for design (2) and operations 
(3) of multiple urban energy systems including networks. 

𝑚𝑖𝑛
𝑛𝑒

∑
𝑒 = 1

{𝐼𝑡𝑒𝑐ℎ × 𝐶𝑅𝐹 + ∑ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑡 = 1
𝑂𝐶𝑡𝑒𝑐ℎ(𝑡)}                                   (1)

The investment costs are multiplied by the capital recovery factor (CRF). A discount rate of 3% is 
used, with a lifespan of 20 years for the technologies and 40 years for the network pipelines in order 
to calculate the CRF. The operating costs are calculated for a year of operation.

𝐼𝑡𝑒𝑐ℎ =
𝑛𝑡𝑒𝑐ℎ

∑
𝑡𝑒𝑐ℎ = 1

𝛿𝑡𝑒𝑐ℎ × 𝐶𝑙𝑖𝑛𝑒𝑎𝑟
𝑡𝑒𝑐ℎ × 𝑃𝑚𝑎𝑥

tech                                                  (2)

The investment costs (2) represent the costs of each technology installed taking into account 
economies of scale (see Table 1) where the price per kW of each technology depends on its size 
band.  is a binary variable for the design optimisation problem which takes the value 1 or 0, 𝛿𝑡𝑒𝑐ℎ
based on the installation or not of a specific technology. A detailed formulation explaining the 
linearization of the multiplication between integer and binary variables, to consider the economy of 
scale formulation, can be found in [47]

𝑂𝐶𝑡𝑒𝑐ℎ(𝑡) =
𝑛𝑡𝑒𝑐ℎ

∑
𝑡𝑒𝑐ℎ = 1

𝑃𝑡𝑒𝑐ℎ(𝑡) × 𝐶𝑠𝑢𝑝𝑝𝑙𝑦                                                  (3)

The operating costs (3) are calculated based on the sum of the costs of electricity imported from the 
grid, the gas used by the boiler and CHP engine minus the electricity produced and sold to the grid. 

 represents the cost of the energy resources per technology and  the power consumed 𝐶𝑠𝑢𝑝𝑝𝑙𝑦 𝑃𝑡𝑒𝑐ℎ(𝑡)
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or generated by a technology at every time step. Electricity and gas grids are assumed to be installed 
and available to all buildings. The electricity grid price is 0.15 [CHF/kWh], the natural gas price is 
0.08 [CHF/kWh] and the export price for electricity assumed, to not be subsidized, is 0.08 
[CHF/kWh]. It is assumed that consumers receive single retail prices. The carbon emissions are 
calculated in (4). The carbon factor used for natural gas is 0.18 kg CO2/kWh and for electricity 0.78 
kg CO2/kWh based on [20]

𝐶𝑎𝑟𝑏𝑡𝑒𝑐ℎ(𝑡) =
𝑛𝑡𝑒𝑐ℎ

∑
𝑡𝑒𝑐ℎ = 1

𝑃𝑡𝑒𝑐ℎ(𝑡) × 𝐶𝑎𝑟𝑏 𝑒𝑚
𝑠𝑢𝑝𝑝𝑙𝑦                             (4)

Energy demand constraints 
The following energy demand constraints (5) ensure that the electricity and heating demand is met 
at each time step at a building level . The efficiency of the technology, based on the size of the 𝐿(𝑡)
energy systems selected by the optimisation problem, appears in the coupling matrix represented by 

. The storage continuity is modelled by equation (6), where the state of charge  depends of the Θ 𝐸
storage flux , subjects to charging  and discharging efficiencies given in Table 1.𝑄 𝐴 ‒ 𝐴 +

𝐿(𝑡) = Θ ×  𝑃𝑡𝑒𝑐ℎ(𝑡) + 𝐴 ‒ 𝑄 ‒ (𝑡) ‒ 𝐴 + 𝑄 + (𝑡)                              (5)
𝐸(𝑡 + 1) = 𝑛𝑠 ∙ 𝐸(𝑡) + 𝑄 + (𝑡) ‒ 𝑄 ‒ (𝑡)                                          (6)

Specific constraints (7-8) are added to take into account the operating characteristics of dispatchable 
technologies in multi-energy systems, for example part-loads constraints for CHP engines, 
considering a minimum load of 50% to guaranty that the CHP engines are not operating at lower 
efficiency [48].  is an arbitrary large number, employed for the ‘big-M’ constraint method to 𝐵
formulate binary constraints [27], and  is a binary variable for the on/off constraint of the CHP 𝛿 𝑜𝑛

𝐶𝐻𝑃
engine at every time step.

𝜂𝐶𝐻𝑃 ∙ 𝑃𝐶𝐻𝑃(𝑡) ≤ 𝐵 ∙ 𝛿 𝑜𝑛
𝐶𝐻𝑃(𝑡)   ∀𝑡                                                   (7)

 0.5 ∙ 𝑃max
𝐶𝐻𝑃(𝑡) ≤ 𝜂𝐶𝐻𝑃 ∙ 𝑃𝐶𝐻𝑃(𝑡) + 𝐵 ∙ {1 ‒ 𝛿 𝑜𝑛

𝐶𝐻𝑃(𝑡)}   ∀𝑡                                         (8)  

At the inter-cluster level, the district heating network formulation (9) is based on [49].This 
formulation allows to consider the possibility of transferring heat from one entity (at the cluster 
level) to another through the district-heating network whose structured is optimally determined 
during the inter-cluster MILP solving.  represents the heat transferred from entity j to i and (10) 𝑄𝑗𝑖
ensures that heat is transferred in only one direction at every time step.

𝐿(𝑡) = Θ ×  𝑃𝑡𝑒𝑐ℎ(𝑡) + 𝐴 ‒ 𝑄 ‒ (𝑡) ‒ 𝐴 + 𝑄 + (𝑡) + ∑𝑄𝑗𝑖(𝑡) × 𝐻𝐿𝑖𝑗 ‒ ∑𝑄𝑖𝑗(𝑡)   (9) 
𝑄𝑖𝑗(𝑡) ≤ 𝛿

𝑖𝑗
 ×  𝐵     ,  𝛿𝑖𝑗 + 𝛿𝑗𝑖 ≤ 1                                             (10)

There is no loop of heat possible with the constraint formulation (11) employed in [13] and 
motivated by the Travelling Salesman Problem [50].

𝑂𝑗 ≥ 𝑜𝑖 + 1 ‒ 𝑁𝑒(1 ‒ 𝛿𝑖𝑗)       ∀ 𝑖,𝑗       𝑖 ≠ 𝑗                                    (11)

The available energy systems considered in this study are natural gas boiler (NG), combined heat 
and power engine (CHP), photovoltaic panel (PV), thermal storage (TS) and district heating 
network (DHN), considering that gas and electrical networks are already connected to all buildings. 
CHP engines and NG boilers sizes can vary from mini-CHP or NG boiler of 2kW to large size CHP 
plant or boiler of 5MW. 
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Fig. 1. Energy hub design space

The maximum allowable size of PV panels is 
constrained by the total roof area available per 
building. Similarly the total capacity of 
thermal storage available per area depends on 
the number of buildings considering a fixed 
maximum capacity of 20 kWh per building. 
Cost and efficiency depend on the technology 
size which is a design variable of the 
optimisation problem. Size price and 
efficiency bands are obtained from various 
sources [15], [51], [52] and harmonized with 
Swiss prices in Table 1.

Table 1. Size band cost and efficiency per technology [51], [52]

P max
Tech.

[kW]

𝛈𝐞𝐥𝐞𝐜
𝐂𝐇𝐏
[-]

𝛈 𝐞𝐥𝐞𝐜
𝐍𝐆 ‒ 𝐛
[-]

𝐂𝐥𝐢𝐧𝐞𝐚𝐫
𝐂𝐇𝐏

[CHF/kW]

𝐂𝐥𝐢𝐧𝐞𝐚𝐫
𝐍𝐆 ‒ 𝐛

[CHF/kW]
2-20 0.25 0.8 1128 211.5
20-50 0.27 0.8 775.5 176.25
50-180 0.30 0.8 564 131.13
180-350 0.30 0.8 564 111.39
350-500 0.30 0.8 564 91.65
500-5000 0.32 0.8 493.5 42.35

Technology Efficiency Fix cost Linear cost Life time

NG-boiler η elec
NG ‒ b 2820 [CHF] C linear

NG ‒ b 20 years

CHP ηelec
CHP 4260 [CHF] Clinear

CHP 20 years

PV panels 0.15 2000 [CHF] 500 [CHF/m2] 20 years

Storage 0.96 ch/disc 
0.99 self 800 [CHF] 80 [CHF/kWh] 20 years

DH-network 5% [km] 240 [CHF/m] 40 years

2.2. Iterative hierarchical multi-scale framework to facilitate large scale 
optimisation
The hierarchical multi-scale optimisation framework developed in [44] is combined with a genetic 
algorithm and a combined clustering algorithm in order to avoid sub-optimal solution, by 
considering only one clustering result as input for the energy optimisation problem. The combined 
framework is presented in Fig. 2. It is divided in three phases (a,b,c in Fig. 2): 

1. a structuring phase (a), during which the clustering algorithm divide the problem space in 
multiple sub-problems (clusters); 

2. an optimisation phase (b) run per cluster at a district level;
3. a general optimisation between clusters (c) based on optimal solutions at the cluster level. 

Fig. 2 presents the workflow coloured based on the software used at each step. The building 
locations and load profiles are given as input to the energy optimisation problem, as is the set of 
technologies available to supply the energy demand. Each building is considered as an energy hub 
and energy systems can be installed at any location. A first density based clustering algorithm 
creates a set of hierarchically nested clusters as a tree structure. Those pre-clusters are ordered and 
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grouped based on a combined clustering score function, developed Section 3.2. Based on the results 
of this combined clustering approach a set of clusters is created. The energy hub optimisation 
problem is then considered per cluster. In each cluster, multiple network shapes are generated based 
on a minimum spanning tree algorithm, interconnecting at each generation a growing number of 
buildings within each cluster from no district heating network to fully connected DH network, as 
presented in [47]. Per network generation, the loads of the buildings included in the DHN are 
aggregated and losses considered as a linear relation with the network size. Aggregated buildings 
which are part of the network are considered as a single energy hub, with the other remaining 
buildings considered as individual hubs. The energy hub optimisation problem is solved per hub, 
and this is done per network generation and per cluster, as described in Fig. 2 (b). Finally once the 
optimisation problem has been run per cluster, the optimal solution is retained and the design 
variables are passed to an inter-cluster scale optimisation problem (9). This ultimate optimisation 
problem consider the possibility of interconnecting clusters as an integer design variable, as in [49].
The iterative loop between the result of the optimisation steps (b,c) and the clustering algorithm 
(step a) is developed in order to avoid ending up with sub-optimal solutions driven by the clustering 
algorithm output. The feedback loop between the inter-clustering network optimisation results and 
the combinatorial clustering algorithm is created and tuned by the genetic algorithm (GA). The 
cluster set as output from the combined clustering is based on building location and load profiles, 
reflected by density indices, load homogeneity and load magnitude of given clusters, explained in 
Section 3.2. The clusters are formed based on the output of the GA at every iteration, taking into 
account the results of the energy optimisation problems at the intra and inter-cluster phases.
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3. Combined clustering approach
Clustering methods drastically reduce the computational time in a ‘divide and conquer’ fashion. 
This can be done without significantly reducing the problem accuracy, e.g. lower than 2% 
difference in the objective function in [44]. However, the clustering schema has an influence on the 
results and design of the DHN due to the limitations imposed on the building interconnections at an 
inter-cluster level based on the intra-cluster optimisation results. The following section highlights 
the different characteristics influencing the design of the DHN as well as the technology design 
variables. Finally, the combined clustering algorithm is presented to explore optimal solutions under 
different clustering maps, based on different building characteristics.

3.1. Spatial clustering and its limitations
The density distribution represents how far each object is from another object. A density-based and 
hierarchical algorithm is employed, called OPTICSxi (Ordering Points To identify the Clustering 
Structure). Density based algorithms evaluate for each object of a cluster that there is a minimum 
number of objects MinPts in a maximal neighbourhood distance EpsDist. The xi parameter is a 
contrast parameter defining the relative drop in density. More details on OPTICS can be found in 
[53]. For the distance matrix, the Minkowski Euclidean distance function is chosen as it best 
represents a measure of the distance between two objects. OPTICS is chosen as it is a density based 
algorithm which does not require selecting the number of clusters in advance. This number depends 
only on the minimum number of points to form a cluster, the maximal reachability distance and the 
data.

3.1.1. Density based clustering
Fig. 3 shows the district heating network connections for a small case comprised of three different 
clusters where the difference between Fig. 3a and Fig. 3b is the demand profiles of the buildings. 
On Fig. 3b, buildings are considered as residential, and profiles from one building to another are 
highly correlated (correlation coefficient is higher than 0.5, calculated in (12) as defined in [35]). 
This implies the same behaviours in the consumption patterns of building occupants. The graph on 
the bottom (Fig. 3d) shows the similarities in the hourly profiles, represented here for 12 optimally 
selected typical days (288 hourly time steps). The demand profiles have been randomly generated 
based on an approach presented in [54] where data are re-sampled per blocks of hourly period to 
maintain specific energy patterns. The correlation coefficient is lower than 0.5 for those demand 
profiles. The building types are similar to those from a mixed-use area. 
The first clustering indicator essential to define the possibility of having a DH network is the 
distance between energy hubs: for highly dense clusters (e.g. 8 or 2 in Fig. 3a and Fig. 3b), even 
with different energy demand behaviour, it is worthwhile to install a district heating network. For 
cluster 8, the highest density, even the design variables fixing the sizes of the selected technologies 
remain the same after optimisation. The density coefficient of each cluster is calculated as the 
reversed unity-based normalisation of the mean of the inter-building distance matrix per cluster (for 
a density coefficient value close to 1 it means that the buildings of the cluster are confined in a 
small area relatively to the other clusters, for a value close to 0, it means the buildings are sparse 
within the cluster) [42].

3.1.2. Loads based clustering
Load distribution reflects building use (sector) and user behaviour. The Homogeneity Index (HI) on 
the load profile per cluster is calculated in (12) as defined by [35]. It is calculated per cluster where 

 is the index of different clusters and  is the j-th building member of cluster  with  𝑥 𝑀
𝑐𝑙𝑥
𝑗 𝑥 𝑁𝑐𝑙𝑥

number of buildings.
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𝐻𝐼𝑐𝑙𝑥
=

𝑁𝑐𝑙𝑥

∑
𝑗 = 1

𝑁𝑐𝑙𝑥

∑
𝑘 = 𝑗 + 1

𝐶𝑜𝑟𝑟(𝑀
𝑐𝑙𝑥
𝑗 ,𝑀

𝑐𝑙𝑥
𝑘 )

𝑁𝑐𝑙𝑥
× (𝑁𝑐𝑙𝑥

‒ 1)/2                                                (12)

This index represents the average value of the correlations in the heating load time series between 
buildings within a cluster. A decrease of the homogeneity index indicates an increase in the 
heterogeneity of the cluster, meaning the possibility of having an increase in the shifted loads 
between energy consumers within a cluster. 
The results from C8 in Fig. 3 indicate the importance of the load distribution as reflected in the 
Homogeneity Index (HI), which can be used as a clustering parameter. For cluster 9 the HI of the 
clustering has an influence. Indeed in cluster 9 in Fig. 3b, there is only a small network 
(interconnecting the highest energy consumer with two other buildings) and mostly distributed 
energy systems with gas boilers installed. Whereas in Fig. 3a for the same cluster 9, there is a full 
network deployed and a larger share of storage and CHP systems installed. Energy demand profiles 
and load peaks are different for a zone consisting only of residential buildings or a zone of pure 
commercial and office space buildings. Indeed, the energy consumption in the residential sector is 
mostly happening at different times from the offices. In a mixed zone with residential and office 
buildings there are possibilities of having a levelling out of the consumption curve when 
aggregating together multiple profiles, reducing the difference between peaks and average energy 
consumption. This opens up the possibility of decreasing the total energy consumption by an 
exchange of energy between buildings with different energy profiles. This is made possible by 
favouring the installation of large size CHP engines running at higher efficiency (which could not 
have been operated otherwise due to minimum part load constraints) in parallel with storage 
devices. The final result is a DH network interconnecting a large share of the buildings as seen in 
Fig. 3b. The deployment of the DHN is driven here by the decrease of the homogeneity index for a 
mixed case compare to a residential case. It is then the increase of the heterogeneity (the 
complement of the homogeneity index) of the cluster which leads to a fully interconnected cluster 9 
in Fig. 3a.
To summarize, the results from the design optimisation problem in Fig. 3 are important to 
understand the role of the clustering parameters, encountered in the following Section 3.2 on the 
combinatorial clustering. Indeed the design results are different in Fig 3a from Fig. 3b, due to the 
different in the load profiles; we can deduce that the temporality of the load profiles plays a role in 
the determination of the set and sizing of the optimal energy systems. In Fig. 3a the load profiles 
associated to the building energy demand are typical of a mixed zone area whereas in Fig. 3b only 
purely residential buildings are considered. Stochasticity has been introduced in the demand profile 
to simulate the behaviour of a mixed zone typical consumption. In Fig. 3a, the value of the 
Homogeneity Index (HI) is lower than 0.5, reflecting a zone where the loads are temporally more 
diverse (peaks are not synchronised), and can be qualified as heterogeneous in the load profile 
schedules, reflected by the overlapping and diversity of load profiles represented in Fig 3c. Whereas 
in the case in Fig. 3b, districts are constituted of purely residential buildings, thus, the energy 
demand appear to be more homogenously temporally distributed between consumers. Those 
differences alternate the sizing of, both the DHN and the selected technologies, for cluster 2 and 
cluster 9, whereas cluster 8 remains the same. This is explained by the three characteristics of the 
clusters: density, load homogeneity and load magnitude. Buildings of cluster 8 are in both cases, 
Fig 3a and Fig 3b, fully interconnected by a DHN, demonstrating the impact of the density 
coefficient; the density is higher for cluster 8 than for cluster 9. We can conclude that for dense 
cluster the temporality of the loads does not have such an influence on the design solution, as long 
as the load magnitude remains similar (peak loads). Whereas for a sparse cluster, as cluster 9, the 
temporality of the loads has to be taken into account, as it leads to different DES and DHN design 
solutions. When the homogeneity index of the loads is increased, from the mixed case (Fig. 3a) to 
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the residential case (Fig. 3b), the CHP and storage capacities are decreased and replaced by a larger 
boiler. Indeed, the CHP and storage systems no longer benefit from the heterogeneity of the loads, 
traduced in a load shifting potential.
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C5C6

C7

C8

C9
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C8 C9

C10

CHP cap. [kW]
Boiler cap. [kW]
Storage cap. [kWh]

Cluster Number
Network cluster
Network Inter-cluster

C9
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#C
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C4

C5C6
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C8

C9

C10

(a) Mixed case (b) Residential case 

(c) (d) 

#C

CHP cap. [20 kW] Cluster Number
Boiler cap. [20 kW] Network cluster
Storage cap. [20 kWh] Network Inter-cluster

#C

Fig. 3. Comparison for 3 clusters between mixed-case (HI < 0.5) and residential case (HI > 0.5) on 
DHN designs based on demand profile variations: (a) DH network design and technologies 
installed per cluster and inter-cluster corresponding to (c) heating demand for a mixed-case of 
residential and office buildings for cluster 9. (b) DH network design and technology for residential 
buildings obtain after optimisation and (d) demand profiles for buildings of cluster 9.

The load magnitude is calculated as the sum of the heating demand over a full year. A higher load 
should be considered as an input to the clustering algorithm, as its inclusion in a cluster can have a 
large influence on the overall results. It can be used to balance the grid or as an energy centre and 
creates the possibility of installing a large energy system with higher efficiency curves. The case 
where a large load should be part of a particular cluster can only be considered by adding the load 
based dimension to the clustering algorithm.

3.2. Combined clustering algorithm
A combined clustering algorithm is developed in order to take into account spatial and temporal 
aspects of building characteristics. This is done with the help of a feedback loop between the 
clustering output and the results of the energy optimisation at the cluster and inter-cluster level. Fig. 
4 presents the clustering framework in which inputs are tuned using an evolutionary approach. First 
a set of clusters is determined (a) based on the hierarchical tree of clusters resulting from OPTICSxi 
density based algorithm. The clusters are extracted from the lowest branches of the hierarchical 
nested tree where clusters are characterized by different density. Clusters are ordered based on their 
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density and the following characteristics are calculated (b) per cluster and per combination of 
existing clusters (i.e. at each node of the hierarchical tree):
density function, homogeneity index and load 
magnitude. The thresholds are evaluated to 
ensure that clusters of very low density are 
not considered. A score is calculated based on 
the weights α, β, γ by multiplying respectively 
the normalized density, homogeneity and load 
magnitude indices, (c):

 (13)𝛼 ∙ 𝐷𝑌 + 𝛽 ∙ (1 ‒ 𝐻𝐼) + 𝛾 ∙ 𝑀𝐴𝐺
Clusters of different density, magnitude and 
homogeneity indexes are combined (all 
combinations from 1 to 3 clusters are 
considered) and grouped based on a 
maximisation of the score function. Before 
finalising the result of a clustering iteration, a 
last refinement is evaluated (d) by looking for 
a possible improvement of the score function. 
This is done by taking into account outlier 
entities (and created new clusters), which 
were not considered at the first density based 
clustering iteration (a). This is made possible 
by increasing xi, the relative drop in density 
from 0.1 in the first iteration to 0.5, which 
allows sparser clusters. The MinPts parameter 
is fixed at two entities, enabling the creation 
of a cluster of outliers from 2 buildings. 
EpsDist the maximal reachability distance is 
fixed at 200 meters for the density based step, 
in order to not consider density-based clusters 
including very distant buildings.

CLUSTERING MAP

Refine Clustering
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CALCULATE CLUSTER 
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NESTED TREE
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CLUSTERING
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EVALUATE 
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GROUP CLUSTERS:
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Fig. 4. Combined nested clustering algorithm

Finally, a clustering map is generated and the optimisation problem objective function can be 
evaluated using the multi-scale framework presented in Fig. 2. A genetic algorithm (MATLAB 
built-in algorithm [55], [56]) is used to evaluate the result of the objective function and to tune the 
weights of the score function, α, β, γ positive continuous decision variables bounded in the interval 
[0 - 1]. The choice of the genetic algorithm is motivated by the large discontinuous search space. 
Elitism is enabled preserving the best solution across generations. The crossover fraction is 0.8; 
crossover is biased with a ratio of 1.5 towards the better parent; the mutation rate is 0.2. The GA 
optimisation takes 250 hours for 50 generations with a population of 10 individuals.

4. Results 
The case study for evaluation consists of 32 buildings of a mixed residential-commercial area on the 
South-East side of Geneva. Buildings location and characteristics are extracted from an open data 
source SITG (Geneva Territorial Information System). The hourly heating and electricity demand 
profiles per building are based on variable profiles generated based on building occupation levels 
[57], and fitted to the actual buildings size and yearly energy consumption. The objective function 
studied here is the equivalent annual costs (EAC) for the supply of the total energy demand of the 
considered buildings, including design and operating of the distributed energy systems.
The problem is computed using CPlex solver on a machine which has an Intel Xeon 3.1 GHz CPU 
with 8 cores and 64 Gb of RAM. The number of constraints per energy hub for the intra-cluster 

a

b

c

d

e
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problem is 9001 including 4924 variables, whom 302 integers, taking an average of 7.8 seconds per 
solving. For the inter-cluster optimisation problem, the number of constraints for a 4 clusters 
problem for example is 18’454 including 14996 variables, whom 1164 integers, taking an average 
of half-hour to solve with fixed design constraint passed from the intra-clustering results. The 
optimal solution is retained after a GA optimisation of 250 hours for 50 generations with a 
population of 10 individuals. For comparison, without using the framework developed in Section 2, 
the intra-cluster optimisation problem takes up to 30 hours for solving a 4 energy hub case study 
without fixed design constraints [42]. As the solving time increase exponentially with the problem 
complexity for solving MILP problems, an increase of the spatial scale to 32 energy hubs would 
make the problem unsolvable in a reasonable time and with the limited CPU.
By tuning the weights α, β, γ of the score function (13) of the clustering algorithm, the resulting 
map for optimisation is divided in a number k of clusters, between 4 and 7, leading to different 
values of the fitness function Fig. 5a. The density distribution indicates that for the lowest number 
of division in 4 clusters, the fitness value increases. A higher number of clusters seems to provide a 
higher probability of leading to a better solution. This is also reflected in Fig. 6 where the division 
into 6 and 7 clusters minimized the objective function. Results are comparing the design obtained 
and objective function for a density-based solution where the clustering step only includes the 
spatial dimension (α=1, β=0, γ=0), against a solution where the temporal dimension of the loads and 
their magnitude has been taken into account (α=0.95, β=0.95, γ=0.15). The combined solution 
obtained considering the loads distribution and spatial dimension appears on Fig. 6 as the best 
solution determined by the GA algorithm. The fitness function of those two solutions is compared 
with a reference solution where the possibility of a DHN is not considered Fig. 5b.

Reference solution DES (no network)

Density-based optimum

Combinatorial-clustering optimum

(a) Kernel Density Estimation (b) EAC Objective function [kCHF]

Fi
tn

es
s f

un
ct

io
n 

[k
C

H
F] 4 clusters

7 clusters
6 clusters
5 clusters

Fig. 5. Difference in the optimal solution for different weights of the clustering score function: (a) 
Fitness function kernel density estimation. (b) Equivalent annual cost (EAC) for the reference case, 
density-based case and combined clustering case.
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Fig. 6. Density estimation of the fitness value after optimisation based on the weights of the 
combined clustering algorithm: density (α), heterogeneity index (β) and loads magnitude (γ).

By considering the possibility of installing a district heating network, the equivalent annual costs 
(EAC) are decreased by 60.5 kCHF Fig. 5b, when the optimisation map is achieved using a density-
based clustering method; the clustering is shown in Fig. 7. The EAC can be even further decreased 
(by 79.2 kCHF in Fig. 5b) when the temporal aspect is also considered in the clustering step using 
combined clustering; the clustering is shown in Fig. 8. Considering altogether the density 
coefficient DY and the load heterogeneity index (1-HI) creates cluster 2 in Fig. 8 with distant 
buildings. This enables the design of a large network connection within cluster 3, which is then 
connected to cluster 2 at the inter-clustering optimisation level. Whereas in the density based 
optimisation problem, restricted by the definition of cluster 5, the optimisation problem ends up 
with a sub optimal solution by not being able to consider this large connection, as the optimal 
solution for cluster 2 is the installation of fully distributed energy systems. 
From the results of Fig. 6, the role of the load magnitude index is not clear. The optimal solution 
retained after a GA optimisation of 250 hours for 50 generations with a population of 10 
individuals, is a division of the problem space into 6 clusters with the weights (α=0.95, β=0.95, 
γ=0.15), showing a balance between the importance of density and load heterogeneity and a weak 
impact of the load magnitude.
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Fig. 7. Density based clustering
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Fig. 8. Density and loads based clustering
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5. Conclusion
Clustering methods are shown to be a promising approach to facilitate large scale modelling and 
optimisation of urban energy systems. By alleviating limitations of MILP model, clustering 
methods enable the formulation and the solution of large scale optimisation problems for the 
exploration of design possibilities for the 4th generation DHN [58]. 
The combined framework of the multi-scale approach with a clustering algorithm presented in this 
work allows the execution of optimisation problem at large scales. The framework’s formulation 
maintains a high resolution level of details on the building scale, and by sub-dividing a large 
problem in sub-problems to reduce the computational burden it does not omit an optimal solution. 
This technique allows defining the building characteristics intrinsic to the cluster definition along 
with an optimisation problem. 
In future work, the calibration of the clustering method across multiple cases will improve the 
ability to find good clustering patterns, which will allow assessing the durability of the role of 
spatial and temporal indicators for the deployment of energy streams. Indeed correlations seem to 
appear between the cluster characteristics, as density, homogeneity or magnitude of the load 
profiles, and the systems design solutions; district heating network dimensions and energy systems 
sizes and characteristics. A statistical regression model will be employed in future studies to be able 
quantifying the potential of district heating networks combined to multiple energy systems at 
regional scales based on cluster characteristics combined to energy system design solutions.
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• Multi-scale hierarchical approach for optimal system design and operating strategy.

• Combined clustering method for distributed energy system optimization.

• Aggregation schema to enable optimization of urban energy systems at large scale.

• New modelling formulations reducing computational time while preserving accuracy.

• District heating networks allow a decrease of system’s costs and environmental impact.


