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Abstract

In this contribution, a full 3D finite element model of electrospun networks is presented. The model explicitly accounts

for the specific microstructure of these networks by generating representative volume elements through a particular

fibre deposition method inspired by the process of network formation during electrospinning. The modelled fibre

material and structural properties, such as different fibre shapes and distributions in diameter, can vary over a wide

range, and mutual fibre contact is considered in addition to permanent cross-links. In addition to the homogenized

mechanical response to macroscopic in-plane loads, the model provides access to structural information which can

hardly be determined in experiments, such as fibre disposition and interconnectivity. In the present work, this asset is

used to inform a recent 2.5D modelling approach (Zündel et al., 2017) and to validate inherent assumptions on network

structure. The comparison between the responses of the two approaches reveals that for networks of high porosity, the

reduced 2.5D model captures well the mechanical behaviour in plane stress load cases. At lower porosities though,

the increasing out-of-plane orientation of fibre segments leads to effects that cannot be captured by planar approaches

and necessitate a 3D approach.
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1. Introduction

Electrospinning is a simple, cost-efficient and versatile technique to produce non-woven meshes with nano- to

micrometer sized polymeric fibres [1, 2]. The versatility of the process permits scaffold architectures and properties

within a wide range, rendering electrospun fabrics potential candidates for various technical applications, such as

filters, catalyst carriers, sensors or sound absorbent materials [3], and for biomedical use, particularly as scaffolds for

tissue engineering [3, 4].

Briefly, the basic set up of the electrospinning process is as follows [5]: A polymer solution or melt is pumped

to a needle that is placed in fixed distance from a usually grounded collector and connected to a high voltage power
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supply. The difference of electric potential (∼10-30 kV [6]) generates an electric field, which causes the droplet

of polymer solution at the needle tip to deform into a cone shape [7, 8]. When the electrostatic repulsion forces

overcome the surface tension at a critical voltage, a continuous jet is ejected and extremely elongated while the solvent

evaporates and the jet solidifies. The so-formed fibres deposit on top of the previously spun material on the collector

and form a highly porous network. While at fibre length scale (∼µm) these electrospun networks are discrete structures

with mechanics governed by the properties of fibres and their mutual interactions, they appear continuous at the

macroscopic scale (∼mm), characterised by the homogenised response of its microstructural constituents. Depending

on the application, different requirements are posed to the two scales [cf. 9], which can be addressed by tailoring

the network through the tuning of the electrospinning process parameters. The relation between fibre properties

and network microstructure on the one hand and the macroscopic mechanical behaviour on the other hand can be

analysed experimentally after spinning. However, the many different results that can be obtained with the multifarious

electrospinning process drastically increase the number of experiments required for systematic studies, and make

the identification of networks with dedicated micro- and macroscopic properties a demanding task. In this regard,

predictive multi-scale models able to account for the interdependency between the length scales provide a useful

alternative, at least to narrow down the many options that exist in terms of materials and their organization.

The macroscopic mechanical behaviour of ESNs has been captured by continuum models without or very little

reference to their microscopic properties [10–13]. In addition, few models were proposed that established scale

transitions by using unit cells with three or four representative fibres [14, 15], some others were adopted from polymer

network modelling [16], were based on affine structural approaches [17–19], or statistical averaging [20, 21]. While

these approaches are beneficial in terms of computational effort, the relation between microscopic properties and

macroscopic behaviour is essentially established through specific assumptions. This typically concerns the coupling

between fibre and macroscopic kinematics, so that the reliability of the model predictions depends on how well these

assumptions are met in real networks. Discrete network models (DNMs), in which single fibres are represented by

finite elements (FEs) and their ensemble response to macroscopic loads is computed from the displacements and

forces at the boundaries of representative volume elements (RVEs) allow for more details in describing the scale

transition. In addition, these models provide access to changes of microstructural properties such as pore and fibre

shapes, fibre orientation or inter-fibre interactions upon macroscopic loads. Vice-versa these models also reveal the

effect of alterations of these quantities on the macroscopic response. DNMs are therefore valuable tools to study

general aspects of fibre network mechanics [e.g. 22] and were applied to model, e.g., paper [23–26], glass-fibre felts

[27], collagen and other biopolymer networks [28–31], and, finally, ESNs [32–38].

The large planar dimensions and layered structure of electrospun mats compared to their thickness of typically

few hundred micrometers motivate the simplification that ESNs can be treated as two-dimensional networks [27,

33, 39, 40]. This reduction poses the need for further assumptions on the number and locations of the points at

which fibres would interact through the third dimension. With a focus on this aspect, we have recently presented a

planar, sparse and ESN-specific 2.5D DNM, based on the concept of interaction thickness that allows distinguishing
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cross-links from mere fibre intersections by assuming that cross-links only form if fibres are in sufficient out-of-

plane proximity [41]. This model, informed only by single fibre material and network geometrical properties showed

excellent predictive qualities when compared to mechanical tests on polyamide ESNs [15]. Noteworthy, the reduction

to a 2D representation loses applicability when aspects related to the out-of-plane mechanics on scales in or below

the order of the network thickness are investigated, for example, solid-fluid interactions at fibre level in filtering

applications. Such aspects pose the general need for 3D models.

Independent of the considered dimensionality, the models need to be informed by experimental data on network

topology and single fibre characteristics. While the latter can be obtained from single fibre testing [42, 43], information

about fibre shape, diameter and orientation distribution can be extracted from scanning electron microscopy (SEM)

images [33, 37]. SEM information is, however, restricted to the outer surface of ESNs from which only limited

information on three-dimensional features, such as out-of-plane fibre shape or cross-link density, can be retrieved

[41]. Due to fibre diameters that may be significantly below 1µm, also most laboratory 3D imaging techniques such

as microCT, do not provide the necessary resolution in general [44], whereas sequential imaging techniques, such as

SEM after focused ion beam slicing are time consuming and require a high degree of post processing [45]. Notably, it

is exactly the identification of cross-links and associated structural parameters that is essential for a reliable prediction

of macroscopic and fibre scale properties, as the mechanical response is strongly affected by the interaction between

fibres [41].

In order to circumvent these problems, one may generate the DNM by depositing a set of random fibres in a way

inspired by the process of network formation, and identify the cross-links from the simulated fibres that are in contact.

Fibre deposition models have been proposed for paper [24, 26, 46], but also for ESNs [34, 38], based on different

computational techniques. Using the explicit finite element method (FEM) we present in this contribution a fibre

deposition model which aims at a dedicated representation of network formation during the electrospinning process.

In these virtual spinning simulations, fibres are dropped and accelerated towards a rigid collector plate by a body

force, bend upon contact with other fibres, and form a highly porous three-dimensional network. By this means, ESN-

specific 3D RVEs are obtained that can be used in subsequent simulations to compute the homogenised mechanical

response. The models enable a quantitative evaluation of the influence of topological parameters and fibre properties

on the mechanical properties of ESN mats. In addition, the analysis of the network RVEs provides the structural

parameters needed in reduced modelling approaches which are hardly accessible in experiments, in particular the

density and location of the fibre contact points at which cross-links may form and interactions take place. The 3D

model is thus applied to inform a 2.5D efficient ESN representation [41]. After a description of the computational

deposition process, we start from identical sets of fibres, from which both 3D and 2.5D RVEs are generated. Missing

information in the latter approach is extracted from the former, and used to investigate the assumptions inherent to

the interaction thickness concept employed by the 2.5D approach. From both models, the homogenised network

responses to macroscopic plane stress load cases are computed and compared, and applicability limits of the 2.5D

approach are investigated and discussed.
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2. Generation of 3D ESN RVEs and associated mechanical analysis

In this section, a numerical framework to create models of ESNs is presented. The method is inspired by the pro-

cess through which non-woven random networks form from extremely long fibres during electrospinning. In particu-

lar, fibres of given planar geometry are discretised by finite beam elements and deposited to form three-dimensional

RVEs. Macroscopic deformations are imposed through corresponding boundary conditions in a subsequent step, in

order to compute the homogenised network response.

2.1. Description of fibre shape

In addition to the base material from which the fibre is spun, its shape obtained while solidifying and falling during

the electrospinning process represents an important characteristic of the fibre. While fibre formation is a complex

process during electrospinning, the final shape of fibres within the network, or at least their planar projection, is

amenable by microscopy analysis [14, 33, 37, 39], and can be described as a curve in two or three dimensions. In

order to represent these curves mathematically, both deterministic and stochastic methods can be used.

Deterministic shapes predefine the fibre path completely based on a finite set of parameters. Examples are, e.g., a

straight line (Fig. 1b) or truncated Fourier series of the form

η(ξ) =

n∑
k=1

αksin
(

2πξ
Λk

)
+ βkcos

(
2πξ
Λk

)
(1)

that represents a periodic function in the ξ-η-plane, parametrised with respect to the linear coordinate ξ along a

direction specified by a unit vector R (Fig. 1a). For n = 1, β1 = 0 this reduces to the special case of sine-shaped fibres

[41], where the shape is controlled by the amplitude α1 = αF and wavelength Λ1 = ΛF (Fig. 1acd). Clearly, straight

fibres (Fig. 1b) are included for αF = 0.

Stochastic fibre shapes can be obtained by random-walk algorithms, where a succession of points produced by

the algorithm is connected with straight lines or splines [47–49]. Here, we propose to describe the shape of electro-

spun fibres by the statistics of worm-like chains [50–52], characterised by the persistence length ` that quantifies the

correlation between the angle θ(s) formed between tangent vectors to the chain at positions separated by a distance s

along the chain contour. For a planar, i.e. two-dimensional worm-like chain the correlation is given by the Gaussian

probability density [52]

P(θ(s)) =

√
`

2πs
e−

`θ2
2s (2)

with the standard deviation σθ

σθ =

√
s
`
. (3)

Compared to other stochastic fibre models, the worm-like chain model comes with the advantage that the persistence

length ` can be estimated from images [53], as shown for, e.g., DNA [54], microtubules [55] and collagen fibres

[56]. Once ` and the orientation t0 of one segment is defined, the fibres are generated by consecutively appending
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Figure 1: Planar fibre networks with different fibre shapes. a) Sinusoidal (red) and stochastic worm-like (blue) fibre shape with associated param-

eters. b) Straight fibres, achievable with αF = 0 and ` → ∞ for sinusoidal or worm-like fibres, respectively. c,d) Sinusoidal fibres with different

wavelength ΛF and amplitude αF. e,f) Stochastic fibres with different persistence length `.

segments of length l. The angle θ between two consecutive segments (Fig. 1a) is drawn randomly from a Gaussian

distribution with zero mean and standard deviation σθ =
√

l/` according to Eq. (3) [52]. Hence, fibre shape is

exclusively controlled by ` (Fig. 1ef), including straight fibres for the limit ` → ∞ (Fig. 1b). Noteworthy, due to the

properties of the Gaussian function [e.g. 57, sec. 34], the mean end-to-end vector of a fibre is thus predefined by t0.

This property therefore allows the generation of networks with non-uniform orientation distribution by sampling the

orientation of the first segment t0 of the random walk from the desired distribution (cf. Carleton et al. [40, 48]). Each

fibre is attributed a fibre diameter dF, either defined from a normal distribution with mean d̄F and standard deviation

σdF , or set constant (e.g. dF = d̄F, σdF = 0). The left tail of the normal distribution further needs to be trimmed at

dF,min = d̄F − rσdF to exclude negative fibre diameters, where r is a positive constant.

2.2. Virtual spinning: generation of 3D RVEs

Using Matlab (R2016b, The MathWorks Inc., Natick, MA, USA), sets of NF fibres with deterministic or stochastic

shapes are generated, and distributed randomly in position and orientation within a planar square region of size bN×bN,

where bN determines the size of the RVE in the x-y plane (Fig. 2a). The fibres only terminate on the RVE boundaries

so that a fibre is always connecting two boundary edges of the RVE. This and all following operations are performed

by executing custom Python scripts (2.7.3, Python Software Foundation, OR, USA) using the scripting module of

the FE modelling software (Abaqus/CAE 2016, Dassault Systèmes Simulia Corp., Johnston, RI, USA). Initially, each
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Figure 2: a) Reference t0, intermediate t1 and final t2 configuration of the virtual spinning process. (NF = 1600, bN = 300d̄F) b) Kinetic energy

during the virtual spinning simulation. The quasi-static solution was reached when the kinetic energy reached a constant, negligible value.

fibre i ∈ [1,NF] is placed in a separate plane with offset z = zi = dF,1/2 +
∑i−1

k=1(dF,k + dF,k+1)/2 from, and parallel to

the collector plane at z = 0 (Fig. 2a).

Fibres are discretised with Timoshenko beam elements (B31) with an element length of 3dF, while the collector

plane is defined by a rigid surface. In a dynamic explicit FE simulation (Abaqus/Explicit 2016, Dassault Systèmes

Simulia Corp., Johnston, RI, USA), the stack of fibres is successively compacted to create the 3D RVE. To this end,

the fibres, initially at rest, are accelerated towards the collector plate by a defined body force g = −gez (Fig. 2a).

This is similar to the fibre attraction by the collector due to electrostatic forces in the electrospinning process, and the

magnitude g was found to correlate with the network porosity. In particular, higher forces cause stronger compaction

of the fibre network and therefore lower porosities. To avoid lateral drift, the in-plane displacement degrees of freedom

of the boundary nodes of each fibre are fixed during the falling process. The interaction between individual fibres, and

between fibres and collector is modelled as hard, frictionless contact, enforced with the penalty stiffness algorithm

implemented in the FE software which accounts for the fibre diameter [58]. At this stage the fibre material is modelled

as linear elastic with Young’s modulus EF and Poisson’s ratio νF, furthermore a mass density ρF is assigned. Mass

proportional Rayleigh damping is introduced to allow the dynamic dropping process to reach the quasi-static solution

state, i.e the compacted electrospun network geometry. For this type of damping (controlled by a damping factor αR),

the damping forces are proportional to the absolute velocity at the nodes, which reflects the idea of dissipation due to

interaction between fibres and the surrounding, aeriform fluid in the electrospinning chamber. A constant time step

∆t is chosen whereas the stability of the integration is ensured by mass scaling [27]. The system is considered at rest

when the kinetic energy of the system drops below one percent of the maximal value (Fig. 2b). The corresponding

state is considered as the quasi-static solution of the problem and the deformed mesh is stored to provide the final

geometry of the RVE.
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2.3. Extraction of network parameters

In a post-processing step, the locations of contact between fibres are identified, corresponding nodes are deter-

mined, and finally contact pairs and associated fibres are stored for further post-processing. The thickness tN is

determined from the so created RVE by sampling the maximal distance of fibre material from the ground collector

within each subdomain defined by a regular in-plane grid with grid size 0.1bN × 0.1bN and finally averaging over all

subdomains. The RVE volume is thus given by VN = tNb2
N. The volume of all finite elements provides the total fibre

volume VF, so that the fibre volume fraction ν and network porosity φ are given through

φ = 1 − ν = 1 −
VF

VN
. (4)

While the RVE geometry can be used for the 3D analysis of the mechanical response of the network as described

in the next section, it furthermore enables the structural analysis to extract topological features that are difficult to

access experimentally, such as the cross-link density or pairs of fibres in contact (see Fig. 7a). The identification

of cross-links is based on the 3D topology of the networks and therefore allows distinguishing between real contact

points and projected fibre intersections, in contrast to image based methods. This is highlighted in Fig. 3b, which

shows a rendered image of the 3D network with one single fibre and the identified contact points coloured in blue and

red, respectively. The image reveals how difficult it is to distinguish projected intersections from actual fibre contact

points by visual inspection. Moreover, the lengths ls of all fibre segments are identified, defined as the contour length

of a fibre segment between two cross-links, and the corresponding distribution with mean l̄s is evaluated (Fig. 7c). The

evaluation of average segment length indicates a dependence on the z-position (Fig. 3a), with higher segment lengths

near the lower and upper network surface. This results from the decreasing probability for cross-link formation at the

surfaces (cf. also Zündel et al. [41]), and the asymmetry between bottom and top is induced by the slightly higher
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1
Figure 3: a) Dependence of mean segment length on the z-position within the network, evaluated in network intervals ∆z = 1µm. b) Graphical

visualisation of the model (top view), demonstrating for a single fibre (blue) the difficulty to distinguish contact points between fibres (red) from

mere visual intersections related to the projection of the 3D model to a 2D image.
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compaction of the fibres close to the the collector plate. These findings highlight that the network properties at the

visually accessible surfaces may not be representative for the bulk of the material.

1.) Define RVE in-plane dimension bN × bN and number of fibres NF.

2.) Generate NF randomly distributed fibres in the plane of the RVE.

IF fibre shape = periodic deterministic THEN

Define αk, βk,Λk as input parameters.

Generate in-plane fibre shape according to Eq. (1).

ELSEIF fibre shape = stochastic THEN

Define persistence length ` as input parameter and choose step length l (l � `).

Generate in-plane fibre shape by a random walk where the angles θ between steps are

sampled from a Gaussian distribution with zero mean and standard deviation σθ =
√

l/`.

ELSE

Generate straight fibres.

END

3.) Stack fibres in the out-of-plane direction on to each other and assign fibre material and

contact properties.

4.) Do virtual spinning simulation (Sec. 2.2) to compact network.

5.) Extract topological information (Sec. 2.3), e.g., contact points, segment length ls, porosity φ.

6.) Import final mesh as reference configuration for a second simulation, where load case

specific boundary conditions are applied (Sec. 2.4). Assign fibre material and contact

properties. Couple degrees of freedom of initial contact nodes.

7.) Solve boundary value problem (Sec. 2.4) and compute homogenised material response (Eq. (5)).

Figure 4: Algorithmic box describing the general steps for the generation and homogenisation of 3D RVEs.

2.4. Computation of homogenised RVE response

The RVEs generated according to Sec. 2.2 are used as stress-free reference configurations for further mechanical

computations in Abaqus/Explicit, allowing the extraction of the homogenised stress response of the network at the

macroscopic and the associated kinematics at the microscopic scale (Fig. 5). To this end, the macroscopic state of

deformation is imposed by homogeneous displacement boundary conditions at the lateral boundary faces of the RVE,

while the top and bottom surface are unconstrained, assuming a macroscopic state of plane stress in the fibre mats.

Traction free lateral faces, such as in uniaxial extension with lateral contraction, are realised by coupling the lateral

degrees of freedom of the boundary nodes and requiring that the overall traction on each of these faces vanishes

[29]. The single fibre material is modelled with a linear elasto-plastic material law, defined by Young’s modulus EF,
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Figure 5: Close up of local fibre deformation for three different states of uniaxial extension with lateral contraction. Colors refer to axial strains

εAX of the beam elements.

Poisson’s ratio νF, yield stress σp
F and post-yield slope Kp

F, capturing the typical elasto-plastic single fibre response

with a small, approximately linear elastic regime common for electrospun polymers [43, 59, 60]. To simulate the

presence of permanent cross-links between fibres at the identified locations of interaction (Sec. 2.2) the translational

degrees of freedom of the corresponding adjacent nodes of the fibres in contact after the fibre deposition process are

coupled. Notwithstanding this simple choice made here, more involved fibre material laws and, once the locations

of contact have been identified, other interaction laws can be implemented in a straightforward manner. All evolving

mechanical interactions between fibres occurring during the network loading as a result of the RVE deformation are

accounted for by frictionless, hard contact using the penalty method as specified in Sec. 2.2. Representative network

dimensions have been selected accordingly to preceding convergence studies (see Appendix A). The boundary value

problem was solved through explicit FE analysis, suggesting some advantages when simulating discrete fibre systems

[27]. In particular, explicit time integration was able to robustly handle the large number of evolving contacts between

fibres, and the rapid changes in fibre configurations due to bending, and buckling instabilities. To ensure that the

kinetic energy is negligible and the solution can be considered quasi-static, the maximal rate of applied strain was

restricted (here ε̇ = 0.015%/s). Slight Rayleigh damping (αR) is considered and the stability of the explicit time

integration is ensured by mass scaling for the specific time step ∆t. To verify the chosen values for ε̇, αR and ∆t

a representative simulation was conducted three more times where for every simulation one of the parameters was

reduced to its half (see Appendix A). No significant difference could be observed.

In a post-processing step, based on custom Python scripts, the volume averaged first Piola-Kirchhoff stress tensor is
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calculated from the nodal forces f i and reference positions Xi

P =
1

VN

Nb∑
i

f i ⊗ Xi (5)

of all boundary nodes i = 1, 2...,Nb [33].

3. Comparison with the reduced 2.5D model

The 3D RVEs generated through the explicit fibre deposition process (Sec. 2) were used to inform a recently

proposed reduced 2.5D modelling approach [41] and validate a key assumption of this model on the out-of-plane

interaction between fibres. To this end, topological information extracted from the 3D RVE was used to define model

parameters of the 2.5D approach, and the mechanical response predicted by the full and reduced modelling approaches

were compared. Finally, a scaling law between porosity and cross-link density, revealed from computational analyses

based on the 3D model, was used to further reduce the number of parameters in the 2.5D approach.

3.1. Reduced 2.5D modelling approach

The reduced modelling approach used here was presented previously [41] and is specific to electrospun networks,

allowing the generation of planar RVEs, and featuring a physically motivated definition of fibre cross-links. Briefly,

the algorithm takes into account that the RVE grows in thickness with every deposited fibre, and that fibre intersections

appearing in the planar projection of the network can only form a cross-link if the two intersecting fibres are effectively

in contact. The latter condition is implemented by associating an out-of-plane position z to each fibre, and assuming

that a fibre can form cross-links with other fibres only within a layer of a specified interaction thickness tI. It can be

shown that the latter is directly related to the average segment length l̄s in the network [41]. It is important to note that

the RVEs are essentially two-dimensional, and that the interaction thickness is only a concept to distinguish between

intersections and cross-links in the sparse planar network.

In addition to either tI or l̄s, the network porosity φ, and the fibre shape and material properties need to be defined.

The former is given by a sine-shape with αF and ΛF according to Sec. 2.1 and a constant fibre diameter dF. The latter

are defined through a linear elastic-plastic constitutive law, equivalent to the fibre material in the 3D approach (EF,

νF, σp
F, Kp

F). Boundary value problems are defined through imposed homogeneous displacement boundary conditions

on the lateral edges of the planar RVEs, solved by implicit 2D FE computations (Abaqus/Standard, Version 6.10-EF1,

Dassault Systmes Simulia Corp., Johnston, RI, USA), and the homogenised stresses are computed according to Eq.

(5).

Noteworthy, in addition to employing an implicit solver, the reduced model [41] differs from the full 3D approach

in that it disregards any out-of-plane motion, and does not account for the additional contacts between fibres that

may result from their motion. Moreover the reduced model needs information about both the porosity φ and average

segment length l̄s of the network, while these two parameters are strictly related in the 3D generation approach, since
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higher compaction of the network during the virtual spinning process leads to both a reduction of porosity and segment

length at the same time. Based on a set of test cases defined in the next section, the effect of these differences on the

prediction of the microscopic fibre kinematics and the homogenised network response was investigated.

3.2. A set of test cases

Equivalent RVEs for the 3D and 2.5D approach, respectively, were generated according to the following procedure

(Fig. 6): At first, a set of fibres with random orientation was generated. Next, 3D RVEs were generated as described

in Sec. 2.2, and porosity and average segment length were extracted (Sec. 2.3). Based on this information, 2.5D RVEs

were generated from the same stack of fibres. Finally, both RVEs were then used to simulate macroscopic uniaxial

tension, strip-biaxial and equibiaxial extension tests, and their homogenised responses were compared.

Fibre kinematics and homogenised response

Fibre kinematics and homogenised response

Zündel et al. [41] 

2.5D

3DInput data:
RVE dimensions
fibre shape
fibre diameter
fibre material
imposed deformation

ComparisonInformation

Figure 6: Procedure for comparison between 2.5D and 3D modelling approaches

Specifically, fibres were modelled with sine-shape (αF = 7µm, ΛF = 150µm) and constant circular cross-section

(dF = 1µm), and the mass density of the fibre material was set to ρ = 0.9g/cm3. Their constitutive behaviour was

defined by a linear elastic-plastic material law with Young’s modulus EF = 1500MPa, Poisson’s ratio νF = 0.4,

yield stress σp
F = 30MPa, and post-yield hardening parameter Kp

F = 150MPa. With this parameter set, and by

adjusting the mass specific body force g, RVEs with a porosity of φ = 0.965 and an average segment length of

l̄s = 19.7µm were generated (both values are average values of N = 3 realisations of the RVEs). An RVE size

of 300µm × 300µm × 28.3µm (bN × bN × tN) was selected in line with a convergence study performed beforehand

(Appendix A).

3.3. Validation of the interaction thickness concept

Besides the shape and mechanical behaviour of single fibres, the mechanical response of a network-like structure

is strongly affected by the location and density of cross-links between the fibres. The cross-link density correlates

directly with the mean length of fibre segments l̄s, i.e. the contour lengths of fibre sections between cross-links.

As mentioned, the reduced approach [41] requires either l̄s or the interaction thickness parameter tI to be defined.

Generating networks with a given tI according to this approach (Sec. 3.1) and sequentially indexing the fibres by their

initial vertical position in the stack from bottom to top, one obtains an interaction matrix by entering a marker for each
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pair of fibres i and j, i, j,= 1, 2, ...,NF that are in contact (blue dots in Fig. 7a). The constant tI constrains the markers

to a narrow band.
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Figure 7: a) Connectivity matrix of the networks, representing graphically the fibres that are connected by cross-links. The fibres are numbered by

their order of deposition. Data is shown for one representative network. b) Histogram of the difference of indices ∆n = i − j of fibres in falling

order shared by a contact. Data extracted from N = 3 networks for the 3D and 2.5D case, respectively. c) Histogram of the segment lengths ls.

Data extracted from N = 3 networks for the 3D and 2.5D case, respectively.

The analysis of fibre connectivity extracted from the equivalent 3D RVEs reveals that the out-of-plane interaction

of the fibres is indeed limited (Fig. 7a, green markers), however, less sharply bounded than assumed by the reduced

approach. The information contained in the connectivity chart can also be represented as probability distribution of

the difference ∆n = (i − j) of the fibre indices that share a cross-link. For the reduced approach this results in a

homogeneous distribution within the interaction layer and zero cross-link formation probability outside, while the

probability distribution describing the 3D RVEs shows that only a part of the cross-links (∼61%) are formed within

this range (Fig. 7b). In fact, these networks also form cross-links with fibres that were more distant in out-of-plane

direction, albeit with decreasing probability. For the analysed networks, the latter distribution was well captured by a

logistic probability density function

P(∆n) =
e∆n/s

s
(
1 + e∆n/s)2 (6)

with zero mean and shape parameter s = 8.775 (R2 = 0.99), where ∆n was considered a continuous parameter here.

Hence, the results provided by the 3D model clearly confirm that the probability of cross-link formation between

fibres is governed by their out-of-plane proximity, and therefore support the concept of an interaction layer, even if

the boundaries are less well defined than assumed in the reduced 2.5D approach.

While for the present comparison, cross-link density and hence mean segment length were equal for both ap-

proaches by definition, the distributions of segment lengths differ (Fig. 7c). The main difference occurs for short fibre

segments (ls < 5µm = 5dF ), for which the 3D RVEs reveal a decreasing probability density in contrast to the reduced

approach. This difference is explained by the method of identifying potential cross-links in the reduced approach,
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which is based on searching projected intersections within the interaction layer. This search is based on 1D lines in a

2D space, and does not account for the fibre diameter and bending stiffness. The probability for segment lengths in

the order of the fibre diameter or lower is thus higher compared to the 3D approach that accounts for the finite fibre

volume and bending stiffness.

3.4. Comparison of homogenised mechanical and fibre kinematic responses

The homogenised mechanical behaviour of the two modelling approaches was compared in terms of their re-

sponses to uniaxial (UA), strip biaxial (SB) and equibiaxial (EB) loads, imposed through homogeneous boundary

conditions that provide nominal tensile stretches up to λ = 1.15. For both approaches N = 3 RVEs were realised, and
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Figure 8: Comparison of macroscopic kinematic and stress response to different loading conditions predicted by the 2.5D and 3D approach,

respectively. Results are shown as mean (solid line) and standard deviation (shaded area) for N = 3 equivalent networks.

the mean and standard deviation were calculated from their responses (Fig. 8). The results presented in Fig. 8b show

that the stress responses predicted by the two approaches match very closely both in the elastic and plastic regime

for all three loading conditions. Only for uniaxial tension, the reduced approach slightly overestimates the network

stiffness, and underestimates the lateral contraction (Fig. 8a).

While the 2.5D and 3D RVEs differ in terms of the probability of cross-link formation and segment length distri-

bution (Fig. 7), the sound agreement of the macroscopic stress response indicates that the reduced approach captures

the mechanisms that are relevant for the macroscopic in-plane mechanical response of such networks. The underes-

timation of the lateral contraction in the uniaxial tension response can be explained by the difference in the segment

length distributions (Fig. 7c), since the lateral contraction behaviour of these networks is strongly related to the slen-

derness of the fibre segments: The higher density of very short, and slightly lower density of medium sized segments

in the 2.5D RVEs leads to an increased resistance to lateral contraction of the fibrous networks, due to their higher

resistance to bending and buckling. Furthermore, the restriction to in-plane buckling constrains the possible modes
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of fibre motion and contributes to the resistance against lateral contraction [61]. These conclusions are backed by

the quantitative analysis of the micro-scale kinematics of the networks in terms of orientation and stretch ratio of the

segments’ end-to-end vectors. Fig. 9 indicates a higher degree of fibre reorientation under loading in the 3D model

(Fig. 9a) as well as a higher amount of compressed fibre segments, i.e. with segment stretch less than one (Fig. 9b).

Additionally the reduced approach by definition neglects the out-of-plane kinematics while it can be extracted from

the 3D model through the analysis of the out-of-plane fibre reorientation (Fig. 9c).
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Figure 9: Comparison of in-plane fibre segment orientation (a) and segment stretch (b) distributions for uniaxial loading (λ1 = 1.15) predicted by

the 2.5D and 3D approaches, respectively. c) Out-of-plane fibre orientation distributions extracted from the 3D model in unloaded and loaded (UA,

λ1 = 1.15) state. All results are reported for N = 3 equivalent networks.

3.5. Networks with distributed fibre diameters

Being the product of a stochastic process, the topological parameters of real ESNs are generally not uniform but

characterised by probability distributions. This also applies to the fibre diameter, which varies both along a single fibre

and between different fibres as can be noticed from SEM images [62]. This kind of images are usually also employed

to quantify ESN fibre diameters, and the data are typically reported as mean diameter and standard deviation ([cf.

63]).

Here we exploit the capability of the 3D virtual spinning approach to account for distributed fibre diameters

in the generation of RVEs and examine the effect on the homogenised network response. To this end, networks

with normally distributed fibre diameters around the mean d̄F = 1µm and different standard deviations σdF =

[0µm, 0.2µm, 0.45µm] were generated and their mechanical responses were compared to equivalent networks gener-

ated with the 2.5D approach, which assumes constant fibre diameter equal to the mean. Since the normal distribution is

unbounded, the left tail of the fibre diameter distribution was cut at dF,min = (d̄F−2σdF ) during the network generation,

which in our cases was sufficient to avoid negative fibre diameters.

The results of this investigation, presented in Fig. 10, indicate that the increasing standard deviation σdF of the

fibre diameter has a stronger effect on the lateral contraction than on the stress response. The lateral contraction de-
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creases when the standard deviation σdF increases, which is explained by the presence of thicker fibres with increased

resistance to bending. More precisely, the bending stiffness of the fibres is determined by their second moment of

area, which scales with ∝ d4
F for circular fibre cross sections. Due to this non-linear dependence, the average bending

stiffness of the distributed networks is higher than the bending stiffness of fibres with constant fibre diameter. This

also provides an explanation for the lower sensitivity of the stress response on the width of the distribution, as the

stress is more strongly affected by tensile fibre stiffness, which is proportional to the fibres’ cross section area and

therefore only scales as ∝ d2
F.

3.6. Parameter reduction of 2.5D approach

While in the reduced 2.5D approach the network porosity φ and average segment length l̄s are independent param-

eters, they are inherently linked in the 3D approach, and finally controlled by the body force g that attracts the fibres

towards the collector plate. By tuning this force, a set of networks was generated with porosities φ ∈ [0.83, 0.96],

which is a relevant range for ESNs [64]. The analysis of the mean segment length l̄s extracted from the virtually spun

RVEs confirms that the number of cross-links decreases with increasing porosity, leading to a larger l̄s (Fig. 11a).

Based on computer simulations of the compaction fibrous networks, Durville [49] suggested that the relation

between fibre volume fraction ν = 1 − φ and cross-link density nC in fibrous networks is governed by the power law

nC ∝ ν
2/3. (7)

Considering that the cross-link density and the average segment length are inversely proportional to each other (l̄s ∝

n−1
C ), this relation can be rewritten as

l̄s = Cν−2/3 = C(1 − φ)−2/3, (8)
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Figure 10: Comparison of kinematic and stress response to uniaxial loading predicted with the 2.5D approach with constant diameter (dF = 1µm)

and with the 3D approach, with diameters sampled from a Gaussian distribution (illustrated in the inset) with mean d̄F = 1µm and standard

deviation σdF as specified in the legend.
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Figure 11: a) Fit of Eq. (8) to values generated by virtual spinning (C=2.03µm, R2 = 0.99) bc) Values of the elastic modulus (b) and the

approximated Poisson’s ratio (c) evaluated as secant slopes of the P11 − λ1 and λ2 − λ1 curves, respectively, for uniaxial tension at λ1 = 1.01.

where C is a parameter dependent on fibre diameter and shape. We found that this relation also applies to electrospun

networks and identified C by fitting for our specific network topology (dashed red line in Fig. 11a). By establishing

a closed relation between l̄s and φ, Eq. (8) allows eliminating one free parameter in the reduced approach. In fact, to

identify the parameter C for a certain fibre diameter and shape, only one point on the curve in Fig. 11a needs to be

known, e.g. from a corresponding 3D RVE.

In the present case, C=2.03µm was found (R2=0.99) and 2.5D RVEs were created for a set of porosities φ ∈

[0.83, 0.96] with l̄s determined by Eq. (8). The predicted responses in uniaxial tension were compared to those of

the corresponding 3D RVEs in terms of the slope of the stress-stretch curve (∼elastic modulus) and approximated

Poisson’s ratio, determined from the secant slope of the P11 − λ1 and λ2 − λ1 curves at λ1 = 1.01. These results

demonstrate that the reduced approach captures well the initial lateral contraction behaviour over the analysed range

of porosities (Fig. 11c). However, the elastic modulus of the 2.5D RVEs starts to deviate significantly for porosities

φ < 0.9 towards a stiffer response (Fig. 11b).

We hypothesized that this overestimation is due to the inability of the planar model to account for the increasing

out-of-plane curvature of the fibres at low porosities. To illustrate this, the out-of-plane angle ϕ of fibre segments

was extracted from the 3D RVEs. An example of their distribution is shown in Fig. 12a, for a high and low porosity,

respectively. Describing the probability density by a von Mises distribution

P(ϕ) =
eκ cos(ϕ)

2πI0(κ)
, (9)

the concentration parameter κ of the fitted distributions (R2 > 0.98 for all cases) reveals the increasing concentration

of the fibre segments onto a plane with increasing porosity, as shown in Fig. 12b. The marked non-linear increase of κ

around φ = 0.9 suggests that beyond this value, fibres are strongly concentrated onto the membrane plane which may

justify the assumption of quasi-planarity inherent to the 2D models, which is in line with the deviations observed for

the elastic modulus (Fig. 11b).
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Figure 12: a) Histogram and von Mises distribution fit of the out-of-plane segment orientation distribution for two networks with distinct porosities

φ generated by the virtual spinning approach. b) Concentration parameter κ of the von Mises distribution fit (R2>0.98 for all cases) to the out-of-

plane segment orientation for different porosities φ. Values are given as mean and standard deviation (error bars).

4. Discussion and conclusions

In order to investigate the relation between topology, micromechanical deformation mechanisms and macroscopic

mechanical behaviour in ESNs, a three-dimensional, FE based discrete network model is presented in this contribu-

tion. Their particular morphology and fibre properties distinguish ESNs from other fibrous materials, thus requiring

specific models to analyse their mechanical behaviour at all length scales. Therefore, the proposed generation of

RVEs accounts for some essential features of the network formation process, and generates RVEs specific to ESNs,

including the large length and substantial slenderness of electrospun fibres, the low tortuosity of the fibre segments,

their peculiar layered fibre disposition, and the cross-links of coordination four formed by two continuous fibres, re-

spectively [see e.g. 65]. Additionally, the model is able to account for inter-fibre interactions in terms of both true

material cross-links and contact arising during network deformation.

While there is increasing interest in modelling various aspects of electrospun fibre formation and properties [5],

there are only few contributions that accounted for the specific three-dimensional structure of ESNs by explicitly mod-

elling the fibre deposition process. Noteworthy however, there are commonalities with network formation in paper

making, in spite of the huge differences of the process in general. With application to paper, lattice based methods

have been proposed [26, 46] to consider fibre deposition. The essential difference to the method presented herein lies

in that the fibre properties are regarded in a flexibility parameter that controls the out-of-plane inclination of the fibres.

In contrast, the finite element discretisation and modelling of the fibres allows to directly account for various fibre

properties and the resulting mechanical behaviour during deposition and network assembly. Based on explicit FE

simulations such a method was very recently communicated for generating paper-specific networks and studying their

fracture behaviour [24]. The final networks were largely obtained by a surface that compacts the fibres at a prescribed

speed. In application to ESNs, FE discretised fibres were considered in the work by Liu and Dzenis [38], where fibres
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were placed in distinct horizontal square planes and finite element methods were used to compute the final network

geometry. Different from our work, the network formation was enforced by prescribing the vertical displacement at

the fibre ends, pulling them towards to the collector plate while simultaneously accounting for inter-fibre interaction

using a contact algorithm. These networks were then used to predict the response in uniaxial extension, where the load

transfer between fibres was limited to friction-based contact. Note that the displacement based method to compact

the networks in [38] is conceptionally different from the electrospinning process. The use of volume forces as in the

molecular dynamics based simulations in [34] seems more appropriate to model the electrostatically driven network

assembly. In [34], the fibres are represented as chains of beads and inter-fibre interaction is modelled by a Lennard-

Jones potential during compaction and cross-links connect the fibres during the stretching of the generated networks

for the prediction of the mechanical response. While the molecular dynamics approach allows interesting insights

into the fracture mechanisms of ESNs, the FE based fibre discretisation seems more suitable for the length-scale and

physics of the beam-like electrospun fibres. The here presented method combines the FE based fibre discretization

approach with the volumetric force driven fibre deposition and is enhanced with additional aspects, such as the pos-

sibility to account for different fibre shapes and the ability to compute the homogenised 3D stress response to an

arbitrary macroscopic RVE deformation.

The quasi-planar topology of ESNs, i.e. the low out-of-plane reach of the fibres, which is also present in the

virtually generated 3D RVEs, is often used as an argument for reduced 2D modelling approaches that usually benefit

from an increased computational efficiency [27, 33, 39]. Evidently, the reduction of a 3D geometry to a 2D planar

structure implies modelling assumptions, in particular on the number and locations of interactions between fibres.

Common imaging techniques such as SEM [39, 66, 67] provide little insight in this regard, since cross-links can

hardly be distinguished from mere intersections of the projected fibres [41]. We propose here to close this gap using

the potential of a manufacturing inspired 3D model to support and validate assumptions for reduced models. This

approach has been illustrated by generating 3D ESN RVEs with the virtual spinning method, and comparing their

microscopic topology and kinematics as wells as the macroscopic mechanical behaviour to the one predicted by a

reduced 2.5D model, that uses assumptions on cross-link density and distribution [41]. Although the analysis of the

spatial distribution of the cross-links within the 3D RVEs generally confirmed the formation of cross-links within a

narrow band, (Fig. 7a) the proposed implementation using a uniform probability distribution within the band may be

to restrictive. Infact, the analysis of the 3D RVEs suggests a less sharp distribution, spreading cross-links over a wider

range (Fig. 7b) and we found that this distribution can be approximated by a logistic probability function, which could

be used to enhance the reduced approach.

In order to compare the macroscopic response, the networks were subjected to three different deformation modes.

Both the stress responses and the kinematics predicted by the reduced approach showed good agreement for networks

with high porosity. This thus largely validates the 2.5D modelling assumptions with respect to fibre planarity and

cross-link identification (Fig. 8). For the here presented comparison of the 3D model with a 2.5D model, the trans-

lational degrees of freedom at the cross-links were coupled. This is clearly a constitutive assumption as the load
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transfer at cross-links is difficult to access experimentally. In fact, an additional coupling of the rotational degrees of

freedom at the cross-links reduces the lateral contraction in the case of uniaxial extension as illustrated in Fig. 13a.

Besides cross-links the 3D computational model accounts for new contacts that form during the deformation process

and at which fibres interact. Neglecting these new contacts has a significant effect on network kinematics observed

as a decrease of resistance to lateral contraction (Fig. 13b). As seen from Figs. 8 and 13, the 2.5D model is in better

agreement with the predictions that include the presence of additional interactions. This suggests that the confine-

ment to in-plane fibre bending modes inherent to the 2.5D model has a similar effect on the lateral contraction as the

consideration of additional contacts in the 3D model, albeit being based on a different mechanism.
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Figure 13: Examples showing the influence of a) coupling the rotational degrees of freedom (DOF) at the cross-links (CL) and b) neglecting

additional fibre interactions (contact) forming during deformation on the macroscopic kinematics predicted by the 3D model for uniaxial loading.

The analysis of networks with different porosities, reported in Fig. 8 in terms of their linearised, small-strain re-

sponse to uniaxial tension, revealed an increased deviation of the predicted elastic moduli between the two approaches

with decreasing porosity (Fig. 11a). These results indicate a significant overestimation of stiffness by the reduced ap-

proach for porosities φ < 0.9. This finding highlights the deficiency of planar network models to account for the

increasing fibre slackness induced by the out-of-plane curvature (Fig. 12a), which these models neglect by definition.

The capability of the 3D approach to handle networks with varying fibre diameters has been used to investigate the

assumption of a constant (averaged) fibre diameter, another simplification common to most modelling approaches

[32, 33, 37]. In terms of the homogenised stress response this was shown to have a minor effect for the analysed fibre

diameter distributions (σdF < 0.45) which reflect the distributions measured in real ESNs (cf. [68]).

Generally, the assumptions used in reduced modelling approaches may add additional modelling parameters. In the

case of the reduced approach [41], this led to independent parameters controlling porosity φ and average segment

length l̄s. The numerical studies performed with the 3D models, suggested that these two parameters are strictly re-

lated for a given fibre shape, diameter and mechanical behaviour, and follow a power-law (Eq. 8) reported before for
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another fibre compaction process [49]. By use of this relation the number of free parameters in the 2.5D approach

could be reduced by one.

The main advantage of using reduced 2D modelling approaches is the increase in computational efficiency. For

the numerical models used in this study, higher computational costs in the 3D approach were mainly associated with

the additional numerical simulation needed to compute the RVE geometry, i.e. the virtual spinning. The associated

computational time was about one order of magnitude higher than that required for the computation of the RVE

response to macroscopic boundary conditions, which was in a similar range for both the 3D and 2.5D approach.

Therefore, the 3D model raises the computational costs significantly if the network generation hast to be repeated

multiple times, e.g. in a parametric study, or as part of on iterative process in an inverse FE analysis.

In conclusion, for networks with high porosity the 2.5D approach represents an efficient and reliable alternative

to full 3D modelling as regards the in-plane mechanics of ESNs. The 3D model, on the other hand, covers the whole

range of porosities. Furthermore, it opens the door for the investigation of relevant aspects of ESNs such as the types

of fibre junctions, contacts and shapes, the dependence of material properties on fibre diameter, and the presence of

different fibre types in co-spinning.

Appendix A. Convergence studies

In order to determine the necessary size of a RVE, networks with increasing dimensions were generated (Sec. 2.2).

The fibre geometry was defined as sine-shaped (αF = 7µm, ΛF = 150µm) with circular cross section (dF = 1µm) and

the fibre material was defined linear elastic (EF = 1500MPa, νF = 0.4). The body force g was kept constant leading

to networks with average porosity φ=0.967. Uniaxial loading was performed for every network until five percent of

global elongation in loading direction (λ = 1.05) was reached. The elastic energy density as a kinetic variable and the

lateral contraction as a kinematic metric were evaluated from the results to investigate their dependence on network

size. In a first step, the thickness tN was increased for a constant width bN = 300µm of the square in-plane region

bN × bN (Fig. A.1ab). In a second step, the width bN was increased keeping the thickness constant (tN ≈ 30µm, see

Fig. A.1cd). To reduce the influence of the random microstructure, simulations were conducted for N = 3 realisations

per size. The results are summarised in figure A.1 where dimensions were normalised by fibre diameter (t̄N = tN/dF,

b̄N = bN/dF). Both measures, the lateral contraction and the energy density, show convergence for increasing network

size.

To assure that the explicit integration scheme as well as both inertia and damping forces, have negligible influence

on the results three more simulations for a representative network (Sec. 3.5, σdF=0.2) were conducted. For each

simulation either time step (∆t), macroscopic strain rate (ε̇) or damping constant (αR), was reduced to half of its

original value and the macroscopic response of the network was compared to the original simulation (Fig. A.1e). No

significant difference could be observed, confirming the choices used for the computations in the present paper.
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Figure A.1: a-d) Convergence study with regard to RVE size. Lateral contraction (a,c) and elastic energy density (b,d) for uniaxial tension at 5%

applied stretch (λ1 = 1.05) for different RVE thicknesses (a,b) and edge lengths (c,d). RVE dimensions were normalized by fibre diameter dF.

Results are shown as mean and standard deviation (error bars) for N = 3 realizations. e) Verification of parameters used for explicit intergration by

reducing their values.
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[50] N. Saitô, K. Takahashi, Y. Yunoki, The statistical mechanical theory of stiff chains, Journal of the Physical Society of Japan 22 (1967)

219–226.

[51] O. Kratky, G. Porod, Diffuse small-angle scattering of X-rays in colloid systems, Journal of colloid science 4 (1949) 35–70.

[52] C. Rivetti, M. Guthold, C. Bustamante, Scanning force microscopy of DNA deposited onto mica: Equilibration versus kinetic trapping

studied by statistical polymer chain analysis, Journal of molecular biology 264 (1996) 919–932.

[53] G. Lamour, J. Kirkegaard, H. Li, T. Knowles, J. Gsponer, Easyworm: An open-source software tool to determine the mechanical properties

of worm-like chains, Source Code for Biology and Medicine 9 (2014).

[54] J. Bednar, P. Furrer, V. Katritch, A. Stasiak, J. Dubochet, A. Stasiak, Determination of DNA persistence length by cryo-electron microscopy.

Separation of the static and dynamic contributions to the apparent persistence length of DNA, Journal of Molecular Biology 254 (1995) 579

– 594.

[55] F. Gittes, B. Mickey, J. Nettleton, J. Howard, Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in

shape., The Journal of cell biology 120 (1993) 923–934.

[56] L. Sivakumar, G. Agarwal, The influence of discoidin domain receptor 2 on the persistence length of collagen type I fibers, Biomaterials 31

(2010) 4802 – 4808.

[57] C. Walck, Hand-book on statistical distributions for experimentalists, Technical Report, 1996.

[58] Abaqus, Documentation, Dassault Systèmes, Providence, RI, USA, 2016.
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