
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 

Deformation of lamellar γ-TiAl below the general yield stress 

Thomas Edward James Edwards
a, 1

     Corresponding author (teje2@cam.ac.uk) 

Fabio Di Gioacchino
a

     (fd302@cam.ac.uk) 

Amy Jane Goodfellow
a

    (ajg210@cam.ac.uk) 

Gaurav Mohanty
b, 2

     (gaurav.mohanty@tut.fi) 

Juri Wehrs
b

     (juri.wehrs@empa.ch) 

Johann Michler
b

     (johann.michler@empa.ch) 

William John Clegg
a

     (wjc1000@cam.ac.uk) 

a
Department of Materials Science and Metallurgy, 27 Charles Babbage Rd, University of Cambridge, 

Cambridge CB3 0FS, UK 

b
Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of 

Materials and Nanostructures, Feuerwerkerstrasse 39, 3602 Thun, Switzerland 

Abstract (250 words). 

The occurrence of plasticity below the macroscopic yield stress during tensile monotonic loading of 

nearly lamellar Ti-45Al-2Nb-2Mn(at%)-0.8vol% TiB2 at both 25 °C and 700 °C, and in two conditions 

of lamellar thickness, was measured by digital image correlation strain mapping of a remodelled Au 

surface speckle pattern. Such initial plasticity, not necessarily related to the presence of common stress 

concentrators such as hard particles or cracks, could occur at applied stresses as low as 64 % of the 

general yield stress. For a same applied strain it was more prominent at room temperature, and located as 

slip and twinning parallel to, and near to or at (respect.) lamellar interfaces of all types in soft mode-

oriented colonies. These stretched the full colony width and the shear strain was most intense in the 
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centre of the colonies. Further, the most highly operative microbands of plasticity at specimen fracture 

were not those most active prior to yielding. The strain mapping results from polycrystalline tensile 

loading were further compared to those from microcompression testing of soft-mode stacks of lamellae 

milled from single colonies performed at the same temperatures. Combined with post-mortem 

transmission electron microscopy of the pillars, the initial plasticity by longitudinal dislocation glide was 

found to locate within 30 – 50 nm of the lamellar interfaces, and not at the interfaces themselves. The 

highly localised plasticity that precedes high cycle fatigue failure is therefore inherently related to the 

lamellar structure, which predetermines the locations of plastic strain accumulation, even in a single 

loading cycle.  

 

Keywords Titanium aluminide, electron backscattering diffraction (EBSD), digital image correlation, 

deformation twinning, pre-yield plasticity.  
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1 Introduction 

The widespread use of lightweight TiAl alloys as a replacement for steels and superalloys in engineering 

applications is limited by its fatigue behaviour. The high value of the Paris coefficient means that a small 

increase in the stress intensity factor results in a large increase in the crack growth rate, compared with 

standard engineering alloys. One approach is to operate components below the fatigue threshold of the 

TiAl alloy. Across a range of compositions and microstructural conditions, the stress at which this occurs 

is approximately 80 % of the ultimate tensile stress [1], so that even in the absence of stress concentrators 

such as hard particles or cracks, the material experiences loading close to its general yield stress for 10
7
 

cycles.  

Early work on lamellar two-phase TiAl alloys, using polysynthetically twinned crystals [2-4], identified a 

considerable temperature-invariant anisotropy in the uniaxial flow stress, depending on the orientation of 

the lamellar planes to the loading axis, with the softest having a yield stress approximately one quarter 

that of the hardest. From this, it is not surprising therefore that Jiang et al. [5, 6] detected microplasticity 

at room temperature in nearly lamellar Ti-44Al-8Nb-1B (at.%) polycrystals at stresses as low as 400 MPa 

for a 0.2% proof stress of 625 MPa, based on acoustic emission. The orientation of some colonies are 

such that the Schmid factors may be sufficiently high to cause localised yielding at only 65 % of the 

general yield stress. Furthermore, though the spatial resolution was relatively low, micro-scale digital 

image correlation (μDIC) strain mapping determined this localised plasticity to occur in colonies where 

the lamellar orientation to the loading axis was close to 45° [5]. Similarly, Wu et al. [7, 8] reported 

interlamellar microcracking upon sub-yield loading and showed that fatigue crack growth tended to occur 

in these regions.  

The aim of this paper is to understand where deformation starts during monotonic loading of lamellar 

TiAl alloys. The effects of temperature and of lamellar thickness on the accumulation of sub-macro yield 

plasticity is addressed by the combination of nano-scale DIC (nDIC) strain mapping [9] and electron 

backscatter diffraction (EBSD) crystal orientation mapping of the pre- and post- general yielding 

monotonic tensile deformation behaviour of macroscopic polycrystalline testpieces of nearly lamellar 
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commercial alloy Ti-45Al-2Nb-2Mn(at%)-0.8vol% TiB2 at both 25 °C and 700 °C for two conditions of 

lamellar thickness.  

Elsewhere, preliminary results by the present authors have shown from DIC strain mapping of deformed 

micropillars of TiAl lamellar stacks milled from individual colonies that by 10 % strain, bands of high 

shear strain develop near or at the lamellar interfaces [10]. Further, high temperature testing of 

micropillars is possible up to 630 °C ex situ [11], and using in situ equipment [12], up to 800 °C [13]. 

This macroscopic tensile testing is combined with microcompression of pillars of the same alloy in the 

softest lamellar orientations, using nDIC strain mapping by a method similar to [10], but at both 25 °C 

and 700 °C, and with loading to low strains, enabling the onset of plasticity to be studied.  

 

2 Experimental Procedures 

2.1 Macro-tensile testing 

2.1.1 Material and metallographic preparation 

The TiAl alloy, Ti-45Al-2Nb-2Mn(at%)-0.8 vol% TiB2 (Ti4522XD), was received as a centrifugal 

casting, which had been hot isostatically pressed at 1250 ± 10 °C for 4 h at a pressure of 140 MPa under 

an argon atmosphere and then vacuum heat treated at 1010 °C for 8 h, followed by furnace cooling to 

below 500 °C. This yielded a nearly lamellar microstructure. The alloy composition measured using 

techniques specified by, and according to, ASTM standards [14-17] is given in Table 1. A more refined 

lamellar structure was produced by a heat treatment for two hours at 1350 °C in a furnace (Carbolite, 

Verder Scientific, Germany) and air cooling, with samples wrapped in Ta foil and encapsulated in quartz 

glass tubes in 0.3 atm Ar throughout. This was followed by a stabilisation treatment for eight hours at 

850 °C; besides air cooling, all thermal ramps were performed at 10 °C min
-1

.  

The microstructural parameters such as the colony size and the γ-TiAl and α2-Ti3Al lamellar thicknesses 

of the two material conditions were determined by backscatter and transmission Kikuchi diffraction 

(TKD) [18, 19], Table 2. Transmission samples were produced by first dimple grinding electro-discharge 
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machined 3 mm diameter discs with a 1 μm diamond suspension to just 20 μm thick (Dimple Grinder 

656, Gatan, USA) and then thinning until perforation in a twinjet electropolisher (Tenupol-5, Struers, 

Denmark) using a solution of 5% perchloric acid, 35% butanol, 60% methanol by volume held at 32 V 

and -30 °C. TKD was carried out on a dual beam FIB/SEM (Helios NanoLab, FEI, USA) with an EBSD 

detector and acquisition software (NordlysNano, Oxford Instruments, UK) employing the refined 

accuracy routine [20] at 30 kV, 6.4 nA, -20 ° tilt, a working distance of 1.5 mm and a 20 nm stepsize.  

Following electro-discharge machining, tensile specimens with a 1 × 2 × 2.5 mm
3
 gauge length, Fig. 1(a), 

were ground on all sides, with one large face prepared for electron backscatter diffraction (EBSD) 

mapping by vibratory polishing in a colloidal silica solution for 48 h. EBSD mapping of the region of 

interest within the gauge length before mechanical testing was performed on the same dual beam 

FIB/SEM at 20 kV, 6.4 nA, 70 ° tilt, a working distance of 10 mm and a 200 nm stepsize. The angle, Φ, 

of the lamellar stacks of each colony to the loading axis required the appropriate (111)γ interfacial plane 

to be identified from the Euler angles, using Vesta [21].  

2.1.2 Mechanical testing 

Tensile testing was carried out ex situ on a 25kN screw machine (Tinius Olsen, UK) at a strain rate of 

10
-3

 s
-1

, to 64% and then to 82% of the general yield stress for each material condition, and then to 

specimen failure. The yield stresses of each condition were determined beforehand [22, 23] on samples 

without strain mapping metrology. Samples were heated in air by a halogen lamp hoop heater (Heraeus 

Noblelight GmbH, Germany), stable to ±0.5 °C of the setpoint, placed around the gauge length, with a K-

type thermocouple junction held in contact with the back surface of the tensile testpiece gauge section by 

a leaf spring to avoid the specimen failing at the weld. The system was allowed to thermally equilibrate 

until the rate of drift was at least an order of magnitude below the strain-rate. The experimental setup did 

not allow the macroscopic strain of the tensile specimens to be measured on the samples by contact 

extensometry, so only stress against crosshead displacement curves were plotted.  
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2.1.3 Mapping of surface strain 

For mapping of surface strains by digital image correlation (DIC) at 25 °C and 700 °C, a remodelled Au 

speckle pattern was applied after EBSD mapping of the unstrained region of interest. A full description 

of the high temperature speckling method and characterisation of the pattern and its robustness is given 

elsewhere [9]. Samples were transferred, unloaded, from the test rig to the dual beam FIB/SEM where 

the speckle pattern was imaged in high contrast backscatter mode at 4000 magnification as a 9  8 array 

of 4096  3536 px
2
 images, which were stitched before analysis using the stitching plugin [24] in the Fiji 

[25] implementation of ImageJ [26], which employs linear interpolation for sub-pixel stitching and linear 

blending of intensities in the fusion region. Image correlation of pre- and post-deformation SEM images 

was performed on commercially available DIC software (DaVis, LaVision, Germany), with a subset size 

of 8  8 pixels and 25% overlap, which gave a strain mapping resolution of 63 63 nm
2
 for as-HIPped 

samples tested at 700 °C. Digital image correlation of repeatedly imaged regions before testing yielded a 

noise level in the maximum shear strain resulting from SEM scanning imperfections of 0.4 ± 0.3 % for 

this subset size. Throughout the current study, DIC strain maps are mapped onto the undeformed 

geometry [27].  

2.2 Microcompression testing 

2.2.1 Material and metallographic preparation 

Cuboidal microcompression specimens 5 × 5 × 11 μm
3
 in size were produced in single colonies of the 

same TiAl alloy by Ga
+
 focussed ion beam (FIB) milling close to a sample edge, as per a method 

reported elsewhere [10]. The crystal orientations of the lamellae and their angle to the loading axis, Φ, of 

the exposed side face of the pillars were determined by electron backscatter diffraction on the FIB/SEM, 

similarly to [10].  

2.2.2 Mechanical testing 

Mechanical testing was undertaken using a 10 μm diamond punch (Synton, Switzerland) at 25 °C and 

700 °C on a SEM nanoindenter (Alemnis, Switzerland) [12, 28], which heats both the sample and 

compression tip independently. The micropillars were loaded at 0.05 μm s
-1

 (equivalent to a strain rate of 
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~4 × 10
-3

 s
-1

) to 0.5 – 2 % plastic strain, followed by immediate unloading at the same rate. The 

unloading was paused at ~2 mN and the load drift rate was measured to ensure that it was low. For 

compression testing, the sample and indentation tip heaters operated at constant power. The results from 

the compression of nine soft mode oriented pillars by this method are reported in the current study.  

2.2.3 Mapping of surface strain 

Surface strain mapping of the exposed pillar side face was achieved by digital image correlation (DIC) of 

SEM secondary electron images of the Pt speckle pattern electron beam-deposited following pre-test 

EBSD mapping, as in [10, 27]. DIC of  pre- and post-deformation images was performed equivalently to 

[10] with a subset size of 16 × 16 pixels, giving a resolution of 108 × 108 nm
2
, using a 25% overlap. The 

noise level for shear strain, determined as in section 2.1.3, was 0.6 ± 0.3 %.  

2.2.4 TEM imaging of slip bands 

Following post-test SEM imaging of the speckle pattern on the pillar, and EBSD mapping, a Pt strap was 

deposited on the top and side faces of the pillars by e-beam gas injection system (GIS) deposition in the 

FIB/SEM. Ion beam Pt GIS deposition was then used to fill in the cavity on either side of the pillar to act 

as a support. A standard FIB liftout for transmission electron microscopy (TEM) could then be produced. 

Samples were FIB thinned to approximately 100 nm thick. Imaging was performed in scanning mode on 

a 200 kV field emission gun TEM (Osiris, FEI, USA), using both bright field (STEM-BF) and high angle 

annular dark field (STEM-HAADF) detectors. All liftouts were oriented within the TEM such that the 

incoming e-beam lay parallel to the interlamellar (111)γ planes to minimise the imaged width of the 

lamellar interfaces.  

 

3 Results 

3.1 Macroscale testing 

Tensile testing at room temperature of the as-received, thicker lamellar condition was performed to 

stresses of 350 MPa and 450 MPa and then to rupture at 590 MPa, as per the loading curves in Fig. 1(b). 

The above pre-yield loading steps corresponded to 64% and 82%, respectively, of the 550 MPa yield 
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stress at 25 °C for the as-received condition. Approximate strains achieved during nominally elastic 

loading, reported in Table 3, were calculated from the stresses applied, using temperature dependent 

literature values for the Young’s modulus of each phase [29] and a rule of mixtures based on the volume 

fractions in Table 2.  

Complete unloading between steps enabled SEM imaging of the applied Au surface speckle pattern. The 

region of interest in Fig. 2(a), with colony orientations extracted in Fig. 2(b), was hence mapped for 

surface strain after each loading step. Maps of the maximum shear stress are given following these load 

steps in Fig. 3(a,b). The total normal strain along the loading axis for the sample in Fig. 3 was calculated 

to be 0.16% by summing local axial strains across the DIC strain maps after the first loading step, then 

0.18% after the second, see Table 3. On the other hand, localised straining was measured, as arrowed and 

detailed in Fig. 3(a,b). Upon overlaying the network of colony boundaries, these narrow bands of 

localised plasticity were found within individual colonies, stretching part or full-way across them, but not 

propagating beyond the colony boundaries. All the colonies where such localised deformation was active 

in the thick lamellar condition were soft-mode oriented, with angles 35° < Φ < 57°. Raising the load from 

350 MPa to 450 MPa inccreased both the number of bands of shearing and the extent of shearing. In 

Fig. 4(a,b), lineplots of the shear strain along all the pre-yield localised deformation lines at both stress 

levels indicate that the maximum extent of shear is consistently within the bulk of the colony, with a 

distinct decrease in shear strain towards the colony edges.  

3.1.1 Location of plasticity 

By carefully overlaying the DIC strain map on the EBSD mapping and BSE imaging data, and using 

features such as boride particles as an invariant marker, the locations of the fine bands of localised 

plasticity generated at stresses below the general yield stress could be related to the lamellar 

microstructure. This is illustrated in Fig. 5(a) for the left hand colony in Fig. 3(b), which shows multiple 

pre-yield deformation lines; it is clear that such microplasticity operates parallel to the lamellar 

interfaces, longitudinally. Further, it occurs at the lamellar interfaces, be they γ/α2 interphases, or γ/γ 
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twin, pseudo-twin or order variant type. Unfortunately, there was an insufficient population of bands of 

localised plasticity that occurred below the general yield stress in the region of the sample (8 bands 

measured across 230 × 200 μm
2
 area) for meaningful statistics on the proportions of lamellar interface 

types involved to be extracted. 

3.1.2 Effect of temperature 

Samples tested at 700 °C were first loaded to 64%, then to 82% of the general yield stress of 400 MPa, 

that is 255 MPa and 327 MPa, Fig. 1(b). The noise in DIC strain maps, Fig. 6(a), after unloading was less 

uniform for testing at 700 °C than at 25 °C; this is seen in particular by the increased local shear strain 

noise on the α2-Ti3Al lamellae. Nevertheless, the magnitude of strain within the narrow bands of 

localised plasticity is much higher, reaching ~8% locally for normal strain along the loading axis, as in 

the detail in Fig. 6(b). However, after loading to 327 MPa, only a single narrow band of localised 

deformation was observed at 700 °C, despite similar levels of elastic strain being achieved at 700 °C, as 

those at 25 °C, based on the calculations for Table 3. The localised deformation here, extracted in 

Fig. 4(d) and 5(b), was longitudinal and occurred along a lamellar interface in a soft-mode colony, 

similarly to deformation identified at 25 °C in section 3.1.1.  

3.1.3 Effect of lamellar refinement 

The refined lamellar condition was tested at both 25 °C and 700 °C to the same proportions of the 

respective general yield stresses as for the thicker lamellar condition, Fig. 1(b). The DIC strain maps are 

given in Fig. 7(a – e).  

After loading to each successive stress step, a greater number of bands localised of plasticity are 

measured in the refined lamellar condition, at both temperatures, than in the thick lamellar condition, 

Fig. 7(a – d), particularly below the general yield stress at room temperature. This is summarised in the 

histogram, Fig. 8(a). Further, such localised plasticity operates with the same longitudinal morphology as 

the previous microstructural condition, Fig. 3(a,b), and occurs in soft-mode oriented lamellar colonies. 

However, as illustrated in Fig. 2(f,h), the resolution of the EBSD maps was insufficient to resolve the 
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refined lamellae such that the positions of the localised plasticity could not be accurately determined 

relative to the lamellar interfaces. As for the thicker lamellar condition, hard-mode oriented colonies of 

the refined lamellar condition remain undeformed below the general yield stress.  

3.1.4 Plastic flow at applied stresses above the general yield stress 

All the tensile testpieces were further loaded to failure, as per the loading curves in Fig. 1(b). All samples 

failed in the gauge section, several hundreds of microns away from the regions of interest for DIC strain 

mapping. The strain maps for the same regions of interest in Fig. 2 are given in Fig. 3(c), 6(c) and 7(e). In 

all cases, significant heterogeneities in the distribution of plasticity are observed, with soft-mode colonies 

deforming by the operation of several tens of discrete longitudinal bands of localised plasticity per 

colony. There was a high variability in the spacing of such longitudinal plasticity, ranging from only a 

few hundred nanometres to tens of microns within a same colony, Fig. 6(c). In contrast, hard mode 

colonies showed either no measurable plasticity, or a few longitudinal bands and small amounts of 

transverse plasticity, fairly diffusely spread throughout colonies and, for the most part, undergoing shear 

strains approximately ten times lower than those for longitudinal motion. At 700 °C, both an increased 

number of bands of localised plasticity (see Fig. 8) and a higher macroscopic uniaxial strain (1.57% at 

700 °C vs. 0.69% at 25 °C for as-received condition, Table 3) occurred at fracture, compared to at 25 °C.  

The bands of localised plasticity occurring upon loading below the general yield stress in the as-received 

condition were consistently not the bands with the highest shear strain at specimen failure. That is to say, 

many other bands of localised plasticity develop before specimen failure, both in colonies where such 

bands were identified below the general yield stress, and in colonies where they were not; some of these 

bands that form at higher stresses produce higher local shear strains at specimen failure than all those that 

initiated below the general yield stress, as arrowed in Fig. 3(c) and 6(c), and extracted as lineplots in 

Fig. 4. In contrast, this was not the case for the air-cooled condition tested at 700 °C: the bands of 

localised plasticity that initiated below the general yield stress produced the highest local shear strain at 

specimen failure, Fig. 7(e). Furthermore, from the histogram in Fig. 8(b) that counts all bands of 
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localised plasticity at specimen failure, 3 – 4 times more longitudinal slip lines occur at specimen failure 

in the as-received condition than in the air-cooled conditions, at both 25 °C and 700 °C.  

Strain transfer between colonies was observed to operate by several different mechanisms. Direct strain 

transfer, commonplace in fcc metals [30]; at 700 °C, it was rare and was only identified for the as-

received condition, between longitudinal colonies where the angle between the lamellar planes either side 

of the boundary was low, as in Fig. 9(a,b). At room temperature, this mechanism was supplemented by 

direct strain transfer from longitudinal mode deformation in a first colony onto deformation systems 

operating transversally to the lamellar planes in a second, Fig. 9(c); this occurred when the two colonies 

were highly misoriented with regards to their lamellar planes. From the DIC strain maps alone it is not 

possible to determine whether such transverse deformation was by a slip or a twinning mechanism. At 

700 °C, an alternative strain transfer mechanism was operative in the case of highly misoriented 

neighbouring colonies. Instead, transfer could be ensured by variable extents of slip on systems operating 

nearly perpendicular to the incoming shear direction, resulting in regions of local lattice rotation ahead of 

the colony boundary and extending, in some cases, several tens of microns into the receiving colony, 

Fig. 9(d – f). These features can be specifically resolved from the DIC strain map, as highlighted in 

Fig. 6(c) and resolved in Fig. 9(f). This latter strain transfer mechanism has been characterised 

extensively by the authors in a recent publication [31].  

Electron imaging of the regions of interest after fracture revealed cracking of colony boundaries, 

Fig. 9(g), particularly at high misorientation boundaries in cases where the above strain transfer 

mechanisms had not been operational. This was confirmed by measuring the rotation of the lattice using 

DIC in Fig. 9(h), where ~2° clockwise (counter-clockwise) rotation is observed on the left (right) below 

the lenticularly opening crack that extends perpendicular to the loading direction.  

3.2 Microscale testing 

Further, the resolution of the large area EBSD maps in both material conditions was insufficient to 

determine whether the onset of plasticity occurred at, or nearby to, the lamellar interfaces. Hence, 
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microcompression testing was undertaken with the aim of determining where these longitudinal bands of 

localised plasticity formed in soft-mode oriented colonies. The lamellar structure was now mapped for its 

crystal orientations on the side face of the pillars with a 40 nm stepsize, compared with 200 nm for the 

tensile specimens. Pillars were loaded to just beyond yielding, Fig. 10, at both 25 °C and 700 °C to 

imitate the loading conditions experienced by the softest colonies when the tensile testpieces were loaded 

below the macroscopic yield point.  

3.2.1 Onset of plastic flow 

The combination of DIC strain mapping, EBSD orientation mapping before and after compression, and 

post mortem TEM enabled both the location of the initial localised plasticity relative to the lamellae, and 

its nature, that is either twinning, slip or interfacial sliding, to be determined. This combination of 

information is illustrated in Fig. 11(a – f) and Fig. 12(a,b) for a pillar tested at room temperature. A 

summary of the remainder of the pillars tested at the same temperature is given in Fig. 11(g – r).  

At room temperature, the onset of plasticity always occurred near lamellar boundaries, Fig. 11, and of the 

five boundary types, most commonly (64%) near the γ/α2 interphase. The lines of localised plasticity 

measured by DIC were parallel to the lamellae in all cases; the extent of strain along the lines is not 

necessarily uniform: often the shear strain is highest where the band intersects the pillar edge and 

decreases towards the pillar centre. Only a small number, generally three or less, such deformation lines 

developed in each pillar. This initial plasticity could be located throughout the height of the pillars; that is 

to say, initial plasticity did not consistently locate in the top or base of the pillar where the stress state is 

thought [32] to be least uniaxial due to the local constraint of the punch or of the supporting material 

below the pillar.  

STEM-BF and HAADF imaging, Fig. 12, further found such localised plasticity to occur in the γ-TiAl 

phase and, again, most often at γ/α2 interphase boundaries. The deformation mechanism was either 

longitudinal twinning, which was identified by the morphology of the deflected pillar edges [33], where 

one face of the twin consistently contacted a lamellar interface, or longitudinal slip, where the slip lines 
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generally lay 30 – 50 nm from the γ/α2 or γ/γ interfaces. No occurrences of sliding of the lamellar 

interfaces were identified.  

In most cases, the longitudinal deformation lines due to slip were found on the STEM images to do so by 

dislocation glide on a single plane; occasionally, several slip lines on either side of a γ/γ interface, as in 

Fig. 12(c,d), were observed to constitute a single deformation line in the strain maps. However, further 

deformation structures were identified by TEM imaging that were not apparent on the DIC strain maps. 

Indeed, the occurrence of transverse twinning is evident throughout the height of pillars 3 and 4, 

Fig. 12(c – f), but not in 1 and 5, Fig. 12(a,b,g,h). It may be that the width of transverse twins is too small 

relative to the resolution of the strain maps. To gain a quantitative measure of the balance of the axial 

strain εyy between the longitudinal lines of localised plasticity and the finer-scale deformation of the 

remainder of the pillars, masking functions in the DaVis software were employed to determine the 

average axials strains of these two regions. The value, P, was defined as the proportion of the axial 

compression of the pillar that is generated in the localised plasticity bands on the DIC maps, according 

to:  

)( bandextavgyy,

bandbandyy,

AAε

Aε
P


  (1) 

where A... is the area of a region, and the subscripts ‘band’ and ‘ext’ refer to the regions containing, and 

not containing, respectively, the longitudinal lines of intense plasticity. The results of the measurements 

and calculations are given in Table 4. It should be noted that the base noise level in εyy from recorrelation 

of a repeatedly imaged region, as in section 2.2.3, is 0.044%, such that the average strains measured in 

almost all regions lie above this noise threshold. For pillars compressed at 25 °C, the range of values for 

P is wide (25.2% to 94.4%). εyy is approximately one order of magnitude higher in the bands, εyy,band, than 

in the remainders of the pillars, εyy,ext. However, when the axial displacement (rather than strain) is 

considered, in P, two groups emerge: those where the longitudinal bands dominate deformation, #1 and 

5, which contained almost no transverse twins, and correspondingly carry the highest P (both above 90 
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%), and secondly those where P is closer to 50 %. In the latter, pillars 2, 3 and 4, longitudinal 

deformation mechanisms carry approximately the same proportion of the axial compression as the 

remaining transverse systems. In fact, in #4, the remainder region of the pillar produces a higher axial 

compression than the longitudinal bands of localised plasticity (P = 25.2%). There is no correlation 

between P and the average axial strain achieved in the full pillar, εyy,avg, see Table 4.  

At the top of pillars, where they are laterally constrained by the punch, a fine array of longitudinal slip 

lines and transverse twins was observed by STEM imaging to develop in most pillars, Fig. 12.  

3.2.2 Effect of temperature 

DIC strain mapping and EBSD of the pillars tested at 700 ºC indicated the same patterns of initial 

localised deformation as at room temperature, Fig. 13. STEM imaging, Fig. 14, similarly revealed 

longitudinal deformation at lamellar interfaces (particularly γ/α2 type, 77%) to be associated with 

longitudinal twinning in contact with the interface, and slip lines within a few tens of microns of the 

interface. The occurrence of multiple, closely spaced slip lines, which formed a single deformation line 

on the DIC strain maps, was common at 700 ºC.  

As at room temperature, some pillars compressed at 700 °C displayed extensive amounts of transverse 

twinning that is not evident from the DIC maps. However, there is no substantial variation in the extent 

of transverse twinning between test temperatures, though this may be due to the limited number of 

testpieces. Some pillars display almost no transverse twins (1, 5, 7 and 8), whilst others are highly 

populated with them (4 and 6). Again, the distribution of strain between longitudinal mechanisms and the 

remainder of the pillar was calculated, Table 4. A much lesser spread in the P value identified in 

section 3.2.1, was observed than at 25 °C. Relative to the two classes identified in section 3.2.1, all pillars 

are in the class with P close to 50 %, whether or not transverse twins exist. Again, P did not correlate 

with εyy,avg.  
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4 Discussion 

4.1 Location of plasticity occurring below the general yield stress 
The present method for measuring the occurrence of localised plasticity below the general yield stress 

benefits from the use of a well-adhered overlay speckle pattern [9], which unlike alternatively used 

subtractive patterning techniques such as etching [5, 34] does not cause preferential weakening of certain 

microstructural features such as grain boundaries. Hence one may be sure that initial plasticity locating 

near lamellar interfaces is not simply a result of the experimental method, but rather a genuine 

characteristic of the TiAl alloy. Further, whereas TEM imaging of dislocation structures has previously 

been employed to demonstrate plasticity below the general yield stress in TiAl [5], the 63  63 nm
2
 

resolution of the DIC used here enabled not only more precise localisation of strain than previously 

achieved by DIC on TiAl [5, 35-37], but also the magnitude of the strain from slip to be determined. This 

information is crucial in differentiating between regions of relatively little dislocation motion and others 

where there has been extensive dislocation glide; this may not be evident from a single post-mortem 

TEM image. The present combination of techniques is therefore a powerful tool for locating and 

characterising even low levels of plasticity that may occur before the onset of general yielding.  

It is encouraging that in-so-far as the resolution of the DIC strain and EBSD maps indicate, the basic 

location of initial plasticity is identical in both the polycrystalline tensile testpieces and the single colony 

microcompression specimens at 25 ºC and 700 ºC. Recent comparison of Ga
+
 and Xe

+
 milling methods 

[38] has revealed significant Ga build-up along crystal boundaries which may modify the mechanical 

properties of the interface region, and results in a reduced strength. However, the high coherency of the 

lamellar interfaces in γ-TiAl alloys relative to higher angle grain boundaries is likely to render the γ/γ and 

γ/α2 lamellar interfaces less susceptible to Ga segregation. Although microplasticity in the pillars was 

most common in the vicinity of interphase boundaries, the initial localised plasticity was also found to 

locate near the γ/γ lamellar interfaces in all conditions. It is well known that the top and bottom of 

micropillars experience stress concentration effects as a result of constraint by the punch or the base [32]; 

however, in the micropillars here, the localised plasticity often occurred outside of these regions, such 
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that the shear stress on the operative deformation systems can only have been raised relative to the 

externally applied load by the presence of lamellar interfaces. The experimental evidence suggesting the 

existence of stress concentration effects induced by lamellar interfaces is consistent with first principles 

studies [39-41] which have determined the TiAl lamellar interfaces to be both high energy sites and stress 

concentrators; this effect was calculated to be highest for the γ/γ pseudo-twin interface and the γ/α2 

interphase boundary.  

The localised plasticity occurring below the general yield stress in the present study is not due to stress 

concentrators such as hard particles [42] and cracks [35]. Instead, this plasticity is a result of the lamellar 

structure. This relationship is two-fold: it is well reported [2, 3] that the lamellar orientation to the 

loading axis strongly affects the yield stress due to Hall-Petch strengthening of the transverse slip 

systems [43] by the lamellar interfaces. As longitudinal mechanisms are favoured over transverse ones 

down to even quite low Schmid factors, as seen in Fig. 6(c) where slip parallel to the lamellae is favoured 

even in colonies where Φ is as low as 14° and as high as 73°, an up to 4-fold variation exists in the 

applied uniaxial stress to yield a TiAl lamellar stack, dependent on its orientation to the loading axis [2]. 

It is evident that the plastic anisotropy is greater than in fcc metals, and even for hexagonal close-packed 

(hcp) structures, if both slip and deformation twinning is considered, this variability is unusually high 

[44-46]. As a result, when the general yield stress for a polycrystal of lamellar TiAl colonies is reached, 

many of the softest colonies are already loaded above their respective uniaxial yield stresses.  

The second aspect of the relationship between microplasticity and the lamellar structure is that the 

lamellar interfaces act as extended two-dimensional stress concentrators. The effect of Σ3 twin interfaces 

in a Ni superalloy on generating sub-yield plasticity parallel and ~100 nm from such interfaces has been 

attributed to differences across the boundary in the elasticity tensor in the direction of the loading axis 

[47]. In the fully ordered structure of TiAl, the lamellar interfaces are elastically strained by both hcp-fct 

(face-centred tetragonal) and fct-fct lattice mismatches across the boundary. It is unclear whether it is the 

differences in elastic modulus or the lattice misfit strains that are the predominant factor contributing to 

stress concentration near the lamellar interface. Nevertheless, when compared to equiaxed grained 
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γ-TiAl, the existence of lamellar interfaces means that the applied stress to activate slip is lower in the 

lamellar structure for the softest orientation, as a result of this stress concentration as such lamellar 

interfaces don’t exist in equiaxed γ-TiAl grains (only a few, occasional, true twin interfaces exist in 

equiaxed grained γ-TiAl [48]). This dependence of the incidence of localised plasticity below the general 

yield stress on the morphology of the γ-TiAl phase has been confirmed at room temperature in another 

study [5] where such microplasticity was not detected in a duplex microstructure of Ti–44Al–8Nb–1B 

(at.%), whereas it was in the case of nearly and fully lamellar structures of the same alloy for a same 

externally applied stress. However, in that study, the localised plasticity was reported to be due to 

microcracking below the general yield stress, based on acoustic emissions, SEM imaging and AFM 

measurements of ~10 nm high interlamellar ledges in the middle of colonies [6]. Further, another study in 

which Ti4522XD was loaded in tension below the general yield stress at 700 ºC [49] reported the 

formation of interlamellar ledges, i.e. sliding at the lamellar interfaces, based on in-situ BSE imaging. 

Instead, here, at both 25 ºC and 700 ºC, such localised plasticity, identified in microcompression samples 

by a combination of DIC and TEM, was attributed to longitudinal slip occurring 30 – 50 nm away from 

lamellar interfaces, and longitudinal twinning propagating from the interfaces, without cracking. These 

two latter deformation mechanisms maintain material cohesion and may produce equivalent surface steps 

as previously identified by AFM [6], have the same appearance in BSE imaging as the features reported 

to be microcracks and interfacial sliding [50], and, furthermore, microplasticity may generate acoustic 

emissions [51], similarly to microcracking, as remarked by Appel et al. [46].  

The characterisation of the strain distribution between the few longitudinal deformation lines and the 

remainder of the pillar bulks revealed that the axial compression is relatively equally divided between the 

intense localised longitudinal plasticity and the remaining volumes that underwent transverse mode 

deformation, for soft mode oriented pillars compressed at 700 ºC. In contrast, pillars compressed at 25 ºC 

had a more variable distribution of the axial displacement between the longitudinal and transverse 

mechanisms; in some, the plasticity of the transversely slipping and twinning volumes generated less 

than one tenth of the total compression. This is consistent with the increased ease of operating 
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unconstrained longitudinal twinning in the γ-TiAl phase at 25 ºC relative to 700 ºC [52, 53], whereas the 

occurrence of constrained transverse twinning is generally lower at lower temperatures, such that a 

greater imbalance in the operation of the two twin modes should exist at 25 ºC than at 700 ºC.  

4.2 Impact of sub-yield plasticity 
In common engineering materials cycled at threshold conditions, in the absence of classical stress 

concentrators, the flow stress of the bulk of each grain is not normally exceeded, whereas in TiAl alloys 

this is not the case for all lamellar colonies. Indeed, in high cycle fatigue (HCF), the run-out stress (10
7
 

cycles without failure) for TiAl alloys remains at ~0.8 UTS up to 700 °C [54], and a common design 

threshold for operation of aero-engine parts is 50% of this stress [55]. Hence, it is feasible for colonies to 

be loaded in service, at 25 °C, to 0.5 × 0.8 × σy = 220 MPa for the as-HIPped Ti4522XD condition. 

Therefore, even at this conservative design threshold, in the most preferentially oriented colonies where 

the Schmid factor for longitudinal deformation mechanisms is close to 0.5, the critical resolved shear 

stress for activation of slip or twinning may be exceeded, e.g. τCRSS = 100 MPa for longitudinal twinning 

of γ-TiAl [10]. This event may occur fully within the bulk of a lamellar colony, far from stress 

concentrators such as grain boundaries and hard particles. Furthermore, as cycling progresses beyond the 

first loading cycle investigated here, both the strain generated in a given localised plasticity band, and the 

number of active localised plasticity bands may increase. 

The effect of localised plasticity on the fatigue life of TiAl components has been studied by Wu et al. [8] 

at room temperature by pre-loading samples to 95 % of the general yield stress. This causes a reduction 

in the fatigue life at a given stress relative to non-pre-loaded material. Oxidation tinting at 700 °C 

associated cracks formed during pre-loading with the final failure. Interlamellar crack formation was 

attributed to poor strain transfer between highly misoriented soft-mode colony pairs as they intersected 

the surface. At highly misoriented colony boundaries in the present study, strain transfer can in fact occur 

by the formation of regions of local lattice rotation, in which the strains are accommodated by local 

lattice curvature.  
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Stinville et al. were able to associate slip bands that formed near twin interfaces in René 88DT superalloy 

below the general yield stress with eventual fatigue crack formation at room temperature [47]; 

furthermore, such microslip bands were also found to be the ones on which the greatest strains occurred 

after yielding [34]. However, in the TiAl studied here in the as-HIPped condition, the initial slip bands 

did not cause the greatest strain after yielding, regardless of temperature. This suggests that for TiAl in 

the as-HIPped condition, tracking the localised plasticity generated in a single loading cycle below the 

general yield stress may not in fact aid in locating the eventual site of fatigue cracking. However, where 

the lamellae were refined, many more slip bands formed below the general yield stress. It would appear 

that the formation of longitudinal localised plasticity almost exclusively in the vicinity of lamellar 

interfaces, and the ten-fold increase in the number of lamellar interfaces, are associated with the 

increased incidence of bands of localised plasticity in the refined condition below the general yield stress.  

However, beyond the yield stress, many more localised plasticity bands developed in the thicker lamellae 

material, Fig. 8(a,b), whereas in the refined condition, the bands nucleated below the general yield stress 

increase the magnitude of the shear strains in the bands with increasing load instead. The Cottrell crack 

nucleation mechanism [56] is known to operate in semi-brittle materials as dislocations pile-up against 

sessile locks located at the intersection of slip bands. A material where the same slip bands have higher 

shear strains, as in the refined lamellae condition here, may therefore be more susceptible to Cottrell-type 

flaw formation than a material where many more slip bands develop during loading, with each band 

operating to lower shear strains. This may be the reason for the lower (plastic) strain-to-failure of the 

refined lamellae material, 0.15%, compared with the thicker lamellae, 1.57%, at 700 °C, see Table 3.  

With regards to fatigue crack growth (FCG), avoiding microcrack formation is essential, as these 

coalesce ahead of the primary crack in titanium aluminides and hence ensure crack growth [57]. 

Therefore it is expected that due to the Cottrell crack nucleation mechanism, the extensive localised slip 

occurring below the general yield stress in the refined lamellae microstructure even after a single loading 

cycle will aggravate FCG.  
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In the tensile tests, localised plasticity below the general yield stress was less common at 700 °C than at 

room temperature for the as-HIPped material, by almost an order of magnitude in both the number of 

localised plasticity bands and the shear strain generated per band. Combined with the result in [8] that 

localised plasticity below the yield stress weakens lamellar γ-TiAl alloys with regards to HCF, the strain 

distribution measured here, albeit on a single loading cycle, suggests that localised plasticity is more of a 

concern for the HCF of lamellar TiAl alloys at 25 °C than at 700 °C.  

 

5 Conclusions 

Macroscopic tensile testing in the nominally elastic regime, and microcompression testing to low plastic 

strains, of a polycrystalline nearly lamellar γ-TiAl alloy at both 25 °C and 700 °C, has shown that 

localised slip and twinning can form at stresses well below the general yield stress. Combined with 

EBSD mapping and STEM imaging of the lamellae, this slip was found to occur exclusively in soft mode 

colonies and was located consistently in the γ-TiAl phase ~30 – 50 nm away from, but not on, the 

lamellar interfaces. Such colonies were effectively loaded above their individual yield stress; further 

stress concentration by misfit strains and the mismatch of elastic moduli at the lamellar interfaces may 

also assist the development of localised plasticity below the general yield stress. Unlike previous reports, 

interlamellar cracking below the general yield stress, or sliding at the lamellar interfaces, were not 

observed.  

This study has demonstrated that the highly localised plasticity that must precede failure in high cycle 

fatigue is inherently related to the lamellar structure of γ-TiAl alloys, which predetermines the locations 

of plastic strain accumulation, even in a single loading cycle. Further study is required to assess the 

impact of such pre-yield plasticity on the eventual fatigue cracking of cyclically loaded lamellar γ-TiAl 

alloys, in order to engineer more damage-tolerant TiAl alloy microstructures.  
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Figure Captions 

 

Figure 1 (a) Macroscale tensile specimen geometry (not to scale); (b) tensile loading curves for the 

four test conditions; black dots indicate the successive stress levels to which the sample 

was loaded before imaging of the speckle pattern was performed in the unloaded state. 

Black crosses indicate specimen failure, at which the speckle pattern was imaged a final 

time.  

 

Figure 2 Backscatter electron imaging (a,c,e,g) and diffraction orientation mapping (b,d,f,h) of the 

region of interest of the testpieces in both the thicker (as-HIPped) and thinner (air-cooled) 

lamellar conditions for tensile testing below the general yield stress at 25 and 700 °C.  

 

Figure 3 Digital image correlation strain maps of the region of the thicker lamellar condition 

sample in Fig. 2(a) following tensile loading at 25 °C to 64 % (a) and 82 % (b) of the yield 

stress, and finally to failure (c). The black arrows indicate the few small dust particles on 

the pattern surface; the red arrows indicate the occurrence of sub-yield plasticity, which is 

consistently longitudinal; the green arrows indicate slip bands where the local shear strain 

at failure significantly exceeds that in the bands which were operative in the sub-yield 

regime. If image features are not clear, please refer to online version. 

 

Figure 4 Lineplots of the local shear strain developed along slip lines arising during tensile testing 

of the thick lamellar condition to successively higher loads; extracted from the locations 

numbered in Fig. 3 and 6, after a 10 point averaging to reduce the regular oscillations in 

strain along deformation lines from the rectangular pixelation of DIC mapping. Black 

arrows indicate where the shear strain reaches a minimum at the edge of the colonies. The 

blue arrows in (e) indicate the locations where the slip line intersects a boride particle, and 

hence the shear stress drops to zero. The shear strain noise threshold is indicated by a 

horizontal black line on each plot. No bands nucleated between 64% and 82% σy at 

700 °C.  

 

Figure 5 Overlay of DIC, EBSD and backscatter electron imaging (BSE) data of regions 

undergoing longitudinal plasticity when compressed at 25 °C (a) and 700 °C (b) to 82 % 

of the respective yield stresses.  

 

Figure 6 Digital image correlation strain maps of the region of the thicker lamellar condition 

sample in Fig. 2(c) following tensile loading at 700 °C to 64 % (a) and 82 % (b) of the 

yield stress, and finally to failure (c). The red arrow indicates the occurrence of sub-yield 

plasticity; the green arrows indicate slip bands where the local shear strain at failure 

significantly exceeds that in the band which was operative in the sub-yield regime. If 

image features are not clear, please refer to online version. 

 

Figure 7 Digital image correlation strain maps of the regions of the refined lamellar condition 

sample in Fig. 2(e,g) following tensile loading at 25 and 700 °C to 64% (a,c) and 82% 

(b,d) of the yield stress, respectively, and finally to failure above the general yield stress 

(e). The arrows have the same meaning as in Fig. 3. Casting porosity in the gauge section 
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caused the air-cooled condition specimen to fail below the macroscopic yield point at 

25 °C. If image features are not clear, please refer to online version. 

 

Figure 8 Numbers of longitudinal slip lines produced per loading step (in percentages of the 

respective yield stress) for the 230 × 200 μm
2
 areas of interest in each condition.  

 

Figure 9 Illustrations of the different strain transfer mechanisms at colony boundaries: direct strain 

transfer between longitudinal (L-L) systems is operative at 25 °C (a) and 700 °C (b), 

direct transfer from a longitudinal to a transverse (L-T) system is seen at 25 °C (c) and 

finally strain transfer by operation of lattice rotation is seen at 700 °C (d,e) and can be 

resolved for the in-plane lattice rotation component θ3 (f). Colony boundary debonding 

where no strain transfer mechanisms are evident is shown in (g,h). The red lines indicate 

the traces of the lamellar interfaces at the sample surface.  

 

Figure 10 Loading curves for the micropillars compressed at 25 °C (a) and 700 °C (b). The dots 

indicate the vertical normal strain of the pillar measured from DIC strain mapping. The 

systematic deviation between the macroscopically measured strains and the DIC values is 

likely due to a combination of the potentially relatively large errors associated with ex-situ 

SEM imaging for DIC strain mapping work [58] and pillar sink-in that was not corrected 

for. The reason for minor tensile loading of the pillars at 700 °C upon unloading is 

explained elsewhere [52]. 

 

Figure 11 Example plasticity analysis dataset of a micropillar compressed at 25 °C: the pre- (a) and 

post-test (b) secondary electron images were correlated to produce the strain map in (f). 

The pre- (d) and post-test (e) EBSD maps indicate that the plastic regions are not 

associated with the occurrence of longitudinal deformation twinning. Arrows indicate the 

location of deformation lines and the type of lamellar interface along which they lie. The 

remainder of the micropillars compressed at room temperature are in (g – r).  

 

Figure 12 STEM BF (a,c,e,g) and HAADF (b,d,f,h) images of thin foil lift-outs of the pillars 

compressed at 25 °C in Fig. 11. The STEM images were taken along the (111)γ lamellar 

interfaces in order to minimise the imaged width of the lamellar boundaries. The white 

arrows indicate longitudinal slip lines in the γ lamellae; black arrows indicate transverse 

twins. Shearing arrow pairs indicate longitudinally twinned regions. All α2-Ti3Al lamellae 

are annotated as such, based on the surface crystal orientation maps in Fig. 11; the 

remaining lamellae are γ-TiAl. TiB2 particles are arrowed in red. (a,b) are pillar 1, (c,d) 3, 

(e,f) 4 and (g,h) 5. 

 

Figure 13 Pre- and post-compression EBSD maps, and DIC strain maps for the micropillars 

compressed at 700 °C. Arrows have the same meaning as in Fig. 11. 

 

Figure 14 STEM BF (a,c,e,g) and HAADF (b,d,f,h) images of thin foil lift-outs of the pillars 

compressed at 700 °C in Fig. 13. All annotated carry the same meaning as in Fig. 12. (a,b) 

is pillar 6, (c,d) 7, (e,f) 8 and (g,h) 9. 
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Table 1 Nominal and measured compositions of the titanium aluminide alloy studied. Note that the 

boron content in Ti4522XD exceeds the maximum measurable by ASTM E2371. 

 

 
Ti 

/at.% 

Al 

/at.% 

Nb 

/at.% 

Mn 

/at.% 

TiB2 

/vol. % 

O 

/at.% 
N /at.% C /at.% H /at.% 

Mo, Cu, Si, 

Fe, Ni, Cr, 

W, Co, V, 

Sn, Bi, Pb, 

Zr, P /at.% 

Nominal bal. 45 2 2 0.8 0 0 0 0 0 

Measured, 

matrix only 

(TiB2 

excluded) 

bal. 44.7 1.8 1.8 – 0.21 0.05 0.03 0.04 ≤ 0.01 

 

 

Table 2  Microstructural characteristics of Ti4522XD in the as-HIPped and air cooled (refined) 

lamellar conditions determined by EBSD and TKD measurements, respectively. The 

average domain length was calculated by measuring the total length of γ-TiAl lamellae 

contained within the rectangular regions of interest within single colonies, and dividing by 

the number of domain boundaries within the region to determine the average spacing 

between successive domain boundaries in any direction in the lamellar planes. Numbers in 

brackets are the lamellar interface proportions considering only γ/γ types.  

 

 

 

  

 

Colony 

size 

/μm 

γ-TiAl 

phase  

fraction 

(by vol.) 

γ 

lamellar 

thickness 

/μm 

 

α2 

lamellar 

thickness 

/μm 

 

γ 

domain 

length 

/μm 

 

γ 

domain 

aspect 

ratio 

 

Interface 

True 

Twin 

Pseudo 

Twin 

Order 

Variant 

γ/α2 

As-

HIPped 
69 91.0% 1.4 ± 0.9 

0.26 ± 

0.09 
9.7 7 

26% 

(63%) 

2% 

(5%) 

13% 

(32%) 
59% 

Air-

cooled 
74 90.3% 

0.16 ± 

0.11 

0.05 ± 

0.02 
2.9 18 

12% 

(30%) 

16% 

(23%) 

26% 

(48%) 
46% 
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Table 3  Stresses and strains achieved at each loading step, with the elastic strains calculated from 

literature values for the Young’s modulus of the α2-Ti3Al and γ-TiAl phases [29], and a 

rule of mixtures from the material compositions in Table 2. * casting porosity not 

removed by HIPping was noted in the gauge section. ** Low, negative strain values of 

strain occur as a result of the plastic strain being below the noise threshold of the DIC 

measurement.  

 

 
As-received condition 

Refined lamellae 

condition 

25 °C 700 °C 25 °C 700 °C 

1
st
 step  

(64% σy) 

Stress /MPa 350 255 350 305 

Elastic strain 

(calc.) 
0.21% 0.17% 0.21% 0.21% 

Plastic strain (DIC) 0.16% 0.00%** -0.04%** 0.04% 

2
nd

 step 

(82% σy) 

Stress /MPa 450 327 – 393 

Elastic strain 

(calc.) 
0.26% 0.22% – 0.27% 

Plastic strain (DIC) 0.18% -0.05%** – 0.14% 

Yield point 

(from 

samples 

without DIC) 

Yield stress /MPa 550 [22] 400 [22] 550 480 

Failure 

Ultimate tensile 

stress /MPa 
590 592 384* 587 

Plastic strain (DIC) 0.69% 1.57% -0.07%** 0.15% 
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Table 4 Distribution of axial strain in micropillars between regions containing, and external to, the 

longitudinal microplasticity bands; calculations were made using geometric masking 

functions in DaVis. * The low, positive value of εyy,ext for pillar #6 (producing a P above 

100%) is likely a result of unusually high noise in the strain map.  

 

Test 

temperature 

/°C Pillar # 

Full 

pillar 
Longitudinal bands Remainder of pillar 

P εyy,avg εyy,band 

(average) 

Aband 

(arb. 

units) 

εyy,ext 

(average) 

Aext 

(arb. 

units) 

25 

1 -0.47% -4.25% 822 -0.03% 7056 94.4% 

2 -1.04% -2.95% 1543 -0.58% 6196 56.6% 

3 -0.80% -5.27% 808 -0.30% 6816 69.8% 

4 -0.88% -3.47% 489 -0.69% 7164 25.2% 

5 -0.93% -6.86% 1001 -0.10% 7023 92.0% 

700 

6 -0.35% -3.86% 941 0.12%* 6442 –* 

7 -0.96% -2.98% 968 -0.72% 6256 41.6% 

8 -0.72% -4.55% 767 -0.32% 6066 70.9% 

9 -1.33% -4.65% 1438 -0.44% 6166 66.1% 

 



 

 

Figure 1 (a) Macroscale tensile specimen geometry (not to scale); (b) tensile loading 

curves for the four test conditions; black dots indicate the successive stress 

levels to which the sample was loaded before imaging of the speckle pattern 

was performed in the unloaded state. Black crosses indicate specimen failure, 

at which the speckle pattern was imaged a final time.  

Figure(s)



 

 

Figure 2 Backscatter electron imaging (a,c,e,g) and diffraction orientation mapping (b,d,f,h) of the 

region of interest of the testpieces in both the thicker (as-HIPped) and thinner (air-cooled) 

lamellar conditions for tensile testing below the general yield stress at 25 and 700 °C.  

Figure(s)



 
Figure 3 Digital image correlation strain maps of the region of the thicker lamellar condition sample in 

Fig. 2(a) following tensile loading at 25 °C to 64 % (a) and 82 % (b) of the yield stress, and 

finally to failure (c). The black arrows indicate the few small dust particles on the pattern 

surface; the red arrows indicate the occurrence of sub-yield plasticity, which is consistently 

longitudinal; the green arrows indicate slip bands where the local shear strain at failure 

significantly exceeds that in the bands which were operative in the sub-yield regime. If image 

features are not clear, please refer to online version. 
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Figure 4 Lineplots of the local shear strain developed along slip lines arising during 

tensile testing of the thick lamellar condition to successively higher loads; 

extracted from the locations numbered in Fig. 3 and 6, after a 10 point 

averaging to reduce the regular oscillations in strain along deformation lines 

from the rectangular pixelation of DIC mapping. Black arrows indicate where 

the shear strain reaches a minimum at the edge of the colonies. The blue 

arrows in (e) indicate the locations where the slip line intersects a boride 

particle, and hence the shear stress drops to zero. The shear strain noise 

threshold is indicated by a horizontal black line on each plot. No bands 

nucleated between 64% and 82% σy at 700 °C.  
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Figure 5 Overlay of DIC, EBSD and backscatter electron imaging (BSE) data of 

regions undergoing longitudinal plasticity when compressed at 25 °C (a) and 

700 °C (b) to 82 % of the respective yield stresses.  
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Figure 6 Digital image correlation strain maps of the region of the thicker lamellar condition sample in 

Fig. 2(c) following tensile loading at 700 °C to 64 % (a) and 82 % (b) of the yield stress, and 

finally to failure (c). The red arrow indicates the occurrence of sub-yield plasticity; the green 

arrows indicate slip bands where the local shear strain at failure significantly exceeds that in 

the band which was operative in the sub-yield regime. If image features are not clear, please 

refer to online version. 
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Figure 7 Digital image correlation strain maps of the regions of the refined lamellar condition sample 

in Fig. 2(e,g) following tensile loading at 25 and 700 °C to 64% (a,c) and 82% (b,d) of the 

yield stress, respectively, and finally to failure above the general yield stress (e). The arrows 

have the same meaning as in Fig. 3. Casting porosity in the gauge section caused the air-

cooled condition specimen to fail below the macroscopic yield point at 25 °C. If image 

features are not clear, please refer to online version. 



 

 

Figure 8 Numbers of longitudinal slip lines produced per loading step (in percentages 

of the respective yield stress) for the 230 × 200 μm
2
 areas of interest in each 

condition.  
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Figure 9 Illustrations of the different strain transfer mechanisms at colony boundaries: direct strain 

transfer between longitudinal (L-L) systems is operative at 25 °C (a) and 700 °C (b), direct 

transfer from a longitudinal to a transverse (L-T) system is seen at 25 °C (c) and finally strain 

transfer by operation of lattice rotation is seen at 700 °C (d,e) and can be resolved for the in-

plane lattice rotation component θ3 (f). Colony boundary debonding where no strain transfer 

mechanisms are evident is shown in (g,h). The red lines indicate the traces of the lamellar 

interfaces at the sample surface. 
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Figure 10 Loading curves for the micropillars compressed at 25 °C (a) and 700 °C (b). 

The dots indicate the vertical normal strain of the pillar measured from DIC 

strain mapping. The systematic deviation between the macroscopically 

measured strains and the DIC values is likely due to a combination of the 

potentially relatively large errors associated with ex-situ SEM imaging for 

DIC strain mapping work [56] and pillar sink-in that was not corrected for. 

The reason for minor tensile loading of the pillars at 700 °C upon unloading is 

explained elsewhere [51]. 
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Figure 11 Example plasticity analysis dataset of a micropillar compressed at 25 °C: the pre- (a) and 

post-test (b) secondary electron images were correlated to produce the strain map in (f). The 

pre- (d) and post-test (e) EBSD maps indicate that the plastic regions are not associated with 

the occurrence of longitudinal deformation twinning. Arrows indicate the location of 

deformation lines and the type of lamellar interface along which they lie. The remainder of 

the micropillars compressed at room temperature are in (g – r). 

Figure(s)



 

 

Figure 12 STEM BF (a,c,e,g) and HAADF (b,d,f,h) images of thin foil lift-outs of the pillars 

compressed at 25 °C in Fig. 11. The STEM images were taken along the (111)γ lamellar 

interfaces in order to minimise the imaged width of the lamellar boundaries. The white 

arrows indicate longitudinal slip lines in the γ lamellae; black arrows indicate transverse 

twins. Shearing arrow pairs indicate longitudinally twinned regions. All α2-Ti3Al lamellae are 

annotated as such, based on the surface crystal orientation maps in Fig. 11; the remaining 

lamellae are γ-TiAl. TiB2 particles are arrowed in red. (a,b) are pillar 1, (c,d) 3, (e,f) 4 and 

(g,h) 5. 
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Figure 13 Pre- and post-compression EBSD maps, and DIC strain maps for the micropillars compressed 

at 700 °C. Arrows have the same meaning as in Fig. 11. 
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Figure 14 STEM BF (a,c,e,g) and HAADF (b,d,f,h) images of thin foil lift-outs of the pillars 

compressed at 700 °C in Fig. 13. All annotated carry the same meaning as in Fig. 12. (a,b) is 

pillar 6, (c,d) 7, (e,f) 8 and (g,h) 9. 
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