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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

In this work, we investigated keyhole welding including the pore dynamics (creation and collapse) of aluminium at the European Synchrotron 
Radiation Facility (ESRF, Grenoble, France). Optical back reflection and acoustic signals were simultaneously recorded during the welding 
process which was also visualized by high-speed X-ray imaging. This allows correlating the different momentary events with the signals 
recorded by the sensors. We demonstrate that keyhole welding is a highly dynamical and unstable process. In addition, to use either acoustic or 
optical sensors for pore detection, highly advance statistical methods such as machine learning are a requisite for signal processing.
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1. Introduction

Since the invention of laser sources in the 1960s [1], this 
technology has been involved in a large number of industrial 
applications, e.g. in automotive, electronic and  medical 
sectors. Among them, laser welding is one of the most 
common. Even though the process has been extensively 
studied, the mechanism responsible for defects formation in 
the weld joint, in particular porosity, has not been successfully 
established [2]. It is partially due to the complexity of the 
laser-material interaction and the short lifetimes of the events 
such as the opening and collapse of the keyhole in its unstable 
state [3]. Consequently, control of the weld quality, though 
desirable, is challenging. Most of the proposed solutions rely 
on high speed cameras or optical sensors [4–6]. These 
methods are limited to the surface of the process zone and the 
plume and, therefore, are not efficient in probing the keyhole 
and the formation of pores in depth. 

In our work, we propose the use of acoustic emission (AE) 
sensors in combination with optical emission sensors. 
Compared to optical and visual methods, the acoustic sensor
records the shockwave generated in the workpiece during the 

process [7]. Thus, it is supposedly more sensitive to the 
behaviors of the process zone such as the fluctuation of the 
keyhole and the formation of pores. Another advantage of this 
technology is the affordable hardware required. Hence, it has 
been implemented in industrial operation for monitoring 
similar processes such as additive manufacturing and arc 
welding [8,9].

The final aim of our work is to develop an in situ and real-
time quality control of the process. Consequently, the signals 
collected by the AE and optical sensors must be correlated 
with the momentary events (e.g. spattering, pore formation 
and keyhole fluctuation) taking place not only at the surface 
but also inside the process zone. This correlation encounters 
several difficulties. Firstly, it is often made post mortem via 
analysis of cross-sections and, thus, only for visual defects 
(pores, cracks) [8,10,11]. Secondly, the AE and optical signals 
are known to be very complex. This procedure is subjected to 
errors due to the high dynamic of the laser-material in 
conjunction with the random fluctuations in the signals. To 
overcome this difficulty and to visualize the weld process in 
real-time, several series of laser welding experiments were 
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1. Introduction

Since the invention of laser sources in the 1960s [1], this 
technology has been involved in a large number of industrial 
applications, e.g. in automotive, electronic and  medical 
sectors. Among them, laser welding is one of the most 
common. Even though the process has been extensively 
studied, the mechanism responsible for defects formation in 
the weld joint, in particular porosity, has not been successfully 
established [2]. It is partially due to the complexity of the 
laser-material interaction and the short lifetimes of the events 
such as the opening and collapse of the keyhole in its unstable 
state [3]. Consequently, control of the weld quality, though 
desirable, is challenging. Most of the proposed solutions rely 
on high speed cameras or optical sensors [4–6]. These 
methods are limited to the surface of the process zone and the 
plume and, therefore, are not efficient in probing the keyhole 
and the formation of pores in depth. 

In our work, we propose the use of acoustic emission (AE) 
sensors in combination with optical emission sensors. 
Compared to optical and visual methods, the acoustic sensor
records the shockwave generated in the workpiece during the 

process [7]. Thus, it is supposedly more sensitive to the 
behaviors of the process zone such as the fluctuation of the 
keyhole and the formation of pores. Another advantage of this 
technology is the affordable hardware required. Hence, it has 
been implemented in industrial operation for monitoring 
similar processes such as additive manufacturing and arc 
welding [8,9].

The final aim of our work is to develop an in situ and real-
time quality control of the process. Consequently, the signals 
collected by the AE and optical sensors must be correlated 
with the momentary events (e.g. spattering, pore formation 
and keyhole fluctuation) taking place not only at the surface 
but also inside the process zone. This correlation encounters 
several difficulties. Firstly, it is often made post mortem via 
analysis of cross-sections and, thus, only for visual defects 
(pores, cracks) [8,10,11]. Secondly, the AE and optical signals 
are known to be very complex. This procedure is subjected to 
errors due to the high dynamic of the laser-material in 
conjunction with the random fluctuations in the signals. To 
overcome this difficulty and to visualize the weld process in 
real-time, several series of laser welding experiments were 

10th CIRP Conference on Photonic Technologies [LANE 2018]

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


650 T. Le-Quang  et al. / Procedia CIRP 74 (2018) 649–653
2 Author name / Procedia CIRP 00 (2018) 000–000

made with a state-of-the-art high speed X-ray imaging at the 
European Synchrotron Radiation Facility (ESRF).

2. Experimental method

The laser welding experiments were made with a single 
mode fiber laser source StarFiber 150P (Fiber laser –
StarFiber 150P/300P – long pulse fiber laser systems) with a 
1070 nm wavelength. The laser system was capable of both 
continuous-wave (CW) and pulse operational modes but only 
the latter was employed in this work. The emitted Gaussian 
beam was transmitted through a 12 µm diameter single –
mode optical fiber to a laser head. The laser beam was guided 
by the optical system within the laser head and then focused 
on the sample surface by a focusing lens with a focal length of 
170 mm. The diameter of the laser spot at the focus was 
approximately 30 µm at 1/e2 of the beam’s maximum 
intensity. This small diameter allowed not only keyhole 
formation at low laser power but also to use thin sample (2 
mm thick) that is necessary to see though via X-ray imaging.

The laser head also contained an optical system for 
collecting the co-axial back-reflected and/or emitted radiation 
from the process zone as depicted in Fig. 1a. The collected 
light was directed towards the sensor module containing three 
optical sensors: Si, Ge and AlGaAs sensors operating within 
the ranges 450 – 850 nm, 1000 – 1200 nm and 1250 – 1700 
nm, respectively. This module was described in more details 
in a previous work [10]. Signals from the optical sensors were 
recorded using an oscilloscope (Teledyne LeCroy, USA) with 
a sampling rate ranging from 0.05 to 10 MHz, depending on 
the welding length. Even though all three optical sensors were 
recorded simultaneously during the experiments, only the 
results with the Ge sensor are presented in this work as some 
optical losses occurred in the connection, reducing the signal 
from the other sensor to noise level. For sensing the acoustic 
shockwave created during welding, an acoustic piezoelectric 
sensor Pico (Physical Acoustics, USA) sensitive within the 
range of 500-1850 Hz was used. The AE sensor was attached 
to the sample holder with a rubber band. The AE signals were 

digitized and stored by a data acquisition unit and software 
from Vallen (Vallen GmbH, Germany). The sampling rate of 
the AE signals was fixed at 10 MHz. The acquisition units 
were triggered by the laser. Preliminary tests showed that the 
delay between the signal acquisition and the laser emission 
was less than 25 µs.

The high-speed X-ray imaging was carried out at beamline
ID19 of the ESRF using the synchrotron X-ray source in
polychromatic mode: high photon flux that could be exploited 
for X-ray radiography up to millions frames per second (fps) 
rates [12]. X-ray phase contrast imaging by free-space 
propagation was utilized to enhance the contrast between 
material interfaces. An U-13 type undulator (single harmonic) 
at minimum gap of 11.1 mm was used. A diamond filter and 
an aluminium filter of 1.4 mm thickness each suppressed the
lower photon energies. The pink beam mean energy was 26.3
keV. The radiography of the laser welding process was 
recorded by an indirect X-ray detector composed of a 250 
µm-thick Ce-doped Lu3Al5O12 scintillator (Crytur, Czech 
Republic), lens-coupled to a high-speed camera (pco.dimax; 
PCO AG, Germany) at a 90° angle using a mirror. The 
recording frame rate during the experiments was fixed at 
28762 fps. The effective pixel size of the X-ray image 
detector was 11 µm. The diagram of the setup for laser 
welding experiments is presented in Fig. 1b.

In our experiments, aluminum was chosen for the weld 
samples due to its high X-ray transmissivity. The aluminum 
samples manufactured for welding had a dimension of 
2x20x50 mm3. The samples were placed to have a thickness 
of 2 mm along the X-ray path, allowing a transmission rate of 
approximately 54%. The samples were firmly fixed in the 
aluminum sample holder which is placed on a XYZ table. 

A total of 40 welding experiments were performed. The 
samples were either stationary (spot weld) or moved with a 
velocity of 1.5 mm/s (seam weld) in a direction perpendicular 
to both the laser and the X-ray beams. Laser powers up to 
250 W and pulse durations between 10 and 15 ms were
chosen as process parameters to provoke different weld 
regimes. The pulse repetition rate was fixed at 10 Hz

Fig. 1. (a) The diagram of the laser head including optical sensors, adapted from Vakili-Farahani et al. [10], and (b) The setup for the laser welding 
experiments.

Author name / Procedia CIRP 00 (2018) 000–000 3

throughout the experiments.

3. Results and discussion

Figure 2 presents typical optical and AE signals recorded
during the experiments. This particular experiment was 
performed with a single laser pulse at 250 W during 10 ms. 
The optical signal shows a significant increase in amplitude 
during the first 0.4 ms. It can be attributed to shallow melting 
of the sample’s surface. No other remarkable feature is 
observed in this signal. In contrast, the surface melting stage 
cannot be clearly observed in the AE signal. However, several 
bursts with sub-millisecond durations can be clearly observed 
in this signal at around 2.5 ms, 3.4 ms, 6.0 ms, 8.3 ms and 9.3
ms, indicating intensive activities in the process zone. The 
observation shows that the optical and AE signals are 
sensitive to different physical events during laser welding. In 
addition, the complexity of the signals, especially the AE 
signal, suggests that the correlation between the signals and 

the process should be done via in situ imaging instead of post 
mortem analysis of the cross sections.

Figure 3 shows a sequence of X-ray images of the process
zone during the experiment presented in Fig. 2 together with 
the record signals. The time t at which the image was taken is 
indicated in the images. t equals 0 at the beginning of the laser 
pulse. The components of the process zone could be 
distinguished based on their brightness. This depends mainly 

on the density and, hence, the temperature of the matter. In 
particular, keyhole is characterized by the highest brightness 
as it contains mostly metallic vapor, while solid material 
showed the lowest brightness.

The X-ray images reveal a highly complex behavior of the 
process with numerous sub-millisecond events. In the first 
0.38 ms of the laser pulse, only a small amount of molten 
material was observed (See Fig. 3 t= 0.35 ms). The shallow 
surface melting can be explained by the high reflectivity of 
aluminum at room temperature [13]. This leads to an 
inefficient coupling of the laser energy into the process zone. 
The melt pool expanded as the irradiation continued, 
increasing the laser absorption. The transition to keyhole took 
place when the pressure created by the evaporation of molten 
material was strong enough to push aside the melt pool
forming a channel of metallic vapor. This formation causes an 
abrupt increase of laser absorption due to the multiple 
absorption of the laser by the keyhole walls. The improved
energy deposition caused further expansion of the melt pool 
and the keyhole (0.38 – 0.63 ms). As the penetration depth of 
the keyhole increased, its instability increased as well. This 
behavior is often attributed to the surface tension of the 
molten material, which is responsible for the closing/collapse
of the keyhole [3]. At sufficiently high penetration depth, the 
opening of the keyhole could not be permanently sustained 
and its partial collapses and openings could be observed (See 
Fig. 3 t= 1.84 – 9.67 ms). This rapid fluctuation could trap the
metallic vapor in the keyhole channel, leading to pore 
formation mostly close to the tip of the keyhole (See Fig. 3 t=
7.02 ms) [14]. The created pores might either disappear by 
merging with the keyhole or moved away from it so that it 
remains present until the end of the process. Spattering, 
another undesirable event, also took place during the 
fluctuation of the keyhole (See Fig. 3 t= 1.84 ms). The X-ray 
results indicate that these behaviors of the keyhole took place 
simultaneously and on sub-millisecond time scales. At the end 
of the laser pulse, the keyhole collapsed abruptly while 
strongly fluctuating, resulting in trapping of the vapor. 
Consequently, a pore was formed, which remained in the 
sample afterwards.

The momentary events revealed by the X-ray images, 
especially during the unstable keyhole stage, have strong 
influence on the final quality of the weld. Nevertheless, they
cannot be completely correlated to the recorded signals via 
human visual inspection. In particular, only the shallow 
surface melting can be visually recognized in the optical 
signal. On the other hand, the bursts observed in the AE signal 
within the range 2 – 10 ms can be attributed to the instability
of the keyhole. In addition, part of the AE signal within the 
range 10.00 – 13.45 ms can be related to the resolidification 
of the melt pool. However, the transient events such as 
keyhole fluctuation, spattering and pore formation cannot be 
visually recognized in the signals.  

Fig. 2. Optical (a) and AE (b) signals recorded during a laser experiment with 
250 W laser power and 10 ms pulse duration.
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optical losses occurred in the connection, reducing the signal 
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sensor Pico (Physical Acoustics, USA) sensitive within the 
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keV. The radiography of the laser welding process was 
recorded by an indirect X-ray detector composed of a 250 
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Republic), lens-coupled to a high-speed camera (pco.dimax; 
PCO AG, Germany) at a 90° angle using a mirror. The 
recording frame rate during the experiments was fixed at 
28762 fps. The effective pixel size of the X-ray image 
detector was 11 µm. The diagram of the setup for laser 
welding experiments is presented in Fig. 1b.
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samples due to its high X-ray transmissivity. The aluminum 
samples manufactured for welding had a dimension of 
2x20x50 mm3. The samples were placed to have a thickness 
of 2 mm along the X-ray path, allowing a transmission rate of 
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the keyhole increased, its instability increased as well. This 
behavior is often attributed to the surface tension of the 
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influence on the final quality of the weld. Nevertheless, they
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within the range 2 – 10 ms can be attributed to the instability
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250 W laser power and 10 ms pulse duration.
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It can be concluded that human visual inspection of the 
signals is neither efficient nor reliable as the events took place 
simultaneously and at very short time spans (sub-
millisecond). In order to distinguish the transient events, 
analysis of the signals in time-frequency domain using 
wavelet decomposition is known to be a much more efficient
and reliable approach [10,15]. Furthermore, the application of
machine learning techniques would be very useful in 
detecting the changes in the time-frequency components at the 
transition between different transient events [8,11]. Indeed, 
this approach was tested on the data from our present 
experiments and reported by Wasmer et al. [16]. Following 
events were defined based on the X-ray images: 1) conduction 
welding, 2) stable keyhole, 3) unstable keyhole, 4) spatter.
The corresponding signals were analyzed by wavelet package 
transform (WPT) [17]. Event classification was done by 
gradient boost (GB) [18], an extension of a more general 
boosting technique [19], which is a branch of machine 
learning that employs a number of weak classifiers to build a 
strong one [18,19]. This approach resulted in the classification 
accuracies ranged between 78 to 95% depending on the 
category. The two events stable keyhole and unstable keyhole
could be classified with 89 and 84% confidence. The 
capability to distinguish those two events is very promising
for in situ and real time quality control since unstable keyhole
often leads to defects.

The potential of this approach has also been demonstrated 
for in situ quality control of additive manufacturing by 
Wasmer et al. [8] and Shevchik et al. [11]. These results show
that the combination of the wavelet decomposition and 
machine learning is a promising solution for in situ and real-
time control of the process using AE and optical sensors. Due 
to the simplicity of the hardware setup, the control unit can be 
easily realized in industrial sector.  

4. Conclusion

In situ and real-time quality control of laser welding is still
a challenge today. The reason is the highly complex and
dynamical laser material-interaction. To address this, in this 
contribution, we combined AE and optical sensing techniques 
to study the laser welding process of aluminum. To overcome 
the difficulties of post mortem correlation between the 
recorded signals with the different momentary events, the 
experiments were conducted with a high-speed X-ray 
imaging. The results showed that both AE and optical sensors 
were complimentary to each other in detecting different 
regimes of the process including surface melting, keyhole and 
resolidification. The events that could lead to defect 
formation, however, could not be sufficiently recognized by 
human visual inspection of the signals. Actually, it is due to 
the complex dynamic and short time spans of the events, such 
as keyhole fluctuation, pore formation and spattering. 
Therefore, the correlation between the signals and the post 
mortem quality analysis is not reliable. The combination of 
advances in signal processing and state-of-the-art statistical 
techniques such as wavelet decomposition and machine 
learning is a promising approach for quality control of laser 
welding based on AE and optical sensors.
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category. The two events stable keyhole and unstable keyhole
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Wasmer et al. [8] and Shevchik et al. [11]. These results show
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machine learning is a promising solution for in situ and real-
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a challenge today. The reason is the highly complex and
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contribution, we combined AE and optical sensing techniques 
to study the laser welding process of aluminum. To overcome 
the difficulties of post mortem correlation between the 
recorded signals with the different momentary events, the 
experiments were conducted with a high-speed X-ray 
imaging. The results showed that both AE and optical sensors 
were complimentary to each other in detecting different 
regimes of the process including surface melting, keyhole and 
resolidification. The events that could lead to defect 
formation, however, could not be sufficiently recognized by 
human visual inspection of the signals. Actually, it is due to 
the complex dynamic and short time spans of the events, such 
as keyhole fluctuation, pore formation and spattering. 
Therefore, the correlation between the signals and the post 
mortem quality analysis is not reliable. The combination of 
advances in signal processing and state-of-the-art statistical 
techniques such as wavelet decomposition and machine 
learning is a promising approach for quality control of laser 
welding based on AE and optical sensors.
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