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Abstract

We study the impact of different alkali post‐deposition treatments by thermal admit-

tance spectroscopy and temperature‐dependent current‐voltage (IVT) characteristics

of high‐efficiency Cu(In,Ga)Se2 thin‐film solar cells fabricated from low‐temperature

and high‐temperature co‐evaporated absorbers. Capacitance steps observed by

admittance spectroscopy for all samples agree with the widely observed N1 signature

and show a clear correlation to a transport barrier evident from IVT characteristics

measured in the dark, indicating that defects are likely not responsible for these

capacitance steps. Activation energies extracted from capacitance spectra and IVT

characteristics vary considerably between different samples but show no concise cor-

relation to the alkali species used in the post‐deposition treatments. Numerical device

simulations show that the transport barrier in our devices might be related to conduc-

tion band offsets in the absorber/buffer/window stack.
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1 | INTRODUCTION

The beneficial effect of sodium (Na) on the efficiency of Cu(Ga,In)Se2

(CIGS) thin‐film solar cells was discovered more than 2 decades ago.1

Significant improvements in the grain growth and solar cell efficiency

were observed when soda‐lime float glass (SLG), which contains large

amounts of Na, was used as growth substrate. Since then, an increas-

ing variety of alkali species have been applied to CIGS thin‐film solar

cells. Post‐deposition treatments (PDT) of the as‐grown absorber consist

of depositing thin layers of alkali fluorides and have proven to be a suc-

cessful route to supply additional alkali species beyond Na diffusing from
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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the SLG substrate.2 Current world‐record devices with efficiencies of up

to 22.6% all contain Na and heavier alkali species, typically potassium (K)

or, more recently, rubidium (Rb).3 Despite the tremendous success of

alkali PDTs, much about the impact of alkali atoms on the fundamental

solar cell device properties is still unknown or under debate.

Electrical dc and ac measurements of the temperature‐dependent

current‐voltage characteristics (IVT), capacitance‐voltage relation (C‐V),

and frequency‐dependent capacitance (thermal admittance spectros-

copy, TAS) are among the most important device characterization

techniques to study complete solar cell devices.4 Characterizing working

devices is particularly important, as materials in the device stack might
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

cense, which permits use, distribution and reproduction in any medium, provided

y John Wiley & Sons Ltd.

wileyonlinelibrary.com/journal/pip 911

http://orcid.org/0000-0001-6901-8901
http://orcid.org/0000-0002-9202-7627
http://orcid.org/0000-0002-4884-2843
http://orcid.org/0000-0002-8043-6757
http://orcid.org/0000-0002-3867-3302
http://orcid.org/0000-0001-8281-4881
http://orcid.org/0000-0003-1823-4481
http://orcid.org/0000-0003-0942-9965
mailto:florian.werner@uni.lu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/pip.3032
http://wileyonlinelibrary.com/journal/pip


912 WERNER ET AL.
behave very differently from individual layers due tomodifications occur-

ring during further processing steps, electrical interactions, or inter‐diffu-

sion between adjacent layers.5 Furthermore, applied bias and illumination

during realistic device operation needs to be accounted for.

Despite the importance of electrical device characterization, the

standard interpretation particularly of the voltage‐dependent, fre-

quency‐dependent, and temperature‐dependent capacitance has fre-

quently been challenged for thin‐film solar cells. One particular

capacitance step, termed “N1”,6 is commonly observed for all CIGS

thin‐film solar cells, and is also dominating the frequency‐response

of our devices (see Section 3). The origin of the N1 signature has been

discussed controversially for already 2 decades. Initially, this signature

was attributed to continuously distributed defects at the CIGS/buffer

interface, as the activation energy was found to be sensitive to oxida-

tion or air annealing.6,7 By contrast, the N1 signature was later also

identified in drive‐level capacitance profiling of the CIGS bulk and

was thus reevaluated as an acceptor‐like bulk defect.8 By comparing

admittance spectroscopy and deep‐level transient spectroscopy

(DLTS), Igalson et al9 concluded that a highly p‐doped layer in the

space charge region results in capacitance contributions of deep

acceptor states mostly near the CIGS/buffer interface, and that N1

is a combination of interface states and interface‐near deep defects

in the bulk. Also using DLTS, Zabierowski et al10 found that the N1

signal consists of 4 distinct components and identified InCu‐related

metastable defects as potential origin of the N1 signature. Indepen-

dent of the proposed nature or location of these defects, a defect

response appears to be the most widely used interpretation of the

N1 signal, and in fact any capacitance step above a potential freeze‐

out in admittance spectroscopy. There have been an increasing num-

ber of publications which provide alternative explanations for the N1

level, most linked to the transport characteristics of the solar cell.

Reislöhner et al argue that the N1 signature could be explained by a

mobility freeze‐out due to hopping conduction,11 or by percolative

charge transport due to spatial inhomogeneities in the absorber.12

Lauwaert et al13 showed that DLTS signals recorded for different

pulse directions are not compatible with standard models of carrier

capture and emission by defect states in the device. Instead, R‐C‐like

non‐ideal contacts or interlayers in series with the main junction were

shown to result in capacitance steps and DLTS peaks which could

explain the N1 signature.13-16 With the main junction located at the

front CIGS/buffer interface in the device, the R‐C‐like barrier or

counter‐diode in series with the main junction has been attributed to

the back contact in these studies. Experimentally, this is supported

by the observation of a phototransistor effect in the bulk of CIGS

solar cells,17-19 which indeed suggests the presence of a Schottky con-

tact at the back of the device. Furthermore, Eisenbarth et al20

reported that changes in the space charge region width around the

N1 capacitance step do not directly correlate with the thickness of

the buffer layer and might thus be more likely caused by the back con-

tact. By contrast, Igalson et al9 reported on a correlation between the

N1 signature and blocking of the diode current in forward bias, which

they attributed to Fermi level pinning at the CIGS/buffer interface at

the front of the device. Recently, we demonstrated that excessive

RbF treatment leads to modifications of the CIGS/buffer interface,

which affect the N1 signature observed in admittance spectroscopy.21
We further demonstrated that bias‐dependent and illumination‐

dependent impedance spectra of CIGS solar cells suggest a depleted

buffer layer but are difficult to reconcile with deep defects as origin

of the N1 signature.22 However, both different back electrodes23 and

different buffer layer stacks24 at the front of the device were reported

to modify the admittance spectrum, and the main capacitance step of

all devices was found to agree with the N1 signature. Differences in

experimental observations and interpretation were also proposed to

be a consequence of a multitude of signals potentially coexisting in

CIGS devices.25 Note, that signatures comparable to N1 were also

observed in photo‐induced current transient spectroscopy (PICTS)

measurements26,27 on CIGS absorbers, which probe the bulk of the

absorber and where no n‐type front layers are deposited on the CIGS.

The preceding discussion illustrates that different potential expla-

nations for the N1 signature in CIGS solar cells exist, notably bulk or

interface defects, or transport barriers at the front or rear of the

absorber layer. While these previous studies show that transport

barriers can indeed be a potential explanation for the N1 signature,

this is challenging to verify experimentally using only capacitance‐

based techniques, because defects and transport barriers lead to com-

parable frequency‐responses in ac techniques. On the other hand, the

dc current transport characteristics of a solar cell device in strong for-

ward bias will be sensitive to transport barriers at different locations

of the device.28 Nevertheless, the complicated device structure of

the CIGS hetero‐junction solar cells suggests that simple analytical

transport models might be insufficient to adequately explain experi-

mental data, and that numerical device simulations could provide more

detailed insight concerning the location of dominant transport barriers

within the device. In this paper, we link experimental ac and dc trans-

port characteristics of many solar cells to explore the importance of

transport barriers in the device. We compare our data to numerical

device simulations of the temperature‐dependent current‐voltage

characteristics in order to identify the dominant interface barrier in

the device. We use photoluminescence (PL) to verify that deep

defects indeed do not play a significant role in our devices.

Due to the wide spread of results in literature even for untreated

solar cells, studies of the impact of alkali PDTs on CIGS solar cells will

always suffer from ambiguities in the characterization methods if only

individual or few measurements are taken into account. We present a

systematic study of the impact of different alkali PDTs on the electri-

cal device properties of solar cells fabricated from state‐of‐the‐art

high‐efficiency absorbers. Because likely several possible origins of

the N1 signature coexist, this choice of samples ensures that our mea-

surements are representative of current record‐efficiency devices. We

also develop further insight into the interpretation of capacitance

steps observed in TAS based on the large set of data on highly‐

efficient CIGS solar cells presented here. In Section 3, we discuss

temperature‐dependent capacitance spectra and show that the fre-

quency response of our devices is dominated by 1 or 2 capacitance

steps, which would be identified as N1 signatures according to com-

mon practice. Photoluminescence experiments in Section 4 demon-

strate that the high‐efficiency absorbers show no significant defect

luminescence at defect energies compatible with the N1 signature

observed in admittance spectroscopy. This indicates that defect con-

centrations in the relevant energy range are low and should not



TABLE 1 Range of designated area power conversion efficiencies η
of the devices fabricated for this study. Devices from the upper range
of efficiencies for each PDT were chosen for electrical characteriza-
tion. Few devices failing quality control are excluded from this table.
Notes: a) untreated high‐T absorbers contain Na from the SLG and are
thus compared with the NaF‐treated low‐T absorbers; b) with ARC
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contribute significantly to the capacitance spectrum. Instead, we link

the main capacitance step to a transport barrier evident from temper-

ature‐dependent current‐voltage characteristics in Section 5 and show

in Section 6 that such transport barriers are likely related to the con-

duction band offsets at the front of the device.
PDT ZSW (High‐T) η [%] Empa (Low‐T) η [%]

None ‐‐‐ 13.2‐14.2

NaF/(Na) a) 17.6‐18.8 16.2‐17.6

KF 18.6‐19.2 18.9‐19.3

RbF 20.0−20.3 [20.6−21.1 b)] 18.0‐18.3

CsF 19.3‐19.8 ‐‐‐
2 | SAMPLE PREPARATION AND
CHARACTERIZATION

We compare 2 different sets of Cu(Ga,In)Se2 (CIGS) thin‐film solar cells

fabricated at the Center for Solar Energy and Hydrogen Research

(ZSW) and the Swiss Federal Laboratories for Materials Science and

Technology (Empa), respectively. Details of the processing conditions

are similar to those in Chirilă et al,2 Jackson et al,3 and Chirilă et al.29 All

absorbers are grown by co‐evaporation of Cu, In, Ga, and Se in a multi‐

stage vacuum process. At ZSW, sputtered Mo on SLG is used as sub-

strate, and the co‐evaporation process is performed at standard elevated

temperatures. The Empa absorbers are designed for the deposition onto

flexible polyimide foils, which requires substrate temperatures below

450°C at all times during the deposition process. However, to simplify

handling, the Empa absorbers are deposited onto 1‐mm‐thick SLG sub-

strates in this study. A silicon oxide (SiOx) layer is introduced between

SLG and Mo back contact to suppress Na diffusion from the SLG, which

would also not be present if polyimide foil was used instead.

Different alkali post‐deposition treatments (PDT) are performed

by in‐situ co‐evaporation of alkali‐fluorides in Se atmosphere after

the CIGS deposition. The different PDTs employ KF, RbF, and CsF

for ZSW absorbers, and NaF, NaF + KF, and NaF + RbF for Empa

absorbers. Additional solar cells without PDT are studied as well. Note

that all ZSW samples contain Na, and in lower concentrations K, due

to diffusion from the Na‐containing and K‐containing SLG substrate.

In the case of Empa absorbers, a NaF‐PDT is always applied before

any KF‐ or RbF‐PDT in all samples, because the SiOx barrier layer

and reduced substrate temperature suppress alkali diffusion from the

SLG substrate into the CIGS absorber. Any further reference to KF‐

or RbF‐PDTs on Empa samples thus implies a previous NaF‐PDT.

All absorbers are processed into finished solar cells by chemical

bath deposition of a CdS buffer layer, sputtering of a (Zn,Mg)O/ZnO:

Al (ZSW) or i‐ZnO/ZnO:Al (Empa) window stack, and evaporation of

Ni/Al contact grids at the respective institutes. A MgF2 anti‐reflection

coating (ARC) is used on 1 set of devices, all other devices used for this

study do not have any ARC. Individual solar cells with a total area of

approximately 0.5 to 0.6 cm2 are defined by mechanical scribing. Desig-

nated area power conversion efficiencies of the cells in the study are in

the range of 13% to 14% for the alkali‐free low‐temperature absorbers,

and 16% to 20% for absorbers containing alkali elements (up to 21%with

ARC). Table 1 shows a summary of the designated area cell efficiencies η

for the different PDTs and absorbers used in this study.

For electrical measurements, solar cells are glued to an aluminum

sample holder using thermally conductive adhesive. The front contacts

of the solar cells are connected to the measurement circuit by ultra-

sonic bonding of gold wire to the contact pads, the back contact is

connected by manual indium soldering to the Mo back contact of

the solar cells. Two wires are used for each connection in a 4‐point
configuration to reduce the influence of wire resistance on the mea-

surement. A temperature sensor is glued onto an identical glass sub-

strate besides the solar cells to ensure accurate temperature readings

representative of the actual temperature at the solar cell surface. The

sample holder is mounted in the dark in a closed‐cycle cryostat at a base

pressure below 10−3 mbar. An optical port in the cryostat with a shutter

and a neutral density filter wheel assembly permits dark and illuminated

measurements at different illumination intensities without changes to

the halogen lamp used as light source. The intensity of full illumination

is set once prior to the measurement to yield the correct previously

measured short‐circuit current density at a temperature of 300 K.

The temperature‐dependent dark and light current‐voltage char-

acteristics (IVT) are recorded while cooling down the sample in steps

of 10 K (set temperature) in a range between 320 and 20 K, allowing

sufficient time for temperature stabilization before each measure-

ment. Note that the measured sample temperature might deviate sig-

nificantly from the setpoint due to the low thermal conductivity of the

glass substrate and typically only reaches 40 to 50 K at the lowest

temperature setting of Tset = 20 K. After IVT measurements, the sam-

ple is heated to 300 K and kept in the dark for at least 12 hours to

ensure a sufficient relaxation of any photo‐induced instabilities. This

is verified by ensuring a constant capacitance reading in short‐circuit

conditions. The admittance spectrum is recorded in the same temper-

ature range while cooling down in a frequency range of f = 100 Hz to

1 MHz at a dc bias voltage of 0 V and an ac amplitude of 30 mV rms. A

parallel equivalent circuit model is used to separate the conductance G

and capacitance C. Note that some measurements show an extreme

capacitance dispersion at high frequencies above a few 100 kHz, which

does not appear to follow any consistent temperature dependence. As

this feature also may differ between measurements on the same sample,

the most likely origin is related to the external contacts to the sample.

Thus, features at the highest frequencies are discarded during analysis.

For PL measurements, the CIGS absorbers are covered with a CdS

layer and excited by the 514.5‐nm line of an Ar+ laser at a sample tem-

perature of 10 K. The laser spot is focused to a diameter of 80 μm

(area ≈ 5 × 10−5 cm2) and carries photon fluxes in the range of

5 × 1018 to 2 × 1021 photons cm−2 s−1. The emitted PL is collected

by off‐axis parabolic UV‐enhanced aluminummirrors and redirected into

a double monochromator with a combined focal length of 600 mm. The

collection area is estimated to be approximately equal to the excitation

area, ie, approximately 5 × 10−5 cm2. The PL signal is recorded by a

low‐noise mid‐infrared InAs‐based detector cooled to an operating
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temperature of 77 K. To improve the signal‐to‐noise ratio of the mea-

sured signal, a chopper and lock‐in technique are used in addition.
FIGURE 2 Temperature‐dependent capacitance spectrum for a
measured temperature range of 320 to 42 K for a KF‐treated low‐
temperature absorber, which shows a pronounced second capacitance
step and capacitance freeze‐out at low temperatures [Colour figure
can be viewed at wileyonlinelibrary.com]
3 | CAPACITANCE STEPS IN ADMITTANCE
SPECTROSCOPY

All samples with both Empa and ZSW absorbers qualitatively show the

same features in their admittance spectra. A representative example

of such a spectrum is shown in Figure 1 for a RbF‐treated ZSW

absorber. Some of the typical features of the capacitance spectra are

more pronounced for certain samples, and we present the capacitance

spectrum of a KF‐treated Empa absorber in Figure 2 for comparison

(note the different scale on the y‐axis). From high to low measurement

temperatures in the admittance spectra, we observe the following fea-

tures, which are marked by arrows in Figures 1 and 2:

1. A slight capacitance dispersion at the highest temperatures,

which could be caused by the presence of deep defects, interface

defects, or tail states at the band edges.30 This feature appears to

be enhanced for some of the samples only containing Na, but at

this point in time provides no further insight and hence will not

be covered in the present paper.

2. A well‐defined capacitance step at intermediate temperatures,

typically in the range of 100 to 250 K (corresponding to a
FIGURE 1 Temperature‐dependent capacitance spectrum (top) for a
measured temperature range of 320 to 43 K and (bottom)
corresponding normalized logarithmic derivative dC/dln( f ) (bottom,
220‐80 K) for a RbF‐treated high‐temperature absorber. The
denominations used to describe the main features of the spectrum are
given in the graph [Colour figure can be viewed at wileyonlinelibrary.
com]
capacitance drop from 38 to 26 nF/cm2 for the example shown in

Figure 1). We denominate this signature the “main” capacitance

step, and it will be discussed in more detail below.

3. There appears to be a second capacitance step just below the main

step, which is visible as a shoulder at a frequency range of 10 to

100 kHz in the logarithmic derivative of the capacitance curve,

dC/dln( f ), as shown in the bottom of Figure 1. This feature is dif-

ficult to identify in the raw capacitance spectrum of most samples,

although it is well resolved for some devices as shown in Figure 2.

4. At the lowest temperatures, the high‐frequency capacitance starts to

decrease, as exemplified by the last 5 curves in Figures 1 and 2. For

several of the low‐temperature absorbers, as shown in Figure 2, this

step is unambiguously related to a conductivity freeze‐out of the

absorber, as the capacitance drops to the geometrical capacitance

Cgeo = εrε0/d ≈ 5 nF/cm2, which indicates that the absorbers become

insulating at these temperatures and frequencies. Although the attri-

bution of this capacitance step to a freeze‐out is only possible for

some samples, we assume that the nature of this step is most likely

the same in all samples due to the similar temperature range.

The activation energy of a process responsible for a capacitance step

can be obtained from the temperature dependence of the inflection fre-

quency ft, or, more commonly, the angular inflection frequency ωt = 2πft
of the respective capacitance step. We determine the inflection frequency

experimentally by finding the maxima in the derivative of the capacitance

as a function of the logarithm of frequency, dC/dln( f ). The simplest form

of a thermally activated inflection frequency is given by the equation

ωt ¼ 2πft ¼ X0e
−Ea=kT ; (1)

where X0 is a constant. Accordingly, the activation energy is then

obtained from a linear fit of ln(ωt) vs inverse temperature 1/T. One

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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complication in the analysis arises if the prefactor X0 is in fact

temperature dependent. For a capacitance step due to a defect

response, it has been shown that X0 has a weak ( ∝ T2) temperature

dependence due to the temperature‐dependent thermal velocity and

effective density of states. The inflection frequency is thus given by

the equation4

ωt ¼ 2πft ¼ vthNC;Vσn;pe−Ea=kT ¼ 2ξ0T
2e−Ea=kT ; (2)

where vth is the thermal velocity, NC,V is the effective density of states in

the conduction or valence band, σn,p is the electron or hole capture cross

section of the defect, and the prefactor ξ0 is now assumed to be inde-

pendent of temperature. The activation energy Ea is then obtained from

an Arrhenius plot of ln(ωt/T
2) vs inverse temperature 1/T.

Although Equation 2 is typically used in the literature, the

quadratic temperature dependence of the prefactor is only valid if

the capacitance step is indeed caused by a defect response, and if

the defect can be described adequately by an ideal defect model.

Without a‐priori knowledge, we therefore omit any explicit tempera-

ture dependence and determine the activation energy based on

Equation 1. We find that this approach yields the same trends as

Equation 2, but activation energies are typically 10% to 20% higher.

Note that the Arrhenius plots appear as straight lines for both

Equations 1 and 2, and thus we cannot validate 1 choice of model over

the other based on the quality of the fit. Nevertheless, we always use

Equation 2 when comparing our results to published data, eg, in

Figure 3, to be consistent with conventions in literature.

Figure 3 shows the thermal prefactor ξ0 as a function of activation

energy Ea according to Equation 2, both obtained from a linear fit to

the Arrhenius graph of ln(ωt/T
2) vs inverse temperature 1/T, for all
FIGURE 3 Thermal prefactor ξ0 as a function of activation energy Ea
obtained using Equation (2) for all capacitance steps resolved in the
admittance spectra of all samples. Shown are the main step (circles),
second step (squares), and freeze‐out (blue diamonds). The symbol
color indicates the alkali species as denoted in Table 1. Lines indicate
literature trends for the N1 (solid line) and N2 (dashed line) signatures
commonly observed in CIGS, according to values taken from
Eisenbarth et al (Ref. 20) and Krysztopa et al (Ref. 34) [Colour figure
can be viewed at wileyonlinelibrary.com]
capacitance peaks resolved in this study. The pairs of thermal

prefactor ξ0 and activation energy Ea for a capacitance step originating

from the same fundamental thermally activated process are expected

to obey the Meyer‐Neldel rule and thus follow the relation

ξ0 ¼ ξ00e
Ea=Echar ; (3)

with the characteristic energy Echar and a prefactor ξ00.
31-33 Literature

trends for Meyer‐Neldel lines of the commonly observed N1 and N2

signatures in CIGS are shown in Figure 3 by red lines according to

Eisenbarth et al20 and Krysztopa et al.34

It is apparent from Figure 3 that the freeze‐out step, as expected,

is separate from the other steps and has no relation to the N1 and N2

signatures. Furthermore, the freeze‐out, if resolvable from the

admittance spectra, always appears at an energy of 55 ± 10 meV. Such

an activation energy would be consistent both with a shallow acceptor

level typically observed at 40 to 60 meV,35 and with a mobility

freeze‐out due to transport barriers of approximately 60 mV at the

grain boundaries.5,35 It is worth noting that we can identify the

inflection frequencies of the freeze‐out steps only for some of the

low‐temperature absorbers, not for any of the high‐temperature

absorbers. The details of the freeze‐out mechanism depend on

the bulk doping and transport properties across grain boundaries

and are thus likely to vary between different absorber processing

conditions.

The inflection frequencies of the main capacitance step observed

in this study appear to follow the trend of the N1 signature reasonably

well, although the scatter in our data is substantial. Such pronounced

scatter around the reference line plotted in Figure 3 is fairly common

for experimental data attributed to the N1 signature in literature (see,

for example, the review in Ref. 34). Attributing a given capacitance

step to the N1 signature based on its Meyer‐Neldel line is thus inher-

ently ambiguous, due to the large scatter in both the current experi-

mental data and in the reported literature values. Nevertheless, this

approach is common practice, and any capacitance signals at least

somewhat close to the average N1 Meyer‐Neldel line, or even just

close to an activation energy around 100 meV, are typically attributed

to the same signature. An opposite sign of the N1 peak has been

observed in DLTS, compared with typical defect peaks.9 Transport

barriers discussed in Sections 5 and 6 are indeed consistent with an

inverted DLTS signal.15,36 Accordingly, our devices certainly show a

similar behavior to those reported in literature, but the origin of the

“N1‐like” behavior must not necessarily be the same for devices

reported by other authors. Because we link the main capacitance

step to interfaces present in all CIGS devices, see Sections 5 and 6,

we propose that our results are likely fundamental to CIGS thin‐film

solar cells.

Data for the second capacitance step is more challenging to clas-

sify. Taking into account the uncertainty in the N1 line from literature,

the second capacitance step would still be consistent with the N1

signature. Alternatively, all our data could be fitted by a single

Meyer‐Neldel line with a characteristic energy of 16 meV, in between

the N1 and N2 signatures. Both of these hypotheses appear implausi-

ble, as both main step and second step are observed in the same spec-

trum, and thus most likely have different origins. Although the

http://wileyonlinelibrary.com
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identification of the second step remains unsolved, the close proximity

of both independent signals to the N1 line highlights the danger of

using a Meyer‐Neldel‐like behavior to attribute different admittance

steps to the same defect.

The earlier findings discussed in the Introduction, in conjunction

with our observation that both independent capacitance steps are

consistent with the same N1 line, warrant a more detailed investiga-

tion of the defects in the absorbers and of the transport properties

of the solar cells.
4 | DEFECTS IN PHOTOLUMINESCENCE

The difficulties in unambiguously attributing capacitance steps in

admittance spectroscopy to defects or transport phenomena calls for

an alternative technique to investigate defect states. In PL measure-

ments at low temperatures, defect states within the bandgap can be

detected by recording the radiative recombination of photo‐generated

excess carries via these defect states. Although defect‐related

recombination is often assumed to be dominantly non‐radiative, PL

measurements are highly sensitive to defect states within the

bandgap. Indeed, there are several reports of deep defects detected

by PL in CuGaSe2
37-39 and Cu(In,Ga)Se2

40 thin films. Figure 4 shows

the PL spectrum at a temperature of T = 10 K for an untreated low‐

temperature absorber. We observe a single emission peak in the

energy range of 0.92 to 1.24 eV. This peak is fairly broad, as expected

for a Cu‐poor absorber,41 and the “true” peak shape is obscured by

interference effects (“dips” in the PL peak).42 The PL spectrum clearly

demonstrates that no significant PL emission beyond background

noise is recorded for energies below the main PL peak, which
FIGURE 4 Photoluminescence intensity IPL as a function of photon
energy E recorded at T = 10 K for an untreated low‐temperature
absorber. The corresponding solar cell showed a main capacitance
step with an activation energy of Ea = 250 meV. The red dashed lines
represent (from left to right) the onset of noticeable PL emission
above background noise, the energetic center of the PL emission peak,
and the approximate energetic bandgap at T = 10 K extrapolated from
room‐temperature measurements [Colour figure can be viewed at
wileyonlinelibrary.com]
corresponds to photon energies E < 0.92 eV (left dashed line in

Figure 4). From the absence of PL emission, we can conclude that

the defect densities in this energy range must be fairly small.

In order to compare electrical and optical measurements, the

energetic depth of a hypothetical defect level with respect to the

band edges needs to be converted into the photon energy of the

corresponding PL transition. This transition energy is shifted from

the band‐to‐band transition energy by the energetic depth of the

defect. The bandgap of the chosen absorber was determined to

be Eg = 1.14 ± 0.01 eV at room temperature, which suggests a

bandgap of approximately 1.16 eV at T = 10 K43 (right dashed line in

Figure 4). At low temperatures, excess carriers are easily localized in

potential troughs caused by spatial potential fluctuations, or in tail

states extending from the band edges into the band gap. Furthermore,

transitions between shallow dopant levels become dominant com-

pared with direct band‐to‐band transitions. Accordingly, the dominant

PL peak is shifted to energies below the bandgap energy Eg. In first

approximation, the energetic position of the PL maximum can be used

to estimate the energy difference in the PL transition. Due to the

interference effects in our case we estimate the energetic position

of the PL maximum by taking the center energy between lower and

upper flank of the PL peak, indicated by the center dashed line in

Figure 4 at E = 1.08 eV.

The absence of PL emission at photon energies below 0.92 eV

sets a limit for the energetic depth of defect levels present in signifi-

cant amounts. Depending on the choice of reference energy of the

band‐to‐band transition (1.08‐1.16 eV), the depth of such a defect

must be below 160 to 260 meV, as indicated by the blue arrows in

Figure 4. Admittance spectroscopy of a solar cell fabricated from an

absorber grown in the same deposition run revealed a main capaci-

tance step with an activation energy of Ea = 250 ± 25 meV. On one

hand, this value is not directly ruled out by the preceding discussion

if the full low‐temperature bandgap without potential fluctuations is

chosen as reference energy (which results in Ea < 260 meV). On the

other hand, potential fluctuations are expected in Cu‐poor CIGS,41

which could lower the upper limit to the activation energy. Further-

more, the defect luminescence would need to be sharply peaked to

be consistent with the measured spectrum and not extend into the

low‐energy range.

We obtain similar PL spectra to the one shown in Figure 4 for all

absorbers and PDTs, but the high activation energy observed in TAS

for this particular sample yields the clearest interpretation. Compari-

son to the onset of PL emission is more ambiguous for other samples

with lower activation energies of the capacitance step. Note, however,

that defect signatures lying on the same Meyer‐Neldel line are

commonly assumed to originate from the same defect. We thus

assume that a comparison on 1 particular sample, here with the

highest activation energy in TAS, is representative for all samples,

because all activation energies and thermal pre‐factors lie on the same

Meyer‐Neldel line shown in Figure 3.

Based on these observations, the PL experiments do not directly

refute the possibility that the main capacitance step observed in TAS

might be related to defects. Nevertheless, they can be seen as a

further hint that alternative interpretations, eg, a transport barrier,

might be more appropriate.
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5 | TRANSPORT BARRIERS IN THE DEVICE

While deep defects and transport barriers influence the ac response

of a solar cell in very similar ways, as discussed in the Introduction

(Section 1), transport barriers should be evident from the dc current

transport characteristics. Figure 5 shows 2 representative examples

of temperature‐dependent current‐voltage characteristics (IVT) mea-

sured in the dark for a RbF‐treated high‐temperature absorber and a

NaF‐treated low‐temperature absorber, respectively.

Despite qualitatively similar ac admittance spectra for all samples,

see Section 3, we observe 2 different types of IVT behavior: in some

samples, the forward current contribution of the main junction, ie, an

exponential current increase in forward bias, is largely suppressed at

low temperatures [termed “type A”, compare Figure 5A], while other

samples show a diode‐like forward current over the full temperature

range [“type B”, compare Figure 5B]. Accordingly, the low‐temperature

IV curves for “type A” samples are dominated by the shunt current.
FIGURE 5 Temperature‐dependent dark current density vs voltage
characteristics for a temperature range of approximately 320 to
45 K for (A) a RbF‐treated high‐temperature absorber and (B) a NaF‐
treated low‐temperature absorber. The insets show the natural
logarithm of the respective dark current density, ln (J), at a reference
voltage of 0.9 V as a function of inverse temperature 1000/T [Colour
figure can be viewed at wileyonlinelibrary.com]
Below a certain temperature, the dark IV curves of these devices no

longer exhibit a realistic diode‐like behavior: the diode current either

disappears completely compared with the shunt current, as exempli-

fied in Figure 5A, or the diode ideality factor increases to unrealistic

values well above 10. This transition occurs in a temperature range

of 100 to 150 K for our samples, which agrees remarkably well with

the lowest temperature where the main capacitance step in the admit-

tance spectra is observed.

We do not find any obvious correlation between IVT behavior

(A or B) and absorber growth temperature, buffer layer type, or alkali

species. Instead, as discussed in more detail at the end of this section,

we find that samples with large activation energies in the capacitance

spectrum, independent of other sample properties, predominantly

show type A behavior with strongly suppressed diode current. Note

that the RbF‐treated high‐temperature absorber representing type A

behavior in Figure 5A is the same sample shown in Figure 1 for the

admittance spectra.

Both graphs in Figure 5 reveal a significant contribution of shunt

currents to the IV characteristics. The shunt current decreases, accord-

ing to increasing shunt resistance, with reduced measurement temper-

ature. The temperature dependence of the shunt resistance at zero

bias voltage does not follow a simple thermally activated behavior,

resulting in curved Arrhenius graphs. Effective activation energies,

estimated from the slope of an Arrhenius graph in a temperature range

of 200 to 300 K, thus differ notably between samples. Most values

however are in a range of 70 ± 30 meV, which is reasonable for CIGS

where up to 3 different acceptor levels between 40 and 150 meV are

expected to be responsible for the bulk doping.35 Shunt currents in

thin‐film solar cells are commonly reported in the literature to be

non‐ohmic, see Dongaonkar et al44 and references therein. Our results

are in agreement with these earlier reports, and we obtain shunt

current densities Jsh roughly obeying a power‐law relation Jsh ∝ Vm

with exponent m in the range 1 to 2. Although the 2 samples shown in

Figure 5, as well as most samples measured in this study, differ

slightly in magnitude as well as voltage and temperature dependence

of the shunt resistance, the main difference in forward current stems

from a different behavior of the diode current. In Figure 5, this is evi-

denced by the severe drop of current density measured at voltages

above +0.8 V.

For a more quantitative analysis, we look at the dark IV curves in

high forward bias, where shunt currents are negligible at room temper-

ature. We find that the forward current cannot be adequately

described over the full voltage range by a simple analytical model,

assuming just a junction diode and ohmic series and shunt resistances.

More elaborate device models accounting for transport barriers can

certainly be devised and applied to these measurements, but they

would necessarily be more complex and contain many free parameters

and would thus lead to unreliable fitting results. Accordingly, we do

not attempt to extract the fundamental device parameters by fitting

the data for all temperatures. We rather discuss the temperature evo-

lution of the shape of the IVT curves and compare our observations

with numerical device simulations in Section 6. We estimate the

blocking of the diode current from the temperature‐dependent dark

current density at a fixed reference voltage of Vref = 0.9 V. This

voltage was chosen high enough to ensure a dominant diode current
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at high temperatures, but low enough to limit the impact of current

saturation at high bias. Our choice of reference voltage is ultimately

arbitrary, but the impact on the extracted activation energies appears

to be fairly small. For example, even a choice of 1.2 V as reference

voltage yields comparable activation energies within a range of

±15%. The insets in Figure 5 show the natural logarithm of the corre-

sponding dark current density, ln (J0.9V), as a function of inverse tem-

perature 1000/T. The current is evidently thermally activated, and the

activation energy (circles in Figure 6) is obtained from a linear fit to the

data shown in the insets. Data at low temperatures where the forward

current starts to level off with temperature, presumably due to the

impact of shunt resistance, is excluded from the fit.

An alternative approach to describe the current blocking is by

means of the effective series resistance, defined as the inverse

slope of the IV curve, Rs = dV/dJ, at high forward bias (squares in

Figure 6). Here, we again chose a fixed reference voltage, at 1.2 V,

in a voltage range where resistive effects clearly limit the diode cur-

rent. This approach provides a figurative model for the drop in diode

current and would be straightforward to implement in a numerical

diode model. It is worth pointing out, however, that this effective

series resistance is just a model parameter to describe the behavior

of the diode current and is different from the “true” ohmic series resis-

tance of the device. This differentiation is obvious from the admit-

tance spectra, where the ohmic series resistance is given by the

high‐frequency limit of the real impedance. The high‐frequency

impedance only shows a weak temperature dependence and is below

5 Ωcm2 for all measurements, much lower than effective series resis-

tance values up to 5 kΩcm2 for some devices at low temperatures.

This clearly indicates that the effective series resistance, as defined

above, must have a capacitive component and thus might be related
FIGURE 6 Correlation between the activation energies determined
from IVT measurements (squares: effective series resistance Rs,
circles: dark current density Jd) and from the admittance spectrum.
The color code specifies the alkali species, the solid blue line
represents a 1:1 correlation. The red dotted line separates devices
showing type A and B IVT behavior. Only the activation energies of
the main capacitance step are shown for each sample. Data marked
with the blue asterisk could be outliers (see main text) [Colour figure
can be viewed at wileyonlinelibrary.com]
to a barrier or space charge region connected in series with the main

hetero‐junction.

Figure 6 shows the correlation between the activation energies of

the main capacitance step (x‐axis) obtained by ac admittance spectros-

copy, of the effective dc series resistance at a forward voltage of 1.2 V

(y‐axis, squares), and of the dark dc current density at a reference volt-

age of 0.9 V (y‐axis, circles) for samples with different PDTs on both

low‐temperature and high‐temperature absorbers. Colors in Figure 6

represent the alkali species. Most samples exhibit a reasonably good

correlation between all 3 activation energies, indicated by the blue line

in Figure 6 for a 1:1 correlation. This relation supports our hypothesis

that the main admittance step in these samples is indeed related to the

transport properties of the solar cell, rather than deep defects in the

absorber. Such a suppression of the diode current and a drastic

increase in effective series resistance at low temperatures might, for

example, be caused by unfavorable band offsets or non‐ohmic

contacts, which could impede current flow in parts of the device.

The impact of the exact nature and location of a transport barrier on

the magnitude and voltage dependence of the forward current will

be addressed by numerical device simulations in Section 6.

We find that the magnitude of the activation energy determined

from admittance or IVT fully determines the type of IVT behavior, as

indicated by the red dotted line in Figure 6: devices with activation

energies above this line, ie, with high activation energy due to a

considerable transport barrier, all show type A behavior with drastic

suppression of the forward diode current. By contrast, lower

activation energies result in type B behavior exhibiting clear diode‐like

characteristics even at low temperatures. The critical activation energy

for a change from type B to type A IVT behavior in our experiments

appears to be around 150 meV.

Despite the good agreement between all 3 activation energies for

many samples, we observe deviations for 2 types of samples:

• For 2 samples marked with a blue asterisk in Figure 6, the activa-

tion energies of series resistance Rs and diode current Jd agree

remarkably well but are significantly lower than the activation

energy of the main capacitance step. One of these samples is

likely damaged (zero‐bias shunt resistance below 130 Ωcm2) and

thus will be disregarded. For the other sample, the correlation is

nearly perfect if the second capacitance step is taken as reference

instead of the main capacitance step (activation energies approxi-

mately: main and second capacitance steps—200 and 80 meV,

series resistance—90 meV, diode current—100 meV, respectively).

• For most samples with type B IVT behavior, ie, for capacitance

steps with activation energies below 150 meV, the diode current

follows the activation energy of the capacitance step, while the

activation energy of the series resistance (squares in Figure 6) is

significantly lower. Note that this behavior is not universal, and

the activation energy of the effective series resistance is only

reduced for low‐temperature absorbers and a CsF‐treated high‐

temperature absorber, not for any of the other high‐temperature

absorbers. These deviations suggest that transport properties

differ between devices. For example, in low‐temperature devices

with moderate transport barriers in the buffer/window stack, ie,

with low activation energy of the capacitance step, the series
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FIGURE 7 Simulated dark IV characteristics at a temperature of
T = 146 K for different barrier parameters. A, Variation of the
conduction band offsets at the absorber/buffer interface
(ΔEA/B = +0.3 eV, red dash‐dotted line, “spike”), buffer/window
interface (ΔE = −0.2 eV, blue dash‐dotted line, or −0.4 eV, blue
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resistance might be dominated by the bulk or back contact, and

thus show a different activation energy.

The deviations discussed earlier suggest that different types of

barriers might be present in the devices based on processing condi-

tions and alkali species. We also find that the absolute value of the

activation energy differs significantly between samples from different

fabrication runs, even with nominally the same alkali PDT. For exam-

ple, using admittance spectroscopy, we obtain activation energies of

80 and 160 meV, respectively, for 2 RbF‐treated high‐temperature

absorbers. These values again indicate that the transport barrier in

these devices is fairly sensitive to the processing conditions during

device fabrication. Accordingly, our study does not reveal any reliable,

systematic dependence on alkali PDT, because variations between

samples overshadow any differences due to different alkali PDTs.

Although we cannot discern trends between different alkali species,

the activation energies found in this study suggest that the transport

barrier is largest without any alkali species present and appears to

be reduced to varying extent by any alkali PDT.

B/W

dashed line, “cliff”), and without offsets (black solid line). The offset at
the other interface is assumed to be zero. B, Drift‐diffusion (black solid
line) and thermionic emission (red dash‐dotted line) model with ohmic
back contact and drift‐diffusion model with a Schottky contact at the
back (blue dashed line). The conduction band offsets are +0.1 eV at
the absorber/buffer interface and −0.2 eV at the buffer/window
interface. Magenta circles represent a device with (Zn,Mg)O intrinsic
layer instead of i‐ZnO, see Figure 8 for band offsets [Colour figure can
be viewed at wileyonlinelibrary.com]
6 | DEVICE SIMULATIONS

In an attempt to localize the observed transport barrier within the

device, we perform numerical device simulations of the current‐

voltage characteristics of a typical CIGS thin‐film solar cell using

Synopsys Sentaurus‐Tcad. In a first step, we vary the conduction

band offsets at the absorber/buffer (ΔEA/B, “A/B”) and buffer/window

(ΔEB/W, “B/W”) hetero‐interfaces in order to discriminate between

the effects of the respective interface on the IV characteristics. In

these simulations, current transport is modeled with drift/diffusion

equations, and the back contact is assumed to be ohmic. A constant

distributed series resistance of 0.5 Ωcm2 is used at the back contact.

In a second step, we employ different transport models at the front

and rear of the cell: thermionic emission for electrons across the

barrier at the window/buffer interface, and a Schottky contact for

holes at the rear contact, respectively. Further details of these simula-

tions are presented elsewhere.45 The conduction band edge in the

window layer is initially assumed to be continuous, which is represen-

tative of a standard ZnO window stack (ZnO:Al + i‐ZnO). We then

introduce a conduction band discontinuity also within the window

stack in order to describe devices with a (Zn,Mg)O layer instead of

the standard i‐ZnO. Note that our simulation are only exemplary and

aim to qualitatively assess trends in the effect of different interfaces

on the current transport through the device. Due to the large spread

of experimental activation energies, indicating that exact interface

properties are likely sensitive to processing conditions, and due to

the importance of choosing a suitable transport model, see discussion

below, we do not attempt to pinpoint the “correct” quantitative con-

duction band offsets within a specific real device.

Figure 7A shows the simulated dark IV characteristics for a “spike”

at the absorber/buffer interface with a conduction band offset of

ΔEA/B = +0.3 eV (red dash‐dotted line), and a “cliff” at the

buffer/window interface with ΔEB/W = −0.2 eV (blue dash‐dotted line)

and − 0.4 eV (blue dashed line). The offset at the other interface and
within the window (ZnO:Al/i‐ZnO) is assumed to be zero. The solid

black line represents the device without any conduction band offsets.

The sample temperature is set to T = 146 K, where experimental IV

characteristics of all type A devices already show a pronounced sup-

pression of the forward current. The simulations presented in

Figure 7A indeed show that both an absorber/buffer spike and a

buffer/window cliff can have a limiting effect on the forward current,

as observed experimentally.

Simulations of the illuminated IV characteristics (not shown

here45) demonstrate that a conduction band spike at the absorber/

buffer interface mainly acts as an extraction barrier, which results

in a blocked photo‐generated current for voltages below the open‐

circuit voltage Voc, and thus mainly reduces the fill factor. The

absorber/buffer offset ΔEA/B is thus constrained by the experimental

illuminated IV curves, which do not show such a loss in fill factor,45

and ΔEA/B cannot be arbitrarily increased to describe the current

blocking in high forward bias beyond Voc. The cliff at the buffer/

window interface, on the other hand, has virtually no influence on

the photo‐generated current, and high values of ΔEB/W cause a dra-

matic suppression of the forward diode current. Based on these

considerations, the transport barrier observed experimentally in IVT

and admittance measurements is most likely related to conduction

band offsets between the different buffer and window layers in the

front stack.

The above interpretation has 2 shortcomings: the absolute values

of ΔEB/W required to considerably reduce the forward current are

fairly large, significantly exceeding 200 meV, and the curvature of
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the IV characteristics in log‐scale are not well reproduced by the sim-

ulation. We find that both issues can be resolved by the correct choice

of transport model. Solid lines in Figure 7B show simulated IV curves

at T = 146 K in the dark for a moderate choice of conduction band off-

sets of +100 meV at the absorber/buffer interface and −200 meV at

the buffer/window interface. The standard transport model (black

solid line: drift‐diffusion equations, ohmic back contact) predicts a

negligible impact of the conduction band offsets on the IV character-

istics, consistent with the simulations in Figure 7A. Alternatively, we

model electron transport across the potential barrier at the buffer/

window interface based on a thermionic emission process over the

potential barrier formed by the CdS buffer layer. This potential barrier

is most readily apparent from the conduction band edge profile of an

exemplary ZnO:Al/i‐ZnO/CdS/CIGS device plotted in Figure 8 at a

forward bias voltage of 1.2 V (black dashed line, “ZnO”). The resulting

IV characteristics are shown as red dash‐dotted line in Figure 7B.

Based on the thermionic emission model, small conduction band off-

sets of the order of 100 to 200 meV already result in a drastically

reduced forward current. Furthermore, the forward current increases

again after an initial saturation, represented by the upward curvature

of the logarithmic IV characteristics in Figure 7B for voltages above

+1 V, in agreement with the experimental results shown in Figure 5.

The dominant transport barrier observed in our experiments can thus

be adequately described by thermionic emission of electrons across a

potential barrier of approximately 100 to 200 meV, located in the con-

duction band within the window/buffer stack.

So far, we have only considered barriers at the front junction.

Alternatively, the CIGS/Mo back contact might induce a certain band

bending in the CIGS absorber, thus acting as a Schottky barrier at

the back contact. We include a Schottky barrier with the Fermi level

fixed at 145 meV above the valence band edge at the back contact

[blue dashed line in Figure 7B]. This feature causes the diode current

to saturate in forward bias, which results in a significant suppression

of the forward current even for small conduction band offsets at the

front‐side of the device. Note that experimentally we do not observe

a constant saturation current density in forward bias, and a Schottky

contact at the back thus cannot be the sole explanation for the

observed transport barrier.
FIGURE 8 Depth profile of the conduction band edge EC at
T = 146 K and V = 1.2 V for 2 ZnO:Al/i‐layer/CdS/CIGS devices
with different i‐layers: i‐ZnO (dashed black line) and (Zn,Mg)O (solid
red line). The different layers are indicated above the graph; the
asterisk marks the i‐layer [Colour figure can be viewed at
wileyonlinelibrary.com]
In the preceding simulations, we have assumed a window layer

with continuous conduction band, although devices with high‐

temperature absorber in our study feature a ZnO:Al/(Zn,Mg)O

window stack instead of the conventional ZnO:Al/i‐ZnO. For this

configuration, we expect a cliff of −460 meV46 between (Zn,Mg)O

and ZnO:Al for a magnesium fraction of [Mg]/([Mg] + [Zn]) = 0.17

(closest datapoint to a Mg content of 0.15 for our sputter target).

Figure 8 shows the resulting band alignments at a forward voltage of

V = +1.2 V at T = 146 K representative for a (Zn,Mg)O device (red solid

line) and an i‐ZnO device (black dashed line), where we have assumed

an absorber/buffer conduction band offset of +100 meV. Comparing

both band alignment profiles, we find that the buffer/window interface

in the (Zn,Mg)O device no longer impedes electron injection from the

n‐type contact into the absorber, and thus cannot be responsible for

the roll‐over of the dark IV curves. However, the blocking interface is

now rather located within the window stack, between ZnO:Al and (Zn,

Mg)O, resulting in a potential barrier for electron injection similar to

the case of ZnO:Al/i‐ZnO. The simulated dark IV characteristics of this

(Zn,Mg)O device at T = 146 K—assuming again a thermionic emission

model—are shown in Figure 7B by the magenta circles, and indeed also

show a pronounced suppression of forward current. Note that the

forward current does not saturate at high voltages, in contrast to a

Schottky back contact. In fact, we find an exponential increase at

voltages above 1.5 V (not shown in Figure 7) for these parameters,

similar to the trend for the i‐ZnO device [red dash‐dotted line in

Figure 7B]. The forward current is significantly reduced compared with

a i‐ZnO device, because the electron injection barrier is higher due to

the high energy of the (Zn,Mg)O conduction band edge for the

chosen magnesium fraction of 0.17. For lower magnesium content,

the (Zn,Mg)O conduction band edge shifts to lower energies46 and the

current blocking effect is less severe.

The preceding discussion clearly demonstrates that various

types of transport barriers can limit the forward current, and their

impact on the current‐voltage characteristics depends critically on

the exact conduction band offsets and transport model employed in

the simulation. Accordingly, small variations in the exact band align-

ment or material properties, for example caused by differences in

composition or intermixing at the interfaces,5 will likely result in dis-

tinctly different transport properties. Indeed, we find that the experi-

mental type A/B IVT behavior and experimental activation energies

differ between samples, even for nominally identical processing condi-

tions, as shown in Section 5. Thus, we have to be aware that the exact

band diagram will most likely not be identical for different samples,

and that the exact value of activation energies deduced from admit-

tance or IVT measurements will be difficult to interpret correctly. Nev-

ertheless, our simulations qualitatively show that current blocking in

forward bias is controlled by an injection barrier for electrons, which

impedes flow of electrons from the n‐doped ZnO:Al across i‐layer

and CdS into the CIGS absorber. Such an injection barrier takes the

form of a conduction band cliff, which could in principle be located

at any interface between ZnO:Al and CIGS absorber. For reasonable

conduction band energies, we find that the limiting interface is located

between i‐ZnO and CdS (window/buffer) for i‐ZnO devices, and

between ZnO:Al and (Zn,Mg)O (window/window) for (Zn,Mg)O

devices, respectively.
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In both cases, the transport barrier is located within the buffer/

window stack and thus formed after CIGS growth and alkali PDT. On

one hand, any variation or treatment affecting the absorber bulk or

surface might still somewhat influence the subsequent growth of the

buffer/window stack, and thus modify its actual transport properties.

The specific IVT characteristics of the device might thus also depend

on absorber properties, even if the limiting interface is entirely located

within the buffer/window stack. On the other hand, modifications of

the absorber surface due to alkali PDT will only indirectly affect the

dominant transport barrier, and small variations in the buffer/window

stack itself, unrelated to the alkali PDT, could obscure any influence of

the alkali elements. This prediction is in agreement with our experi-

mental results in Section 5, where we did not observe any obvious

relation between alkali treatments and experimental activation ener-

gies obtained from admittance and IVT measurements, corroborating

that the transport characteristics of the device are mainly sensitive

to processing parameters unrelated to the choice of alkali PDT.
7 | CONCLUSIONS

The activation energies of capacitance steps observed in admittance

spectroscopy were compared for a wide range of high‐efficiency

absorbers subjected to different alkali PDTs. The activation energy

of a freeze‐out at temperatures below 100 K was found to be

55 ± 10 meV, which is consistent with typical values of acceptor levels

(carrier freeze‐out) or grain‐boundary barrier heights (mobility freeze‐

out). The activation energies and thermal prefactors of capacitance

steps occurring at higher temperatures were found to agree reason-

ably well with the N1 signature established in literature. Remarkably,

this agreement was observed even for 2 separate capacitance steps

resolved in the same admittance spectra, and thus cannot be attrib-

uted to a common defect signature. Photoluminescence spectra

recorded at 10 K do not show any significant PL signal at transition

energies corresponding to deep defects, and thus confirm that deep

defects play a minor role in these devices. Because deep defects are

negligible also in untreated absorbers, alkali PDTs do not appear to

alter the deep defect concentration significantly.

Temperature‐dependent current‐voltage characteristics were

recorded to study transport barriers in the devices, which revealed a

suppression of the forward current at low temperatures in all devices.

In many cases, this suppression is drastic, and the IV characteristics no

longer show an exponential diode‐like behavior at low temperatures.

The activation energy of the temperature‐dependent dark current

density at fixed forward bias was shown to correlate with the activa-

tion energy of the main capacitance step in admittance spectroscopy.

For devices showing a pronounced suppression of the forward cur-

rent, the same correlation also holds true for the activation energy

of the effective series resistance, given by the slope of the IV curve

in strong forward bias. The shape of the experimental IV curves could

be reproduced in numerical device simulations by assuming a trans-

port barrier caused by unfavorable conduction band offsets in the

buffer/window stack. Our simulations suggest that the IVT character-

istics in forward bias are most sensitive to a cliff‐like conduction band

offset of a few hundred meV at the buffer/window interface (eg, for a

ZnO:Al/i‐ZnO window) or within the window stack (eg, for a ZnO:Al/
(Zn,Mg)O window). Thermionic emission over this barrier needs to be

taken into account to reproduce the correct shape of the experimental

IVT characteristics.

Combining all evidence, we find that the main capacitance step

observed in admittance spectroscopy for all samples cannot be attrib-

uted to a defect but appears to be caused by an electron injection bar-

rier at the front of the device. Due to the reasonable agreement of this

capacitance step with reported values for the N1 signature commonly

observed in CIGS solar cells, our study provides further evidence to

identify the N1 signal with a transport barrier. Such a barrier might

originate from a cliff‐like conduction band alignment between CdS

and ZnO, or between ZnO:Al and (Zn,Mg)O window layers, although

we cannot exclude additional transport barriers in the device at differ-

ent locations. Our experimental results support the prediction of a

dominant injection barrier located entirely within the buffer/window

stack, because we do not see a consistent trend of activation energies

with alkali PDT despite experimental activation energies varying over

a range of 70 to 250 meV. Furthermore, nominally identical samples

from different processing runs resulted in different activation ener-

gies. We conclude that the detailed barrier properties only indirectly

depend on the absorber properties and are mainly sensitive to the pro-

cessing conditions during buffer/window deposition. The effects of

alkali treatments in our study are thus difficult to disentangle from

small process variations.

Our results highlight that the electronic effects of alkali treat-

ments of CIGS thin‐film absorbers—at the moment—are not readily

discernable by standard electrical measurements. We find that such

measurements are heavily influenced by the buffer/window stack,

which modifies or obscures any contribution from the absorber bulk

or surface. Accordingly, prevailing models of un‐treated and alkali‐

treated CIGS absorbers need to be carefully reconsidered, taking into

account conduction band offsets at the front of the device.
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