Supporting Information for # Colloidal Bismuth Nanocrystals as a Model Anode ## Material for Rechargeable Mg-Ion Batteries: ### Atomistic and Mesoscale Insights Kostiantyn V. Kravchyk, ^{1,2} Laura Piveteau, ^{1,2} Riccarda Caputo, ^{1**} Meng He, ^{1,2} Nicholas P. Stadie, ^{1,2***} Maryna I. Bodnarchuk, ²Rainer T. Lechner, ³ and Maksym V. Kovalenko^{1,2*} ¹Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zurich, CH-8093, Switzerland. ²Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland. ³Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben, Austria. KEYWORDS: mg-ion battery, magnesium, energy storage, nanocrystal, synthesis. ^{*}Email: <u>mvkovalenko@ethz.ch</u>. ^{**}Current address: ICQMS, International Centre for Quantum and Molecular Structures, Department of Physics, Shanghai University, China. ^{***}Current address: Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA. **Table S1**. Lattice parameters of Mg, Bi, and the trigonal and cubic phases of Mg₃Bi₂ calculated using different functionals. The lattice parameters, in Å, and the fractional atomic positions are reported in the hexagonal lattice representation for Bi and α -Mg₃Bi₂, for which the lattice angles are 90, 90, and 120 degrees. | Species | Functional | Lattice
Parameter
a, c (Å) | Atomic Positions | Reference
Lattice
Parameter a, c
(Å) | |---|--|--|--|---| | Mg
P6 ₃ /mmc
(IT No 194) | GGA-PBE
GGA-PBE-D
LDA-CA-PZ
LDA-CA-PZ-
OBS | 3.338, 5.484
3.215, 5.278
3.267, 5.368
3.215, 5.283 | 1/3, 2/3, 1/4 | 3.22, 5.23 1 | | Bi <i>R-3m</i> (IT No 166) | GGA-PBE
LDA-CA-PZ
LDA-CA-PZ-D | 4.498, 11.666
4.400, 11.088
4.391, 11.040 | 0, 0, 0.2352
0, 0, 0.2387
0, 0, 0.2391 | 4.535, 11.814 ² | | α-Mg ₃ Bi ₂ P-3m ₁ (IT No 164) | GGA-PBE | 4.784, 7.513 | Mg (1a) 0, 0, 0,
Mg (2d) 1/3, 2/3, 0.6295
Bi (2d) 1/3, 2/3, 0.2204 | _ | | | GGA-PW91 | 4.771, 7.522 | Mg (1a) 0, 0, 0
Mg (2d) 1/3, 2/3, 0.6259
Bi (2d) 1/3, 2/3, 0.2213 | 4.666, 7.401 ³ | | | LDA-CA_PZ | 4.667, 7.323 | Mg (1a) 0, 0, 0
Mg (2d) 1/3, 2/3, 0.6305
Bi (2d) 1/3, 2/3, 0.2192 | | | | LDA-CA-PZ-D | 4.627, 7.255 | Mg (1a) 0, 0, 0
Mg (2d) 1/3, 2/3, 0.6301
Bi (2d) 1/3, 2/3, 0.2177 | | | β-Mg₃Bi₂ <i>Ia-3</i> (IT No 206) | LDA-CA_PZ | 13.611 | Mg (48e) 0.1099, 0.3665, 0.1276 Bi (8a) 0, 0, 0 Bi (24d) 0.2667, 0, 1/4 | none | **Figure S1**. α -Mg₃Bi₂ structure, viewed along the crystallographic a axis. The Mg atoms in the octahedral sites are represented in bronze and those in the tetrahedral sites in red. **Figure S2.** A view of β-Mg₃Bi₂ structure along the crystallographic b axis. The Mg atoms, equivalent by symmetry, are located in the tetrahedral sites and shown in bronze. The shortest Mg-Mg distance is along the crystallographic **a**-direction, with a value of 3.587 Å. **Figure S3.** TEM images of (a) 10 nm and (b) 18 nm Bi NCs; (c) HR-TEM image of a 10 nm Bi NC; (d) TEM image of a crystallite of the microcrystalline bulk Bi; (g) powder XRD patterns of 10 nm and 18 nm Bi NCs. Red vertical lines mark the reflections from the bulk Bi. **Figure S4**. The calculated enthalpy of absorption of Mg in Bi, expressed in kJ/mol of Mg. The reference states are the elemental solid state structures of Mg and Bi. The red line indicates the lowest energy structures at each composition. **Figure S5.** Cyclic voltammograms for 10 nm Bi NCs, 18 nm Bi NCs and bulk Bi measured at scan speed of 0.1 mV s^{-1} during the 10^{th} cycle. **Figure S6**. The cell volume as a function of magnesium insertion into the hexagonal structure of bismuth, reported per Mg_xBi formula unit. Accordingly, the actual unit cell volumes of the two polymorphs of Mg_3Bi_2 (trigonal and cubic) are found by multiplying those of $Mg_{1.5}Bi$ by 2: 138.13 ų and 157.61 ų, respectively. **Figure S7.** Powder XRD patterns of 18 nm Bi NCs after synthesis, electrode preparation (sample S1), electrode hydrazine treatment (sample S2), the first charge (samples S4) and the 100th charge (sample S5). Black vertical lines mark the locations of reflections in the diffraction pattern of bulk Bi; the black curves are the fits obtained by Rietveld refinement. Mean crystallite size may be calculated by the following Scherrer-type formula: $$D(\text{Å}) = \frac{180K\lambda(\text{Å})}{\pi\sqrt{I_g}}$$ where Ig is a parameter obtained by Rietveld refinement and accounts for the isotropic peak broadening due to domain size, K is the shape factor and λ is the wavelength of the X-rays (1.5405 Å). **Figure S8.** TEM images of 18 nm Bi NCs after (a) electrode preparation, (b) hydrazine treatment, (c) the 1st electrochemical discharge, and (d) the 100th electrochemical discharge. **Figure S9.** Schematic of the size evolution of 18 nm Bi NCs upon electrode preparation, hydrazine treatment, 1^{st} discharge, and 100^{th} discharge, as informed by SAXS analysis. **Figure S10**. Cycling stability (left) and galvanostatic voltage profiles (right) of Mg-ion half-cells using Bi anodes composed of 18 nm Bi NCs at a current rate of 20C ($I = 7.7 \text{ A g}^{-1}$). Cycle number is indicated in the upper right. **Figure S11.** Cycling stability of anode-limited full cells (Bi $-Mo_6S_8$) with $Mg(BH_4)_2/LiBH_4$ and $Mg(TFSI)_2$ as the electrolyte, measured at a current rate of 1C (0.384 A g⁻¹). **Figure S12.** Cyclic voltammetry of a Cu current collector measured in $Mg(BH_4)_2/LiBH_4$ electrolyte at a scan rate of 5 mV s⁻¹. **Figure S13**. Electrochemical impedance analysis of Mg-ion half-cells using Bi anodes composed of 18 nm Bi NCs after the 1st, 10th, and 50th electrochemical cycles. The semicircles in the high and medium-to-low frequency regions represent the resistances associated with a passivation film and the charge-transfer process, respectively. The oblique line in the low-frequency region corresponds to Warburg impedance. #### References - 1. Hull, A. W., Crystal Structures of Common Elements. *Phys. Rev.* **1917**, *10*, 661-697. - 2. Barrett, C. S., The Structure of Bismuth at Low Temperatures. *Aust. J. Phys.* **1960**, *13*, 208-222. - 3. Zintl, E.; Husemann, E., Bindungsart und Gitterbau binaerer Magnesiumverbindungen. (12. Mitteilung ueber Metalle und Legierungen). *Z. Phys. Chem., Abt. B* **1933,** *21*, 138-155.