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Non-invasive, multi-parameter methods to estimate core body temperature offer several
advantages for monitoring thermal strain, although further work is required to identify
the most relevant predictor measures. This study aimed to compare the validity of an
existing and two novel multi-parameter rectal temperature prediction models. Thirteen
healthy male participants (age 30.9 ± 5.4 years) performed two experimental sessions.
The experimental procedure comprised 15 min baseline seated rest (23.2 ± 0.3◦C,
24.5 ± 1.6% relative humidity), followed by 15 min seated rest and cycling in a climatic
chamber (35.4 ± 0.2◦C, 56.5 ± 3.9% relative humidity; to +1.5◦C or maximally 38.5◦C
rectal temperature, duration 20–60 min), with a final 30 min seated rest outside the
chamber. In session 1, participants exercised at 75% of their heart rate maximum (HR
max) and wore light athletic clothing (t-shirt and shorts), while in session 2, participants
exercised at 50% HR max, wearing protective firefighter clothing (jacket and trousers).
The first new prediction model, comprising the input of 18 non-invasive measures, i.e.,
insulated and non-insulated skin temperature, heat flux, and heart rate (“Max-Input
Model”, standard error of the estimate [SEE] = 0.28◦C, R2 = 0.70), did not exceed
the predictive power of a previously reported model which included six measures and
no insulated skin temperatures (SEE = 0.28◦C, R2 = 0.71). Moreover, a second new
prediction model that contained only the two most relevant parameters (heart rate
and insulated skin temperature at the scapula) performed similarly (“Min-Input Model”,
SEE = 0.29, R2 = 0.68). In conclusion, the “Min-Input Model” provided comparable
validity and superior practicality (only two measurement parameters) for estimating rectal
temperature versus two other models requiring six or more input measures.

Keywords: core body temperature, rectal temperature, skin temperature, heat flux, heart rate, exercise, heat
strain, prediction model
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INTRODUCTION

Occupational or sports-related physical activities in the heat
constitute major challenges to thermal homeostasis (Taylor, 2006;
Gonzalez-Alonso et al., 2008; Nybo, 2008). Accurate detection
of heat strain is important because an excessive increase in
core body temperature adversely affects physical (Cheuvront
et al., 2010) and cognitive performance (Nybo, 2008), places
greater demands on the cardiovascular system, and can lead
to hyperthermia and organ failure. Thus, early detection of
excessive perturbations of core body temperature is advantageous
for individuals subjected to extreme conditions and facilitates
early implementation of interventional cooling strategies to avoid
exertional heat stroke (Epstein and Roberts, 2011).

Information about core body temperature is central to the
quantification of heat strain. However, common measurement
procedures (e.g., esophageal, rectal, and gastrointestinal
temperature) can lack practicality outside of the laboratory
environment, particularly during prolonged use. Thus, valid
and non-invasive surrogate measures for monitoring heat
strain are required. Previous studies presented mathematical
prediction models to estimate core body temperature using
non-invasive physiological measurement parameters, including
skin temperatures and heat fluxes at various body sites, heart
rate, breathing frequency, accelerometry, and environmental
climatic variables such as air temperature, radiant temperature,
relative humidity, and wind speed (Buller et al., 2008, 2011,
2013, 2015; Yokota et al., 2008, 2012; Niedermann et al., 2014b;
Richmond et al., 2015; Mazgaoker et al., 2017; Laxminarayan
et al., 2018; Looney et al., 2018; Welles et al., 2018). However,
further research is warranted to identify the most relevant
predictor variables and to examine the general validity of these
models.

Skin temperature was found to provide relevant information
for estimating core body temperature, although the use of single
skin temperatures underestimated rectal temperature (Mendt
et al., 2017). In addition to conventional skin temperature
measurements, the use of insulated skin temperatures
might improve prediction accuracy. Thereby, insulating the
temperature sensors serves to mitigate environmental effects and
prevent local heat loss at the measured site and, in this way, may
better reflect the temperature of deeper tissues (Richmond et al.,
2015). Insulated skin temperatures have been used to estimate
muscle tissue temperature (Brajkovic et al., 2006) and core body
temperature over bony (spine; Richmond et al., 2013, 2015) or
arterial sites (carotid; Jay et al., 2013). Nevertheless, in these
studies, only one site was used, while the use of several sites
together may improve a model’s predictive power.

Niedermann et al. (2014b) suggested that heat flux
measurements need to be incorporated for an accurate
prediction of rectal temperature. They used six parameters
in their model, including three skin temperature and two heat
flux measurement sites, as well as heart rate. However, as
their model underestimated core body (rectal) temperature for
prolonged applications, they proposed to include additional
measurement sites, particularly for heat flux measurements.
Heat flux was a main predictor of core body temperature also

in other studies (Buller et al., 2011; Xu et al., 2013; Welles et al.,
2018), and was applied to investigate body heat balance under
various conditions (Flouris and Cheung, 2009; Kenny et al., 2009;
Basset et al., 2011). Although a prediction model comprising
multiple measurement parameters at various body sites might
have advantages in terms of validity, a model incorporating
as few parameters as possible is consistent with the concept
of parsimony and has practical measurement advantages [e.g.,
fewer sensors required lessens issues with loss of sensor signals,
conflicts between sensors, or other interferences that affect signal
quality (Yokota et al., 2012; Looney et al., 2018)].

Therefore, the aims of this study were (1) to define the validity
of a novel multi-parameter model, comprising 18 non-invasive
measurements at various body sites to predict rectal temperature
under two different exercise and clothing conditions in a hot and
moderately humid environment, as well as at rest at normal room
temperature; (2) to compare the novel prediction model, which
includes additional measures of heat flux and insulated skin
temperature at various body sites, with a previously published
model (Niedermann et al., 2014b); and (3) to characterize the
extent to which a stepwise reduction of the number of measured
parameters, with the goal to improve practicality, affects the
validity of the initial prediction model.

We hypothesized, that (1) the proposed model achieves
the acceptance criterion of < 0.5◦C deviation between the
predicted and measured rectal temperature (Gunga et al.,
2009; Yokota et al., 2012; Niedermann et al., 2014b); (2)
the addition of heat flux and insulated skin temperature
measures improves prediction validity in comparison with
our previous model (Niedermann et al., 2014b); and (3)
the validity of an adapted/reduced model, including fewer
parameters for optimized practicality, still is in an acceptable
range (i.e., deviation between predicted and measured rectal
temperature < 0.5◦C).

MATERIALS AND METHODS

Study Design and Participants
This study comprised one preliminary session to assess
participants’ characteristics and two experimental sessions to
collect data for establishing models for the non-invasive
prediction of rectal temperature. Data collection was performed
at the Swiss Federal Laboratories for Materials Science and
Technology, Empa, St. Gallen, Switzerland. This study was
carried out in accordance with the recommendations of the
Human Research Act and the Human Research Ordinance
(The Swiss Federal Council, 2013), and the principles of Good
Clinical Practice with written informed consent from all subjects.
The study protocol was approved by the ethics committee
of Eastern Switzerland (Project-ID: 2017-01376, EKOS 17/129,
SNCTP000002592) and performed in accordance with the
Declaration of Helsinki.

The participants were recruited from September to November
2017 through advertisements at the city’s firefighter association,
the local universities, and at fitness centers; testing sessions
were performed between November 2017 and March 2018. For
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eligibility, participants had to be male, between 18 and 45 years of
age, apparently healthy (passed health screening questionnaire),
non-smokers, physically active (i.e., regularly for at least twice
a week), and sign informed consent. Because factors like
age, gender, and health status may influence thermoregulatory
response, a homogeneous group, i.e., adult active males, was used
in this study (Kaciuba-Uscilko and Grucza, 2001; Gagnon and
Kenny, 2012; Cheuvront, 2014; Cramer and Jay, 2014).

Experimental Protocol
The preliminary session comprised the participants’ information
and screening with a pre-activity health questionnaire modified
from Thomas et al. (1992), assessments of body weight and
height, % body fat, as well as an incremental maximal exercise test
on the cycling ergometer to determine maximal heart rate and
exercise intensity at 50 and 75% heart rate, respectively. Initial
resistance was set at 70 W and was increased by 30 W every 2 min
until volitional fatigue of the participant. Participants were asked
not to consume any alcohol or caffeine 12 h prior to the sessions.

During the experimental sessions, heat strain was induced by
exposure to a combination of environmental heat and physical
activity. The two experimental sessions (heat sessions 1 and 2)
were completed at the same time of day and at least 7 days
apart to mitigate acclimation after session 1. The sessions differed
in the intensity of exercise and the thermal insulation of the
clothing worn, which were selected to enable the development
of a prediction model for rectal temperature applicable under
various conditions. In heat session 1, participants exercised at
75% of their heart rate maximum (HR max) and wore light
athletic clothing (t-shirt and shorts), while in heat session
2, participants exercised at 50% HR max, wearing protective
firefighter clothing (jacket and trousers, worn in addition to the
t-shirt and shorts from session 1; Viking Life-saving Equipment,
Denmark, fulfilling performance requirements according to EN
469:2005, level 2; Figure 1). The environmental conditions in
the climatic chamber were 35.4 ± 0.2◦C, 56.5 ± 3.9% relative
humidity (RH), and ∼0.5 m/s air velocity. Outside the chamber,
climatic conditions were 23.2 ± 0.3◦C and 24.5 ± 1.6% RH. The
experimental procedure is depicted in Figure 2 and started with
a 15-min baseline seated rest outside the chamber, followed by
15 min seated rest and between 20 – 60 min cycling inside the
chamber (exercise was stopped either when rectal temperature
increased ≥ 1.5◦C above baseline or ≥ 38.5◦C (ACGIH, 2017;
Methner and Eisenberg, 2018), at volitional fatigue, or after
maximally 75 min), and ended with another period of 30 min
seated rest outside the chamber. Participants were given 0.2 l of
drinking water every 15 min, the first as they entered the climatic
chamber. The water was tempered for about 30 min inside the
chamber prior to the beginning of the experiment.

Measurements
Primary Outcome Measures
Rectal temperature served as the reference measurement and
was measured using a sterile rectal thermometer (type DS18B20,
MSR Electronics, Switzerland; 4 – 6.5 mm diameter, 104 mm
length; polyolefin cover) 10 cm past the anal sphincter. The
following parameters were measured to establish a predictive

FIGURE 1 | Participant cycling at 50% HR max, wearing protective firefighter
clothing during heat session 2.

model for rectal temperature: insulated skin temperature using
MSR thermistors (type DS18B20, MSR Electronics, Switzerland;
2 mm× 5 mm× 9 mm; polyolefin cover) attached to the sternum
(upper part), scapula (inferior angle), ribs (no. 8/9), and radial
artery; uninsulated skin temperature at the same body sites and
additionally, using iButtons (type DS1922L, Maxim Integrated,
United States; ∼16 mm diameter, 6 mm height; stainless steel
outer), on the forehead (center), upper arm (1/2 distance
acromion – radial head), forearm (1/2 distance olecranon – ulnar
head), back of the hand (center), thigh (1/2 distance inguinal
crease – patella margo superior), calf (at maximal circumference);
skin heat flux on the sternum (upper part), scapula (inferior
angle), rib (no. 8/9) using gSKIN heat flux sensors (type XM
26 9C, greenTEG, Switzerland; 0.5 mm × 4.4 mm × 4.4 mm;
aluminum sensing area); heart rate from 2-lead ECG data
acquisition via ECG chest belt (Unico swiss tex, Switzerland) and
Faros loggers (Bittium Biosignals, Finland). The temperature and
heat flux sensors are shown in Figure 3. All data were recorded at
0.1 Hz sampling rate.
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FIGURE 2 | Experimental procedures for heat sessions 1 and 2. HR max, maximal heart rate; RH, relative humidity; S1, heat session 1; S2, heat session 2.

FIGURE 3 | Temperature and heat flux sensors used in the study (scale in mm). From top down: iButton, heat flux sensor, non-insulated temperature sensor,
insulated temperature sensor (side in contact with the skin is facing upward), and rectal temperature sensor.

Temperature sensors (MSR thermistors, iButtons) were
calibrated at steady states between 15◦C and 40◦C (5◦C intervals)
using a calibration chamber (OptiCal, Michell Instruments,
United Kingdom). The heat flux sensors were calibrated using
a guarded hotplate apparatus in a double plate configuration
which generated a heat flux across the sample over the range of
50 – 180 W/m2 (12 steps). The heat flux sensors were calibrated
in combination with the tape attachment (Transpore surgical
tape 1527-2, 3M, United States) (Niedermann et al., 2014a).

The skin was cleaned with alcohol wipes and shaved where
necessary. Temperature sensors were attached using a single
layer of Hypafix tape (BSN Medical, Germany) and heat
flux sensors were attached using a single layer of Transpore
tape. Insulated skin temperature sensors were insulated using
a 10 mm × 30 mm × 30 mm piece of closed cell foam
(density = 180.38 kg/m3) and attached with Hypafix tape.

Secondary Outcome Measures
Participants’ characteristics included measures of standing body
height, body weight (ID5 Multi range scale, Mettler Toledo,
Switzerland), and % body fat calculated based on the sum of three
skin folds (chest, abdomen, and thigh) assessed with a Harpenden
skin-fold caliper (Baty International, United Kingdom) and
the regression equation from Jackson and Pollock (1978).
Additionally, body weight (wearing only sport shorts) was
measured before and after heat sessions 1 and 2 in order to
estimate sweat loss. During the maximal exercise test in the
preliminary session, heart rate was measured using a Polar
RS800CX heart rate monitor (Polar Electro, Finland).

Data Processing
For the heart rate data, a moving average filter that included
a 10-min range (=60 time points) before the time point of
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prediction was applied in order to prevent rapid fluctuations
in the prediction model and to better reflect gradual increase
of rectal temperature with increasing metabolic rate. Calculated
calibration factors were applied to the temperature and heat flux
data. Heat flux data were filtered applying a digital zero-phase
second order low-pass Butterworth filter with a cutoff frequency
of 0.2 Hz. Furthermore, heat flux data were visually inspected
for artifacts and signal sections above 300 W/m2 and below
−100 W/m2 were removed. Finally, a moving average filter
including the values of the previous 6.7 min (=40 time points)
was applied to consider the history of heat gain or heat loss
which is measured with heat flux. No filtering or smoothing of
the temperature data was applied as no artifacts were evident.

Cross-correlation analysis (maximum number of lags set at
200) was used to identify 12.5 min as the average delay of peak
rectal temperature compared to the peak skin temperatures and
heart rate (number of lags = 75). Therefore, the first 12.5 min of
the rectal temperature data were removed and the time delay was
taken into account for rectal temperature prediction, such that
the value for rectal temperature at 12.5 min corresponded with
the values of the skin temperatures and heart rate at the beginning
of the experiment.

In the cases where data were missing due to sensor
malfunctioning, detachment, or artifacts, all other measured
parameters at the same time points were excluded from
further analysis in order to obtain complete data sets at any
remaining time point of the experiment. After this procedure,
outliers were identified and removed as defined by Mahalanobis
distance > 42.31 (according to χ2 critical values for df = 18 and
p = 0.001) and by standardized residuals < −3 or >3 (Field,
2018). Matlab 2017b, IBM SPSS Statistics 25, and Microsoft Excel
software were used for data processing.

Statistical Analysis
The whole data set was split by randomly dividing the
participants into two groups for statistical analysis. The data set
of one group was used for the development and the data set of the
other group for the validation of the prediction model. Statistical
significance was accepted at the p < 0.05 level and a trend was
identified at p < 0.10. IBM SPSS Statistics 25 and Microsoft Excel
software were used for statistical analysis.

Prediction Model Development With Principal
Component Analysis and Multiple Linear Regression
For the development of the prediction model, analyses were
applied on the model development data set. Skin temperatures
and skin heat fluxes measured at different body sites exhibited
a linear relationship. Hence, the parameters could not be
used directly to calculate a multiple linear regression model
to predict rectal temperature, as this procedure requires
uncorrelated parameters to avoid multicollinearity (Field,
2018). A principal component analysis (PCA) was therefore
performed to reduce the number of 18 measured predictor
parameters into a smaller set of uncorrelated components.
Components with eigenvalues larger than Kaiser’s criterion
of 1 were included. The resulting uncorrelated components
were applied in a multiple linear regression analysis (forced

entry method) to generate a first predictive equation for
rectal temperature to address hypothesis 1 (“Max-Input
Model”).

In order to improve practicality of the prediction model
(hypothesis 3), a reduction of the prediction parameters was
performed by removing one parameter of each pair of highly
correlated parameters (r > 0.9). Thereby, the parameter showing
the higher significance in a multiple regression analysis (stepwise
method) was retained. This led to a set of uncorrelated
parameters that were applied in a multiple linear regression
analysis (forced entry method) and produced a first “reduced”
predictive equation for rectal temperature. Subsequently, the
number of parameters was further reduced in several steps by
removing the least important parameters (=lowest standardized
β value in regression analysis) one by one. This procedure
was performed as long as the resulting prediction equations
produced acceptable predictive values, i.e., standard error of the
estimate (SEE) < 0.5◦C (Gunga et al., 2009; Yokota et al., 2012;
Niedermann et al., 2014b) and drop in R2 adjusted did not exceed
0.05 (“Min-Input Model”).

Prediction Model Validation
In order to validate the newly generated prediction equations,
they were applied to the data sets of the participants that were
put aside for validation purposes of the prediction model as
stated above. The first prediction equation was used to address
hypothesis 1, while the reduced prediction equations were used
to address hypothesis 3. The same validation data set was
also applied to the previously published prediction model from
Niedermann et al. (2014b) to address hypothesis 2.

For the calculation of the component scores that are to be
inserted in the prediction regression equation, the component
score coefficients from PCA were used according to the following
Equation 1 (x, measured value of parameter; x̄, mean value of
parameter; SD, standard deviation of parameter):

component score =
∑

coefficientparameter

×
xparameter − x̄parameter

SDparameter
(1)

To account for a potential systematic offset between the
predicted and measured rectal temperature values, an average
offset was calculated over all validation participants for the whole
experimental duration and subtracted from the predicted value.
These values can be added to the prediction equations when
the models are applied elsewhere in data sets where no measure
of rectal temperature is available. The validity of the prediction
models was investigated by calculating the SEE and R2 adjusted
from the measured and predicted rectal temperature to determine
the quality of correspondence.

RESULTS

Twelve participants completed both heat sessions 1 and 2,
while one participant completed only heat session 1 (Figure 4).
Participants’ and experimental characteristics are shown in

Frontiers in Physiology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 1780

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01780 December 6, 2018 Time: 15:5 # 6

Eggenberger et al. Prediction of Core Body Temperature

FIGURE 4 | Flow diagram of the participants. HR max, maximal heart rate.

Table 1. After removal of sections with sensor malfunction,
detachment, artifacts, and outliers, 10’048 time points (64% of the
initially assessed 15’752 time points) with complete data for every
parameter were retained for the development and validation
procedure of the prediction model.

Prediction Model Development With
Principal Component Analysis and
Multiple Linear Regression
“Max-Input Model”
Using the model development data set, PCA was conducted on the
18 non-invasive prediction parameters with orthogonal rotation
(varimax). Sampling adequacy was verified with the Kaiser–
Meyer–Olkin measure, KMO = 0.92, indicating “marvelous”
according to Kaiser and Rice (1974), and all KMO values
for individual items were > 0.77, which is well above the
acceptable limit of 0.5 (Kaiser and Rice, 1974). Bartlett’s test
of sphericity, χ2(153) = 179313.57, p < 0.001, indicated that
correlations between items were sufficiently large for PCA.
Two components had eigenvalues larger than Kaiser’s criterion
of 1 and in combination explained 86.8% of the variance.
The scree plot showed inflections that would justify retaining
these two components. Table 2 shows the component loadings
after rotation and component score coefficients. The items
clustering on the same components indicate that component 1
represents skin temperature measures and component 2 skin
heat flux measures, while heart rate contributed similarly to both
components. Multiple linear regression analysis (forced entry
method) was performed with the component score coefficients

and produced a predictive equation for rectal temperature
reported in Table 3.

“Min-Input Model”
A first reduction of the maximal number of 18 input parameters
revealed seven uncorrelated parameters which were used to
build a multiple linear regression equation based on the
development data set. The seven included parameters comprised
heart rate (standardized β = 0.527, t = 34.88, p < 0.001),
insulated temperature at the scapula (standardized β = 0.246,
t = 9.58, p < 0.001), non-insulated temperature at the radial
artery (standardized β = −0.203, t = −11.76, p < 0.001), arm
(standardized β = 0.201, t = 8.75, p < 0.001), and forehead
(standardized β = 0.002, t = 0.13, p = 0.899), as well as
heat flux at the sternum (standardized β = 0.025, t = 1.79,
p = 0.074) and scapula (standardized β = 0.002, t = 0.111,
p = 0.911). After stepwise explorative reduction of the number
of parameters, the final regression equation that still produced
acceptable predictive values, as defined in Section “Statistical
Analysis”, included two parameters: heart rate (standardized
β = 0.587, t = 40.54, p < 0.001) and insulated temperature
at the scapula (standardized β = 0.232, t = 16.01, p < 0.001).
The predictive regression equation from these two parameters
is shown in Table 3. The prediction parameters used in the two
newly developed prediction models (“Max-Input Model” and
“Min-Input Model”) in comparison to the previously published
model from Niedermann et al. (2014b) are listed in Table 4.

Prediction Model Validation
R2 adjusted and SEE between the measured and predicted rectal
temperature for the two newly developed prediction models
were calculated based on the values of the validation data set
and are reported in Table 5. A representative example of one
participant’s measured and predicted rectal temperature during
heat session 1 is depicted in Figure 5. Figure 6 illustrates
these comparisons for heat session 2, also with example data
from the same participant as in Figure 5. Average systematic
offsets between the predicted and measured rectal temperature
values of the validation participants were subtracted from
the predicted values [offsets for the model from Niedermann
et al. (2014b) = 0.24◦C, “Max-Input Model” = −0.15◦C, and
“Min-Input Model” =−0.06◦C, respectively].

DISCUSSION

This study aimed (1) to define the validity of a novel
multi-parameter model to predict rectal temperature under
two different exercise and clothing conditions in a hot and
moderately humid environment, as well as at rest at normal room
temperature; (2) to compare the novel prediction model with
a previously published model (Niedermann et al., 2014b); and
(3) to characterize the extent to which a stepwise reduction of
the number of measured parameters, with the goal to improve
practicality, affects the validity of the initial prediction model.
The main finding was that we could generate a prediction
model with only two input measurements (heart rate and
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TABLE 1 | Participants’ and experimental characteristics.

Variable All participants Prediction model
development
participants

Prediction model
validation

participants

Significance of
difference between
development and

validation participants,
p-value (two-tailed)

N 13 7 6

Age, years 30.9 (5.4) 32.6 (6.1) 28.9 (2.9) 0.227

Height, cm 179.2 (6.4) 180.6 (6.8) 177.5 (5.4) 0.424

Weight, kg 77.5 (6.1) 80.5 (6.4) 74.1 (3.0) 0.058t

BMI, kg/m2 24.1 (2.1) 24.6 (2.7) 23.4 (1.2) 0.411

Body fat, % 13.1 (4.3) 13.8 (4.0) 12.3 (4.6) 0.555

Sweat loss, l 0.9 (0.3) 0.9 (0.2) 1.0 (0.2) 0.231

Cycling ergometer test:

Power max, W 273 (29) 267 (35) 280 (17) 0.452

HR max, beats/min 181 (9) 178 (9) 184 (8) 0.294

Heat session 1 (75% HR max):

HR, beats/min 136 (7) 134 (8) 138 (6) 0.377

Power, W 155 (20) 168 (19) 118 (14) 0.086t

Duration, min 33.5 (8.8) 28.6 (9.0) 37.5 (5.0) 0.126

T rectal baseline, ◦C 37.1 (0.2) 37.0 (0.2) 37.0 (0.3) 0.810

T rectal max, ◦C 38.3 (0.2) 38.3 (0.3) 38.3 (0.1) 0.923

Heat session 2 (50% HR max):

HR, beats/min 92 (3) 91 (2) 92 (4) 0.544

Power, W 52 (6) 53 (7) 50 (0) 0.363

Duration, min 43.7 (10.9) 39.4 (10.3) 49.6 (7.2) 0.095t

T rectal baseline, ◦C 36.9 (0.2) 36.9 (0.2) 37.0 (0.2) 0.336

T rectal max, ◦C 37.9 (0.3) 37.9 (0.3) 37.9 (0.3) 0.906

Data are numbers or means (± standard deviation in brackets). Bold values indicate trend or significance, tp < 0.10 trend. BMI, body mass index; HR, heart rate.

insulated skin temperature at the scapula, “Min-Input Model”;
SEE = 0.29◦C, R2 = 0.68) that had similar predictive power
compared to two more comprehensive models. Of the two
comprehensive models, the new model comprising all 18 input
parameters (“Max-Input Model”; SEE = 0.28◦C, R2 = 0.70) did
not outperform the predictive power of the previously developed
model (Niedermann et al., 2014b) which included only six
measures and no insulated skin temperatures (SEE = 0.28◦C,
R2 = 0.71). Therefore, we conclude that the “Min-Input Model”
provided comparable validity and superior practicality (only
two measurement parameters) for estimating rectal temperature
versus two other models requiring six or more input measures in
young adult males.

The SEE of our two newly developed core body temperature
prediction models (“Max-Input Model”, 0.28◦C; “Min-Input
Model”, 0.29◦C) was substantially lower than the initially set
acceptance criterion of < 0.5◦C deviation from the measured
rectal temperature. The models explained 70 and 68% of the
variance in rectal temperature, respectively. These results confirm
our first hypothesis that the proposed models deviated < 0.5◦C
from measured rectal temperature. Furthermore, the validity was
also well in the range of previously reported prediction models.
Richmond et al. (2015) presented a model which estimated
rectal temperature with a SEE of 0.27◦C and adjusted R2 of
0.86, based on insulated skin temperature and microclimate
temperature both measured at the lower neck, heart rate, and

“work” (0 = rest, 1 = exercise). The model from Mazgaoker
et al. (2017) applied a novel double sensor including heat
flux measurements and performed within ±0.3◦C of the rectal
measurement. However, their prediction model consistently
underestimated rectal temperature during exposure to exercise
in the heat. A recent study developed an individualized
mathematical prediction model using physical activity, heart rate,
skin temperature at the chest, ambient temperature, and relative
humidity as input measures and reported an average root mean
squared error (RMSE) of 0.33◦C compared to rectal temperature
(Laxminarayan et al., 2018). Looney et al. (2018) presented
a sigmoid prediction equation that relies exclusively on heart
rate and predicted gastrointestinal temperature (collected by
telemetric thermometer pill) with an RMSE of 0.26◦C. Similarly,
Buller et al. (2015) used heart rate as a single measure to estimate
gastrointestinal temperature (RMSE = 0.22◦C). Another recent
publication combined skin temperature, heat flux, and heart rate
to estimate gastrointestinal temperature using a Kalman filter
(Welles et al., 2018). The authors found that measuring skin
temperature and heat flux at the pectoralis, rib, or sternum
resulted in similar prediction validity (RMSE = 0.18–0.20◦C).

Our second hypothesis, that the additional inclusion of
heat flux and insulated skin temperature measures improves
prediction validity in comparison with our previous model
(Niedermann et al., 2014b), has to be rejected as the new
model did not perform better. A reason for this result might
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TABLE 2 | Rotated component loadings and component score coefficients for the “Max-Input Model”.

Parameter Component 1 Component 2 Coefficient 1 Coefficient 2 Mean,
−

x

Temperature non-insulated

T scapula 0.955 0.099 −0.061 35.69 (1.55)

T forearm 0.954 0.094 −0.047 34.86 (1.95)

T radial 0.921 0.115 −0.127 34.63 (2.11)

T thigh 0.917 0.309 0.073 0.016 34.87 (1.88)

T calf 0.914 0.075 0.010 33.91 (2.01)

T hand 0.914 0.096 −0.066 34.06 (2.53)

T arm 0.899 0.077 −0.001 35.21 (1.90)

T sternum 0.881 0.336 0.066 0.029 36.05 (1.41)

T rib 0.858 0.364 0.061 0.041 35.77 (1.37)

T ins rib 0.809 0.494 0.042 0.091 36.27 (1.40)

T forehead 0.803 −0.357 0.127 −0.206 35.10 (1.42)

Temperature insulated

T ins radial artery 0.921 0.077 0.005 35.65 (1.96)

T ins scapula 0.901 0.379 0.064 0.042 36.52 (1.35)

T ins sternum 0.883 0.401 0.060 0.051 36.37 (1.32)

Heart rate

HR 0.664 0.523 0.023 0.116 111.3 (34.1)

Heat flux

HF scapula 0.905 −0.064 0.292 54.46 (70.88)

HF rib 0.856 −0.062 0.278 32.43 (42.65)

HF sternum 0.850 −0.088 0.299 18.03 (21.61)

Only component loadings ≥ 0.3 are indicated. Mean values (±SD in brackets) are based on the model validation data. Units for mean values and SD are ◦C for T,
beats/min for heart rate, and W/m2 for HF. HF, heat flux; HR, heart rate; ins, insulated; SD, standard deviation; T, temperature.

TABLE 3 | Regression equations for the two newly developed core body
temperature prediction models.

Prediction model Regression equation for prediction of rectal
temperature

Max-Input Model T = 0.2978 × factor score 1 + 0.2471 × factor score
2 + 37.2539

Min-Input Model T = 0.0100 × Heart rate + 0.0837 × T ins
scapula + 33.1735

Ins, insulated; Max-Input Model, prediction model using all measured non-invasive
parameters; Min-Input Model, prediction model using only the most relevant
measured non-invasive parameters; T, temperature.

be found in the applied statistical analysis. For the development
of both our previous model (Niedermann et al., 2014b) and the
“Max-Input Model” a PCA was performed that reduced the large
number of correlated parameters into a set of two uncorrelated
components, representing either the skin temperature measures
or the heat flux measures. Thereby, an additional benefit of
the insulated skin temperatures for prediction validity, which
is based on the assumption that this measure may closely
represent core temperature (Richmond et al., 2015), could have
been blunted. Nevertheless, the predictive potential of insulated
skin temperature measure is supported by the outcome of the
multiple regression analysis, which confirmed that insulated
skin temperature at the scapula was the second most important
predictor for rectal temperature. Similarly, a study by Richmond
et al. (2015) found insulated skin temperature (at the lower part of

the neck) to be the single most important physiological parameter
in their prediction model.

The predictive validity of the “Min-Input Model”, which
relies exclusively on the two most relevant predictors of the
multiple linear regression analysis (heart rate and insulated skin
temperature at the scapula), was only slightly lower than in the
“Max-Input Model”. This finding confirms our third hypothesis,
which stated that the validity of an adapted/reduced model still
is in an acceptable range. This finding indicates the “Min-Input
Model” as a good option in terms of practicality. Similar to our
study, heart rate as a single measure or included into a predictive
model was previously demonstrated to be a suitable predictor
for core body temperature (Buller et al., 2015; Richmond et al.,
2015; Laxminarayan et al., 2018; Looney et al., 2018; Welles
et al., 2018). The predictive importance of heart rate is based
on the relationship with metabolic activity (and consequently
metabolic heat production) and heat transfer to the skin (via
skin perfusion) (Buller et al., 2013; Niedermann et al., 2014b).
During passive heat strain, an increase in skin blood flow
contributes to the convective heat transfer to the extremities
in order to increase surface area for dry and evaporative heat
loss and results in a concomitant increase of heart rate. During
exercise, however, heart rate does not only rise to promote
cooling, but also to cover the additional oxygen needs. This makes
the cardiovascular response to heat strain in combination with
exercise complex to apportion (Richmond et al., 2015). Another
important aspect for heart rate being a critical predictor of rectal
temperature may be the direct effect of elevated temperature
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TABLE 4 | Parameters used for the previously published and the two newly
developed prediction models.

Parameter Niedermann
et al., 2014b

Max-Input
Model

Min-Input
Model

Temperature non-insulated

T scapula X

T forearm X X

T radial X

T thigh X X

T calf X

T hand X

T arm X X

T sternum X

T rib X

T ins rib X

T forehead X

Temperature insulated

T ins radial artery X

T ins scapula X X

T ins sternum X

Heart rate

HR X X X

Heat flux

HF scapula X X

HF rib X

HF sternum X X

HF, heat flux; HR, heart rate; ins, insulated; Max-Input Model, prediction model
using all measured non-invasive parameters; Min-Input Model, prediction model
using only the most relevant measured non-invasive parameters; T, temperature.

TABLE 5 | Validity of the previously published and the two newly developed
prediction models.

Prediction model R2 adjusted SEE, ◦C

Niedermann et al., 2014b 0.708 0.276

Max-Input Model 0.703 0.278

Min-Input Model 0.677 0.290

Acceptance criterion equals 0.5◦C. Max-Input Model, prediction model using all
measured non-invasive parameters; Min-Input Model, prediction model using only
the most relevant measured non-invasive parameters; SEE, standard error of the
estimate.

on the sinoatrial and atrioventricular cardiac nodal cells (Jose
et al., 1970; Gorman and Proppe, 1984; Crandall and Wilson,
2015). Moreover, heart rate is increased in the heat due to altered
autonomic nervous system activity, i.e., sympathetic activation
and parasympathetic withdrawal (Gorman and Proppe, 1984;
Crandall and Wilson, 2015). The inclusion of insulated skin
temperature at the scapula in the “Min-Input Model” might be
related to the proximal site of the temperature reading, which
may better represent core body temperature in comparison to
the more distal temperature measurement sites (e.g., calf, thigh,
hand, and forearm). In addition, the placement of the insulated
temperature sensor over a bony site (Richmond et al., 2013,
2015), i.e., over the inferior angle of the scapula in our study,
may better reflect core body temperature compared to sites over

FIGURE 5 | Comparisons of measured rectal temperature from heat session
1 (75% HR max cycling intensity, sports t-shirt and shorts) with the model
from Niedermann et al. (2014b), the “Max-Input Model”, and the “Min-Input
Model”, respectively. The graph shows a representative example from one
participant. Colored bars at the bottom of the graph represent experimental
phases as shown in Figure 2. HR max, maximal heart rate; Max-Input Model,
prediction model using all measured non-invasive parameters; Min-Input
Model, prediction model using only the most relevant measured non-invasive
parameters; T, temperature.

FIGURE 6 | Comparisons of measured rectal temperature from heat session
2 (50% HR max cycling intensity, protective firefighter jacket and trousers) with
the model from Niedermann et al. (2014b), the “Max-Input Model”, and the
“Min-Input Model”, respectively. The graph shows representative example
from the data of the same participant as in Figure 5. Colored bars at the
bottom of the graph represent experimental phases as shown in Figure 2. HR
max, maximal heart rate; Max-Input Model, prediction model using all
measured non-invasive parameters; Min-Input Model, prediction model using
only the most relevant measured non-invasive parameters; T, temperature.

muscle tissue (Brajkovic et al., 2006). Interestingly, heat flux data
were not included in the new “Min-Input Model” contributing
only 2.7% of explained variance if it were added to the reduced
model, which is in contrast to our previous model (Niedermann
et al., 2014b). The main issue in this study was the occurrence
of a high number of measurement artifacts for the heat flux
measurement data, thus reducing the predictive value of this
parameter.
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A methodological strength of this study was the integration
of two different exercise and clothing conditions in a hot
and moderately humid climate, as well as a resting and
recovery condition at normal room temperature. This is
promising in terms of developing prediction models that
are applicable under different activity, clothing, and climatic
scenarios. Notwithstanding, the following limitations should
also be considered. The two new prediction models are valid
for a population with similar characteristics as they were
found in the participants of this study, e.g., fitness level, body
composition, age, and sex. It has, however, been reported that
gender differences in thermoregulation can be explained mainly
through fitness level and body composition (Kaciuba-Uscilko
and Grucza, 2001) and can be normalized by body weight and
surface area (Gagnon and Kenny, 2012), and thus may play
a limited role (Cheuvront, 2014; Cramer and Jay, 2014). The
applicability of a general model for use on other cohorts requires
further exploration. A further limitation might apply to the
use of rectal temperature as the reference method representing
core body temperature. Due to its thermal inertia and higher
dependence on conductive heat transfer, rectal temperature
responds more slowly in comparison to esophageal temperature
(Taylor et al., 2014). This might explain why in the present study
there are larger separations between actual rectal temperature and
predicted values in transient conditions (i.e., at the beginning of
the heat exposure and at the end of the final rest period) as can be
seen in Figures 5, 6. It appears that toward the end of exercise, the
difference between predicted and actual values becomes smaller.
Therefore, one might expect the prediction to be more accurate
during stable conditions where heat balance is achieved. Despite
the common use of rectal and gastrointestinal temperatures in
laboratory experiments and model development, the use of more
responsive methods, like esophageal temperature, is warranted
for investigation in future models.

CONCLUSION

The present study provides two novel prediction models for
core body temperature that were validated in a hot and
moderately humid environment under different exercise and
clothing conditions, as well as at normal room temperature at
rest. Thereby, one of the two new prediction models is based
exclusively on the two measurement parameters heart rate and
insulated skin temperature at the scapula (“Min-Input Model”;
SEE = 0.29, R2 = 0.68). These parameters were found to be

the two most relevant parameters for the prediction of rectal
temperature, among 18 assessed non-invasive parameters. The
other, more complex model developed in this study, included the
maximal input of all 18 non-invasive parameters (“Max-Input
Model”; SEE = 0.28◦C, R2 = 0.70), but only performed marginally
better than the “Min-Input Model” and similar to a previously
developed model from Niedermann et al. (2014b) (SEE = 0.28◦C,
R2 = 0.71). Therefore, we conclude that the “Min-Input Model”
provided comparable validity and superior practicality (only two
measurement parameters) for estimating rectal temperature in
young adult males, versus two other models requiring six or more
input measures. As a subsequent step, the latter model should
be investigated in more diverse populations (e.g., females, older
adults, patients), as well as in other exercise modalities, clothing,
and climatic conditions, in order to verify its general validity.
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