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reactive systems where the metal or alloy cannot react with substrates to form any reaction product. 
Fig. 4 (a) and (b) show the SEM images of the cross section of solidified silicon droplet on vitreous 
carbon. The reaction layer is composed of SiC, as analyzed by EDX (Fig. 6 (a), (b)), and has an 
average thickness of ∼ 5 µm. As for the non-reactive system, as was previously mentioned, no 
reaction layer appeared between pure silicon and the SiC substrate, as seen in Fig. 5 (a) and (b). 
There is, however, a slight erosion of the SiC substrate at the silicon and SiC interface.  

 

Fig. 4 SEM images of the cross section of (a), (b) the solidified silicon droplet (gray) on vitreous carbon (black) with 
the visible SiC reaction layer formed at the pure silicon/carbon interface, (c), (d) the solidified Si0.92Zr0.08 droplet on 

vitreous carbon (black), exhibiting needle-shaped Si-Zr phase in silicon and the SiC reaction layer formed at the 
interface. 

The solidified droplet of the Si0.92Zr0.08 alloy on vitreous carbon is characterized by a typical 
eutectic microstructure with needle-shaped Si-Zr phase within the Si matrix (Fig. 4 (c), (d)). The 
reaction layer at the interface is primarily composed of SiC as seen by EDX analysis in Fig. 6 (c), 
(d). On the SiC substrate, the Si0.92Zr0.08 alloy did not exhibit any continuous reaction layer (Fig. 
5 (c), (d)), as was expected (Fig. 7 (c), (d)).  









vitreous carbon and SiC substrates are in good agreement with previous work of Whalen et al. 
[23]. However, those authors did not consider the effect of evaporation due to high vacuum. 
Moreover, the contact angle varies significantly, depending on the type of graphite substrates, 
porosity and roughness [20]. The reasons for choosing the vitreous carbon substrate instead of 
graphite are its fully dense structure and isotropy. In some graphite substrates the liquid melt seeps 
through the pores by capillary forces, resulting in false contact angle measurements due to 
reduction in net volume of the droplet on the surface. The vitreous carbon substrates used in the 
experiments were fully dense preventing infiltration of silicon into porosity (Fig. 4). The Si0.92Zr0.08 
alloy was characterized by a relatively slow initial droplet spreading when compared to the 
almost instantaneous spreading of pure Si, where, additionally, the initial contact angle was 
much higher. The slower initial spreading may be caused by the homogenization process 
occurring during the transition from the solid eutectic phase to liquid phase or the time 
required for the Si from the Si0.92Zr0.08 alloy to form the SiC reaction layer at the interface due 
to lower activity of Si in the alloy than in the pure Si. This could also help to explain the 
sudden drop of contact angle of the Si0.92Zr0.08 alloy on vitreous carbon substrate from 46° to 
30° (Fig. 3 (b)), although a more in-depth study is needed to understand this phenomenon. 
Even though the initial contact angle exhibits good wettability on both the vitreous carbon 
and SiC substrates, the kinetics of wetting will strongly affect the reactive infiltration process.  

The SEM images showed the formation of a distinct SiC layer along both of the vitreous 
carbon/pure silicon and vitreous carbon/Si0.92Zr0.08 alloy interfaces (Fig. 4). The formation and 
growth of the SiC layer occurs in three stages, as explained by Voytovych et al. [22]; (i) a 
permeable micron thick layer of SiC is formed by means of nucleation and growth (ii) rapid 
growth of the reaction layer occurs via diffusion of carbon in liquid state silicon and a 
threshold layer thickness of ~10 µm is reached  (iii) the reaction layer becomes impervious to 
liquid silicon, resulting in negligible growth via grain boundary diffusion of carbon where 
only coarsening of the reaction layer’s microstructure occurs thereafter. The value of the 
reaction layer thickness depends on the type of carbon and its reactivity. The similarity 
between the contact angle of silicon on vitreous carbon and SiC substrates can be explained 
by the rapid formation of the solid SiC layer at the interface that controls the spreading. This 
results in further spreading of the liquid on the micron-thick SiC layer rather than directly on 
the vitreous carbon. Interestingly enough, the spreading on SiC substrate is slower than on the 
vitreous carbon. It might indeed be that the larger surface roughness of the SiC substrate slows 
down the triple line. Another possible explanation could have been the contamination by 
oxygen of Si0.92Zr0.08 alloy or the surface of SiC substrate. In long duration experiments at 
1500 °C, the alumina tube might act as oxygen source. However, we did not see any indication 
of oxide film formation on droplet which causes non uniform surface of droplet, where pieces 
of titanium sponge used as oxygen getter were absent (Fig. 9). Also, there is no change in contact 
angle during 1h holding time at 1500°C. In the case of the Si0.92Zr0.08 alloy, a similar reaction 
layer is observed. It is however worthwhile noting that the final contact angle of the Si0.92Zr0.08 
alloy on the SiC substrate is larger than the one on vitreous carbon, albeit both contact angles 
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