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ABSTRACT: In this work, we demonstrate the bottom-up on-sur-

face synthesis of poly(para-dibenzo[bc,kl]-coronenylene) 

(PPDBC), a zigzag edge-encased analog of poly(para-phenylene) 

(PPP), and its lateral fusion into zigzag edge-extended graphene 

nanoribbons (zeeGNRs). Towards this end, we designed a dihalo-

genated di(meta-xylyl)anthracene monomer displaying strategic 

methyl groups at the substituted phenyl ring and investigated its 

applicability as precursor in the thermally induced surface-assisted 

polymerization and cyclodehydrogenation. The structure of the re-

sulting zigzag edge-rich (70 %) polymer PPDBC was unambigu-

ously confirmed by scanning tunneling microscopy (STM) and 

non-contact atomic force microscopy (nc-AFM). Remarkably, by 

further thermal treatment at 450 °C two and three aligned PPDBC 

chains can be laterally fused into expanded zeeGNRs, with a ribbon 

width of nine (N = 9) up to seventeen (N = 17) carbon atoms. More-

over, the resulting zeeGNRs exhibit a high ratio of zigzag (67 %) 

vs. armchair (25 %) edge segments and feature electronic band gaps 

as low as 0.9 eV according to gaps quasiparticel calculations. 

Bottom-up synthesized atomically precise graphene nanoribbons 

(GNRs) represent an imperative class of one-dimensional graphene 

nanostructures because of their outstanding electronic and mag-

netic properties, which entirely depend on their molecular topology 

at a width scale below 5 nm.1–4 In comparison to other bottom-up 

protocols for GNR synthesis such as in solution4,5 or by chemical 

vapor deposition (CVD)6 under ambient pressure, the on-surface 

approach under ultrahigh vacuum conditions (UHV) has the ad-

vantage of giving access to characterization by in-situ scanning tun-

neling microscopy (STM), scanning tunneling spectroscopy (STS) 

and non-contact atomic force microscopy (AFM) to reveal the ge-

ometric and electronic structure of the prepared GNRs with atomic 

resolution.2,7,8 Hitherto, a series of armchair,2,7,8 chevron,3,9,10 and 

few GNRs with other edge topographies - for example cove11 and 

chiral12–14 ones - have been fabricated via on-surface synthesis. In 

2016, a fully zigzag edged GNR (ZGNR) has been successfully 

synthesized on an Au(111) substrate using an “U-shaped” mono-

mer.15 The key strategy employed is to take advantage of a methyl 

group substituted umbrella-shaped precursor monomer forming a 

snake-like polymer chain in a thermal annealing step. Subsequent 

methyl group activation provides the missing carbon atoms to build 

up the zigzag edge periphery.15 In contrast to the rich portfolio of 

accessible monomer designs for the on-surface synthesis of arm-

chair edged GNRs (AGNRs), so far this is the only design principle 

available for an entirely zigzag edged GNR. 

Herein, we report the surface-assisted bottom-up synthesis of a par-

tial zigzag edge terminated poly(para-dibenzo[bc,kl]coronenylene) 

polymer (PPDBC, Fig. 1c) - a strictly linear zigzag edge extended 

derivative of poly(para-phenylene) PPP - by polymerisation and 

subsequent cyclodehydrogenation of 9,10-bis(4-bromo-2,6-dime-

thylphenyl)anthracene (monomer 1, Fig. 1a). Remarkably, the re-

sulting PPDBC chains can undergo a “zipper process” (cross-de-

hydrogenation) leading to GNRs (zeeGNRs, Fig. 1d) with an ex-

tended alternating zigzag-armchair-periphery in a 6:1 ratio. There-

fore, the strategy of PPDBC interchain fusion could be utilized to 

synthesize laterally zigzag edge-expanded GNRs (zeeGNR1, zee-

GNR2) with variable ribbon widths comprising zigzag-rich edge 

topologies, which lead to low electronic band gaps, e.g. 0.9 eV for 

zeeGNR2. Interestingly, the resultant zeeGNR1 and zeeGNR2 can 

be identified as 8-AGNR-S(1,1.5) and 13-AGNR-I(1,3) respec-

tively, according to the nomenclature of topological GNRs.16,17 
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Figure 1. Bottom-up on-surface synthesis of zigzag edge-en-

riched graphene nanoribbons. Surface-assisted carbon-carbon 

coupling of (a) 9,10-bis(4-bromo-2,6-dimethylphenyl)anthracene

(monomer 1) on Au(111) under UHV conditions at 200 °C yields a 

(b) 1D precursor polymer. (c) Subsequent cyclodehydrogenation

(ΔT3 = 350 °C) provides sp2-hybrizied, aligned PPDBC chains. (d)

A further thermal annealing step (ΔT4 = 450 °C) enables an inter-

molecular “zipping process” forming zeeGNR1 and zeeGNR2 on

the surface.

As illustrated in Figure 1a we firstly designed and synthesized 

the dihalogenated di(meta-xylyl)anthracene molecular building 

block 1 comprising two methyl groups at each outer substituted 

phenyl ring to reach a novel type of rhombic-shaped polymer chain 

(PPDBC) (Fig. 1c) by on-surface Ullmann-type polymerization 

and cyclodehydrogenation driven by strategic methyl group activa-

tion at elevated temperatures. Specifically, the synthesis of mono-

mer 1 (Fig. 2a) commenced with the nucleophilic addition of 5-

bromo-2-iodo-1,3-dimethylbenzene to 9,10-anthraquinone provid-

ing 9,10-bis(4-bromo-2,6-dimethylphenyl)-9,10-dihydroan-

thrancene-9,10-diol 2 as intermediate compound, which has been 

used without further purification. Afterwards the crude mixture was 

treated with glacial acetic acid, sodium iodide and sodium hypo-

phosphite monohydrate for 1.5 h under reflux to afford the desired 

monomer 1 (9,10-bis(4-bromo-2,6-dimethylphenyl)anthracene) in 

38 % yield over both reaction steps. The chemical identity of mon-

omer 1 was unambiguously confirmed by two-dimensional nuclear 

magnetic resonance spectroscopy (NMR) (see Supporting Infor-

mation) and high-resolution matrix-assisted laser desorption/ioni-

zation (HR-MALDI-TOF) as shown in Figure 2b. 

Figure 2. Synthesis and characterization of monomer 1. (a) 

Chemical reagents and conditions: (a) 5-bromo-2-iodo-1,3-dime-

thylbenzene, n-BuLi, THF, -78 °C, overnight, (b) sodium iodide, 

sodium hypophosphite monohydrate, glacial acetic acid, 135 °C, 

1.5 h. (b) Liquid-state high-resolution MALDI-TOF spectra. 

Thereafter, monomer 1 was deposited on a Au(111) single-crys-

tal surface under UHV conditions and thermally annealed to induce 

and investigate the polymerization process. Self-assembled molec-

ular islands of monomer 1 are detectable at room temperature (Fig. 

3a-b). Within such islands, individual molecules are close-packed, 

with the assembly being stabilized by weak interactions (see Sup-

porting Information). On-surface thermal annealing to 

ΔT1 = 200 °C induces debromination and aryl-aryl coupling reac-

tion via activated surface-stabilized radicals producing 1D cova-

lently bonded polymer chains (Fig. 3c). Initiated by a second ther-

mal annealing step (ΔT2 = 250 °C) the precursor polymers with an 

average chain length of 50 nm undergo already partial cyclodehy-

drogenation of the incorporated methyl groups, which leads to 

some isolated polymers with partially cyclodehydrogenated seg-

ments as highlighted by the white circle in Fig. 3d. By treatment at 

ΔT3 = 350 °C the construction of fully planarized, highly uniform 

PPDBC chains, featuring an overall zigzag edge percentage of 70 

% (detailed explanation for the assignment of edges, see Support-

ing Information), is completed (Fig. 3e-f). High resolution non-

contact atomic force microscopy (nc-AFM) was employed to elu-

cidate the molecular structure of PPDBC using a CO-

functionalized tungsten tip attached to a quartz tuning fork.18 Fig-

ure 3e shows the nc-AFM image of a PPDBC chain segment using 

the previously described technique in a constant-height mode. The 

image clearly resolves the structure of a PPDBC segment with a 

length of ~10 nm that exhibits no defects at the chemical bond 

level, proving that the methyl group-based cyclodehydrogenation 

worked convincingly in a fully selective way. Due to the long-range 

alignment of the aromatic PPDBC wires (Fig. 3f) and their charac-

teristic reactive zigzag periphery a lateral edge fusion, the so called 

“zipper process”, gives rise to atomically precise zeeGNRs with 

zigzag edge-enriched geometry. Thermal annealing sets in the “zip-

per process” (see Supporting Information) and at elevated temper-

atures of ΔT4 = 450 °C a significant amount of fused zeeGNRs is 

formed (Fig. 3g). The resulting zigzag edge proportion of zee-

GNR1, consisting of two laterally fused PPDBC chains (Fig. 3h), 

can be calculated to be 67 %. The percentage of zigzag periphery 

remains constant for further polymer chain fusions (see Supporting 

Information), e.g. zeeGNR2 involving three PPDBC chains. In 

STM images (Fig. 3f-h), the rhombic-shaped PPDBC chains and 

the zeeGNR1-2 exhibit equal apparent heights of ~ 170 pm. 
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Figure 3. nc-AFM and STM imaging of the bottom-up synthesis 

of highly aligned PPDBC chains and zeeGNRs. STM images of 

(a-b) a molecular island of monomer 1 after room temperature dep-

osition. Scale bar: 5 nm, I = 50 pA, V = -0.1 V. Thermal annealing 

at ΔT1 = 200 °C generates (c) covalently bonded polymer chains. 

Scale bar: 5 nm, I = 20 pA, V = -0.6 V. Further thermal treatment 

at ΔT2 = 250 °C induces (d) partial cyclodehydrogenation. Scale 

bar: 5 nm, I = 20 pA, V = -0.6 V. (e) Constant-height nc-AFM fre-

quency shift image of a uniform PPDBC segment using a CO-

functionalized tip, after rising the temperature to ΔT3 = 350 °C. 

AOSC = 70 pm, V = 5 mV. Large-scale STM image of (f) PPDBC 

chains. Scale bar: 5 nm, I = 30 pA, V = -0.6 V. (g) Further thermal 

annealing at ΔT3 = 450 °C produces zigzag edge-extended gra-

phene nanoribbons (zeeGNRs) with diverse ribbon width and 

mixed zigzag-armchair periphery. The dashed white rectangles 

highlight zipped zeeGNRs (zeeGNR1, zeeGNR2) with double and 

triple width of PPDBC, respectively. Scale bar: 5 nm, I = 30 pA, V 

= 0.6 V. (h) Constant-height current image of a zeeGNR1 fragment 

using a CO functionalized tip. V = 1 mV. 

The electronic band structures of PPDBC, zeeGNR1 and zee-

GNR2 were computed by density functional theory (DFT) (Fig. 

4d). DFT revealed a non-magnetic ground state for the PPDBC 

system in gas phase and an electronic energy gap of ∆ = 1.1 eV 

(Fig. 4d). For higher-order structures (nanoribbons) achieved 

through interchain fusion of PPDBC the band gap decreases with 

increasing ribbon width to ∆ = 0.85 eV (zeeGNR1) and ∆ = 0.15 

eV (zeeGNR2), respectively (Fig. 4d). Scanning tunneling spec-

troscopy (STS) was employed to obtain experimental band gap data 

for the surface confined polymer/ribbon systems. As shown in Fig-

ure 4c, differential conductance (dI/dV) spectra of PPDBC and zee-

GNR1 suggest a band gap of 1.7 eV and 1.4 eV, respectively. Dif-

ferential conductance dI/dV mapping reveals the local density of 

states spatial distribution near the top of valence band and the bot-

tom of conduction band (cf. Figure 4a-b). In dI/dV mapping we de-

termined slightly higher energies for PPDBC and zeeGNR1, due 

to the stronger dI/dV signals. The band gap of zeeGNR2 cannot be 

clearly resolved by STS measurements, mostly because of the en-

ergetic overlap of Au(111) surface states with nanoribbon frontier 

states. We notice that the measured energy gaps for PPDBC and 

zeeGNR1 are much larger than the DFT calculated values. Not 

only does the Kohn-Sham gap significantly underestimate the band 

gap of bulk semiconductors19, the discrepancy is amplified in low-

dimensional materials, such as the quasi-one-dimensional GNRs or 

carbon nanotubes, where screening of the Coulomb interaction be-

tween electrons is strongly reduced.20 Thereby, to obtain an accu-

rate estimation of the band gaps, we performed quasiparticle GW21 

calculations in gas phase (see Supporting Information), obtaining 

values of 3.0 eV, 2.0 eV and 0.9 eV for PPDBC, zeeGNR1 and 

zeeGNR2, respectively. A reduction of the band gap from the gas 

phase GW values of 3.0 eV for PPDBC and 2.0 eV for zeeGNR1 

to the values determined on Au(111) of 1.7 eV and 1.4 eV is in line 

with the expectations due to image charge effects.22 In comparison 

to reported 5-(∆ = 0.1 eV),8 7-(∆ = 2.4 eV),2 9-(∆ =  1.4 eV)23, 13-

(∆ = 1.4 eV)7 AGNRs and the fully zigzag edged 6-ZGNR (∆ =  1.9 

eV)15, zigzag edge-enriched GNRs also host a highly tunable band 

gap, indicating their significance as precious member of the grow-

ing family of graphene nanostructures. 

Figure 4. Band structure calculations and scanning tunneling 

spectroscopy. (a-b) Constant-height current image (V=1 mV), 

constant-current dI/dV mapping at the onset of valence band, and 

dI/dV mapping at the onset of conduction band for PPDBC and 

zeeGNR1, respectively. Scale bars: 2 nm. (c) dI/dV spectra taken 

at the edge of PPDBC and zeeGNR1, revealing an energy gap of 

1.7 eV and 1.4 eV, respectively. The dashed black curves are spec-

tra taken at the nearby clean Au(111) surface. (d) DFT calculated 

band structure of PPDBC, zeeGNR1, and zeeGNR2, respectively. 

In summary, we demonstrated the on-surface synthesis towards 

high quality poly(para-dibenzo[bc,kl]coronenylene) polymer 
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chains, derived from a simple molecular polyphenylene precursor. 

The fully conjugated, aligned PPDBC polymers with predominant 

zigzag periphery and their exotic interchain-interaction paved the 

way for the successful zeeGNR fabrication with a zigzag edge con-

tent of 67 %, variable ribbon width, tunable electronic band struc-

tures and the possibility of synthesizing topological GNRs.16,17 Pro-

spectively, the combination of versatile substituted anthracene-like 

building blocks and the powerful on-surface chemistry approach 

enables to develop other multi-edged graphene nanostructures in 

order to study their crucial physical properties such as band struc-

ture and magnetism. 
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