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Material-specific properties applied to an environmental risk assessment of 

engineered nanomaterials – implications on grouping and read across 

concepts 

 

Engineered nanomaterials (ENMs) are intentionally designed in different nano-forms of 

the same parent material in order to meet application requirements. Different grouping 

and read-across concepts are proposed to streamline risk assessments by pooling nano-

forms in one category. Environmental grouping concepts still are in their infancy and 

mainly focus on grouping by hazard categories. Complete risk assessments require data 

on environmental release and exposure not only for ENM but also for their nano-forms. 

The key requirement is to identify and to distinguish the production volumes of the ENMs 

regarding nano-form-specifc applications. The aim of our work was to evaluate whether 

such a grouping is possible with the available data and which influence it has on the 

environmental risk assessment of ENMs. A functionality-driven approach was applied to 

match the material-specific property (i.e. crystal form/morphology) with the functions 

employed in the applications. We demonstrate that for nano-TiO2, carbon nanotubes 

(CNTs), and nano-Al2O3 the total production volume can be allocated to specific nano-

forms based on their functionalities. The differentiated assessments result in a variation 

of the predicted environmental concentrations for anatase vs. rutile nano-TiO2, single-

wall vs. multi-wall CNTs and α- vs. γ-nano-Al2O3 by a factor of 2 to 13. Additionally, 

the nano-form-specific predicted no-effect concentrations for these ENMs were derived. 

The risk quotients for all nano-forms indicated no immediate risk in freshwaters. Our 

results suggest that grouping and read-across concepts should include both a nano-form 

release potential for estimating the environmental exposure and separately consider the 

nano-forms in environmental risk assessments. 

 

Keywords: nano-form, risk assessment, grouping, read-across, predicted 

environmental concentration, predicted no-effect concentration 

Introduction 

Engineered nanomaterials (ENMs) are appreciated not only due to their unique or improved 

properties but also because of their multitude of potential material configurations that can be 
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used in various applications (Warheit, 2018). In addition to their elemental identity, ENMs can 

differ by their size (distribution), crystal form, coatings, ligands, doping and other 

physicochemical characteristics. Applications use these specifically designed ENMs (i.e. 

physico-chemical parameters) in order to fulfill certain technical requirements (Gilbertson et 

al., 2015). Each of these configurations of a substance (i.e. ENM) are defined as a nano-form 

in the REACH regulation (ECHA, 2017). For an environmental risk assessment, each of these 

nano-forms would have to be tested, if a case-by-case assessment is followed (Falinski et al., 

2018, Landvik et al., 2018). Hence, the variety of potentially used nano-forms would require 

high time and economical efforts to perform environmental risk assessments. Because 

predictive (hazard) assessments are still in the early developmental stage (Fadeel et al., 2018), 

grouping concepts have become a focal point in current discussions to facilitate the risk 

assessment of ENMs (Oomen et al., 2015). Although several definitions of the term "grouping" 

exist within different regulations (Mech et al., 2018), the main objective of grouping concepts 

is the clustering of either several ENMs based on similar physico-chemical properties or of 

several nano-forms of the same ENM. This is usually done by focusing on intrinsic and/or 

extrinsic ENM characteristics, by mode of action, by biopersistence or by other biologically 

relevant descriptors (Lynch et al., 2014, Godwin et al., 2015). Grouping concepts allow 

streamlining risk assessments by setting priorities for testing, guiding endpoint and method 

selection in experimental setups and most importantly enabling read-across approaches in 

hazard assessments to fill data gaps and enable waiving of experimental testing (Lamon et al., 

2018).  

Different grouping and read-across concepts were proposed by researchers and were 

recently reviewed by Lamon et al. (2018). The grouping concepts proposed so far mainly focus 

on occupational health and safety aspects with a focal point on hazard assessments (Oomen et 

al., 2015, Arts et al., 2016). Whilst, for occupational health and safety assessments several 
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grouping frameworks have been proposed (Lamon et al., 2018), the environmental counterpart 

is still in development (Hund-Rinke et al., 2018).  

Generally, environmental risk assessments require data and information on both hazard 

and exposure assessments in order to derive the predicted no-effect concentration (PNEC) and 

the predicted environmental concentration (PEC), respectively. The division of the PEC by the 

PNEC yields the risk characterization ratio (RCR). A result above one indicates a need for more 

detailed assessments, while a result below one indicates no immediate risk (ECHA, 2016). 

Several researchers attempted to evaluate ecotoxicological data to identify relevant 

physico-chemical parameters that can be used for grouping categories. Two studies focused on 

different nano-forms and obtained separate species sensitivity distribution (SSD), one 

commonly accepted method to derive the PNEC, of different nano-forms. Garner et al. (2015) 

compared several SSDs by separating data by ENM type and different nano-forms. They 

concluded that size, formulation and coating can alter the toxicity and that the dissolution is a 

strong predictor for the ecotoxicity for some ENMs. Chen et al. (2018) investigated data for 

several ENMs with regard to particle size, shape, coating and exposure time and did not find a 

significant statistical difference due to limited data. Silver nanoparticles (AgNP) coated with 

polyvinyl-pyrrolidon and sodium citrate showed lower PNECs than uncoated AgNPs, which 

was also in accordance to Garner et al. (2015), likely due to the aggregation affinity of uncoated 

AgNPs.  

In the context of the environmental release as well as the fate and behavior models, the 

most relevant model parameters are the production volume, the allocation to product categories 

and their magnitude of release (i.e. the strength of the source with regard to the specific product) 

at different stages of their life-cycle (Wigger et al., 2018, Holden et al., 2014). Even though 

environmental fate and behavior models can consider physicochemical characteristics of 

ENMs, they rely on the initial input volume (i.e. ENM fraction released into a certain 

environmental compartment) that is determined by (probabilistic) material flow analysis (MFA) 
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(Nowack, 2017). The specific challenge in MFA is the lack of data on the use of nano-forms in 

applications. Hence, MFA models subsume all ENMs of the same composition as a generic 

ENM without considering specific characteristics (i.e. nano-forms). Only two studies analyzed 

different nano-forms so far: Gottschalk et al. (2015) provided material flow diagrams for both 

photocatalytic and photostable nano-TiO2 and Hendren et al. (2013) modeled the fate of silver 

nanoparticles (AgNPs) with four different surface modifications during wastewater treatment. 

Both studies have shown that the nano-form has a substantial influence on the environmental 

release as well as on the fate and behavior of ENMs. In order to enable a grouping concept for 

environmental risk assessments of ENMs, not only hazard characteristics but also 

environmental release and exposure aspects should be considered in future frameworks. 

This article aims to contribute to the environmental risk assessment of ENMs by 

collecting and analyzing data on environmental release and on adverse ecotoxicological effects 

for different nano-forms. The main research question is to identify differing RCRs of the nano-

forms of an ENM and assess if grouping concepts can be considered for nano-forms in the 

context of environmental release and exposure assessment. Ten ENMs were screened with view 

on the data availability and applicability of grouping strategies based on the crystal 

form/morphology property. Three out of ten ENMs (TiO2, CNTs, and Al2O3) were selected 

based on the availability of ecotoxicological data and the feasibility to generate PECs specific 

to each nano-form considered. For each of these materials an extensive data collection was 

performed in order to derive the nano-form specific PNECs and PECs. Finally, we were able to 

present specific RCRs for different nano-forms of the same ENM indicating that nano-form 

specific assessments are required for certain ENMs such as nano-TiO2.  
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Materials & Methods 

Materials considered and allocation of production volumes to respective product 

categories  

The identification of the nano-forms actually used in nano-enabled products in commerce is 

challenging due to reasons such as confidentiality and the multitude of possible product 

applications. So far, in almost all exposure models, ENM have been considered as one nano-

form, which does not reflect the variety of nano-forms in products used. Here, we assumed that 

the ENM properties are key to the corresponding product applications in which a certain 

functionality is required. When comparing the functionality required in products with the ENM 

functionality enabled by the ENM property, specific product applications can be identified. 

Hence, it is for some ENMs possible to differentiate certain product applications regarding the 

nano-form applied. It has to be noted that this assumption is not universally applicable due to 

the multitude of modification options of ENMs that may not be key properties. For example, 

when (coated) ENMs are used as an additive in a product, the product functionality does not 

necessarily depend on the additive and a differentiation is not possible based on this 

functionality. However, we have screened all major ENMs whether the allocation of the 

production volume to specific product categories is feasible based on the criteria applicability 

of the functionality-driven approach and data availability focusing on the crystal 

form/morphology..  

Carbon nanotubes  

CNTs are available in several configurations with the basic forms single-wall (SWNT), double-

wall, multiwall carbon nanotubes (MWNT). Particularly, SWNT and MWNT are the most often 

mentioned nano-forms of CNTs. In general, both nano-forms differ in their amount of carbon 

(wall) layers, which is related to the synthesis of these materials and is the reasoning for the 

differentiation applied. Generally, both nano-forms of CNT are characterized by their good 
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electrical and mechanical (i.e. structure reinforcing) properties, in which SWNTs surpasses the 

electrical performance of MWNTs (Zhang et al., 2011). Regarding the allocation of SWNT and 

MWNT to separated product categories, it is not clear how many SWNTs are actually used in 

the products due to the substitutability with MWNTs and comparably higher cost. As a first 

estimate, we have assumed that SWNTs are integrated in electronical applications due to the 

higher electronical performance, whilst MWNTs are used in all other applications. The overall 

production volume of CNTs is the lowest of other ENMs investigated in this article. 

Nano-aluminum oxide 

Alumina has several crystallographic configurations of which α-Al2O3 and γ-Al2O3 are the main 

crystal forms (Kubiak et al., 2015, Trueba and Trasatti, 2005). The nano-sized form of Al2O3 

shows improved physical, thermal, surface catalytic and electrical conductivity (Sahu et al., 

2014). In the view of applications, nano-α-Al2O3 has a higher hardness compared to nano-γ-

Al2O3. Consequently, we have assumed that nano-α-Al2O3 is used in abrasives or cutting 

applications in which a certain hardness is required (i.e. functionality). In contrast, nano-γ-

Al2O3 is characterized by porous structures and is used in catalyst substrate, because of its lower 

thermal conductivity compared to nano-α-Al2O3, for instance. 

Nano-titanium dioxide  

Nano-TiO2 has several crystallographic configurations of which anatase and rutile are the most 

relevant forms used in applications. (Nano-)TiO2 is normally a mixture of anatase and rutile 

(Shi et al., 2013). Rutile is considered as an inert form – although it also is slightly 

photocatalytically active –, whereas anatase is an active form of TiO2 with a higher refractive 

index, lower scattering and stronger absorption of ultraviolet (UV) radiation compared to rutile 

(Wang and Fan, 2014). Anatase has a wider absorption gap as well as a higher mobility of 

charge carriers compared to rutile, which likely leads to a higher surface reactivity and a better 
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photocatalytic effect (Luttrell et al., 2014, De Matteis et al., 2016). A mix of both rutile and 

anatase (marketed as Degussa/Evonik P25 or EU reference material NM-105) has a higher 

photocatalytic reactivity than the pure crystal forms due to synergetic effects (Luttrell et al., 

2014). Here, the photocatalytic activity was used as the functionality to allocate the crystal form 

to specific product categories (photocatalytic vs. photostable), which can be obtained in the 

supporting information (cf. Table S1). Accordingly, the ecotoxicological dataset was separated 

into rutile, P25 and anatase based on the crystalline fraction of anatase. If the anatase fraction 

was smaller than 50%, the data points were attributed to the rutile dataset. If share of anatase 

was in the range of 65-90%, the corresponding dataset was classified with P25. The anatase 

category included all those studies that have investigated nano-TiO2 with higher than 90% share 

of anatase. Regarding the allocation of the generic production volume, we assumed that rutile 

is primarily used in application in which the photostability is required (e.g. in sunscreens), 

whilst anatase employs its main property in photocatalytic applications. 

Probabilistic material flow modeling as a basis for estimating the predicted 

environmental concentrations 

In order to estimate the PECs of ENMs in several compartments, their environmental release 

from products throughout their life cycles has to be determined. The probabilistic material flow 

analysis (PMFA) is one common standard for this purpose, which was developed by Gottschalk 

et al. (2009) and has been used to derive materials flows for a range of ENMs (Caballero-

Guzman et al., 2015, Gottschalk et al., 2015, Sun et al., 2014, Wang et al., 2016, Adam and 

Nowack, 2017, Wigger et al., 2018). Recently, PMFA has been extended by considering 

dynamic aspects (Wang and Nowack, 2018a, Sun et al., 2016, Sun et al., 2017, Giese et al., 

2018, Bornhöft et al., 2016). The static MFA approach links several processes with transfer 

coefficients and balances all inputs and outputs over the period considered. Hence, the static 

MFA assumes a steady-state equilibrium. The probabilistic part of the MFA assigns to each 
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parameter a probability distribution to the modal value and deploys a Monte-Carlo routine 

(100'000 samples) to quantify the uncertainty. By doing so, the results of the PMFA also show 

the uncertainty originating from the parameters, which is one major advantage compared to the 

deterministic MFA approaches. Here, we utilized a static PMFA due to the data constraints 

because time dependent production volumes, release amounts, and fate information in technical 

systems for specific nano-forms are not available.  

The calculation of the nano-form specific material flows was based on data on the 

production volumes, product categories and transfer coefficients that were used in Sun et al. 

(2014), Gottschalk et al. (2015) as well as Wang and Nowack (2018a) for nano-TiO2, 

MWNTs/SWNTs and nano-Al2O3, respectively. As to the estimation of the production volume 

for nano-Al2O3, we used the reference year 2014 of the dynamic assessment that was performed 

by Wang and Nowack (2018a), whilst the calculations for nano-TiO2, MWNTs/SWNTs are 

based on the reference year 2012. 

In order to calculate the PEC values, the volumes of the environmental compartments 

have to be defined. We followed the REACH regulation (ECHA, 2016) as it was also applied 

by others (Sun et al., 2014, Wigger et al., 2018). This approach assumes that  environmental 

compartments (i.e. air, soil divided into direct released and sludge treated, surface water) are 

homogenously mixed. The resulting PECs consequently are average concentrations for each 

compartment without considering any environmental transformations. Additionally, we have 

applied two regional scenarios for the area of Northern Europe (NE) and South-Eastern Europe 

(SEE) as done by Wang and Nowack (2018a). These regions were selected because they 

substantially differ in the volumes of ENMs produced, connection to WWTPs and waste 

management system (WMS) practices, as well as in the volume of the environmental 

compartments. 

We are aware that ENMs undergo several transformations such as dissolution, hetero- 

and homo-agglomeration as well as (re-)suspension that may influence the PEC considerably. 
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However, the chosen ENM TiO2, CNT and Al2O3 are considered to be quite stable and thus 

only agglomeration reactions would significantly affect their fate. Hence, we considered two 

worst-case scenarios, one considering total sedimentation of ENMs released to surface water 

(yielding the sediment concentrations) and the other considering no sedimentation (yielding the 

surface water concentrations). These estimated PECs can be subsequently used as input values 

for environmental fate and behavior models that are more dedicated to calculate PECs based on 

environmental fate and behavior processes.. By doing so, these scenarios cover the extrema of 

these influential parameters. 

Ecotoxicological data collection and derivation of probabilistic species sensitivity 

distributions, predicted no-effect concentrations and risk characterization ratios 

We first collected ecotoxicological in vivo data for the selected nano-forms in the freshwater 

compartment. Only data on the endpoints reproduction, growth, mortality and relevant 

metabolic process such as photosynthetic activity were considered as it was also applied by Coll 

et al. (2016) and recommended by ECHA (2008). Regarding the data quality, we applied for 

nano-TiO2 the DANA 2.0 criteria catalog (Steinbach et al., 2017) and identified approximately 

165 data points with an adequate quality. For the other ENMs considered, data were very 

limited so that data points were selected as long as the studies had characterized the ENM with 

regard to the crystal form/morphology. This dataset was used for the calculation of the PNECs 

for each nano-form considered. 

The PNEC of a substance is the estimated concentration at which no adverse effect is 

expected. Basically, two main approaches currently are regulatory compliant. First, 

deterministic PNECs can be derived by dividing the ecotoxicological value for one (relevant) 

species by an assessment factor (AF) considering the uncertainty associated to the data. Second, 

the species sensitivity distribution (SSD) approach takes into account several species at once 

by using the lowest ecotoxicological value or geometric mean per species. A cumulative SSD 
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curve is fitted to this dataset based on a predefined distribution such as log-normal, log-logistic 

or others, for instance (ECHA, 2008). The final PNEC value is derived from the SSD curve by 

extracting the hazardous concentration (HC5) at which five percent of the biological community 

is threatened (i.e. 95% of the species are protected) and an additional AF of 1-5 has to be applied 

depending on the dataset quality (ECHA, 2008). 

If only one data point was available for a nano-form (i.e. for nano-α-Al2O3), we applied 

an AF of 1000 to calculate directly the PNEC based on the REACH guideline R.10 (ECHA, 

2008). For all other cases, we have applied the PSSD+ approach that was recently advanced by 

Wigger et al. (in preparation), who took the work of Gottschalk and Nowack (2013) as a 

basis.The PSSD+ computes the HC5 using probabilistic elements for all ecotoxicity data points 

of each species, and calculates 10'000 PSSDs based on a Monte-Carlo routine for this data set. 

Then, the HC5 is extracted out of each PSSD and the PNEC distribution is obtained. The 

advantage of the PSSD+ approach is that it considers the complete dataset and represents it as 

it is without aggregating or omitting data points. Therefore, the PSSD+ approach is applicable 

to small and large datasets by avoiding the fitting problem of conventional SSDs (Wigger et al., 

in preparation). 

The PSSD+ approach takes chronic no observed effect concentrations (NOECs) as 

inputs, because these are preferred over acute values in the REACH context (ECHA, 2008). 

Therefore, we applied to each ecotoxicological value two AFs for converting them from acute 

to chronic values and also to harmonize the dose-descriptors by transforming them into a NOEC 

value. Generally, ecotoxicological values were given as ECx (effective concentration at which 

a response of 'x' percent is observed, ICx (Inhibitory concentration at which an inhibition of 'x' 

percent is observed regarding a specific biological function), LCx (lethal concentration that is 

expected to cause death to x% of the population), LOEC (lowest observed effect concentration) 

or NOEC. The applied AFs are listed in Table SX and are either based on the REACH guideline 

R.10 (ECHA, 2008), if applicable, or we took the corresponding OECD test guidelines as an 
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orientation for the AF values. It has to be noted that AFs generally are still in debate due to the 

fact that standard AFs cannot consider substance and species specificity, which underlines the 

need of incorporating probability distributions in such assessments.  

In the PSSD+ approach, for each of the species-specific values a probability distribution 

was derived by considering the range of NOECs reported and the coefficients of variation linked 

to the inter-laboratory variation (±30%) and the assessment factors (±50%). The minima and 

maxima of each species-specific distribution were estimated by the error propagation as 

described in Kawecki et al. (2018) combining these individual uncertainties into a total 

uncertainty range. If one data point per species was available, a triangular distribution was built, 

with the NOEC value as the mode and the minimum and maximum values determined by error 

propagation. If two data points were at hand, a trapezoidal distribution was generated by 

considering the modes of the data points, the minimum of the lowest NOEC and maximum of 

the highest NOEC values at the edges. When more than two data points per species were 

available, a distribution was derived combining uniform distributions in between all mode 

values and assessing the edges in a similar way for the other cases.  

From these species-specific distributions, 10'000 PSSDs were calculated by applying a 

Monte-Carlo routine. Finally, the probability distribution of the PNEC was estimated by 

extracting the HC5 of each PSSD calculated  Due to the objective of this study, no additional 

AF was applied (i.e. AF of one), which might be necessary in regulatory context depending on 

the data quality. 

The RCR was obtained by dividing the PEC distributions by the PNEC distributions for 

each nano-form. A RCR above one shows a potential risk, which should be further investigated, 

whereas a RCR below one shows no immediate reason for concern. 
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Results 

Applicability of exposure and hazard assessment and selection of nano-forms 

Ten major ENMs were screened whether a grouping of specific nano-forms is applicable to 

environmental exposure and hazard assessment. The results are shown in Table 1. Whilst crystal 

form or morphology-specific hazard assessment is (theoretically) possible for all ENM-classes, 

the material flow modeling is restricted by the knowledge on the specific use of nano-forms in 

applications. In ecotoxicological studies, the materials were usually well described and the 

applicability was limited only due to data availability. Regarding the environmental exposure 

assessment, the ENMs Ag, Au, CuO, ZnO, CexOy and iron oxides could not be related to a 

unique identifier based on their functionalities that are used in specific product categories. For 

example, nano-Ag, nano-Au, nano CuO and nano-ZnO have antimicrobial properties (Beyth et 

al., 2015), which principally make them useable in the same application. Additionally, the 

ENMs can be coated or functionalized that would mask the core functionality of the ENM used 

in the application. Consequently, it was not feasible to allocate these ENMs to an application 

due to the interchangeability of different nano-forms of the same ENM-class in an application. 

Finally, three major ENMs CNTs, Al2O3, and TiO2 were selected to perform a group specific 

environmental risk assessment due to the availability of both hazard data and the potential to 

separate the flows into different form. Whilst nano-TiO2 had both a sound ecotoxicological 

dataset and separable product applications based on the functionality, CNTs and nano-Al2O3 

were limited in terms of allocation of the production volume or availability of ecotoxicological 

data, respectively. 
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Table 1. Evaluation of ENMs regarding the feasibility to differentiate exposure and hazard assessment for nano-forms. 

 

nano-form property/functionality remark

anatase/P25 photocatalytically active

rutile photostable

coated

uncoated

alpha hardness

gamma higher thermally conductive than alpha-Al2O3

MWNT

hematite

maghemite

magnetite

goethite

Ce2O3 (III)

Ce3O4 (IV)

amorph

crystalline

The exposure assessment is possible with regard to the allocation of the production volume to nano-form specific product categories (score: 
green). 

The hazard assessment would allow nano-form specific assessments, because the ENMs are characterized in the experimental studies. The data 
availablity is generally good compared to other nanomaterials investigated. (score: green).

The exposure assessment is possible with regard to the allocation of the production volume to nano-form specific product categories (score: 
green). 

Nano-form specific PNECs can be principally derived, but the data availability on ecotoxicological studies is very limited. Therefore, the results 
can be only interpreted as a preliminary result (score: yellow). 

 catalytically active, optical effects,
UV-blocking, thermally and electrically conductive,

anti-(ferromagnetic) 

Although some applications can be identified and IONP forms associated to them, product categories cannot be differentiated based on the 
crystal form (score: red). 

Ecotoxicological data is rare for IONP-forms, but a differentiation of nano-form is principially possible (score: yellow)
Iron oxide

higher electrical conductivity than MWNTs

CNT

The properties of MWNT and SWNT are very similar, which aggravate a clear distinction of product categories and determining the nano-form-
specific PEC. However, the electrical conductivity of SWNT is better than the electrical conductivity of MWNT in the pristine form that was used 

for the differentiation (score: yellow).
Nano-form specific PNECs can be principally derived, but the data availability on ecotoxicological studies is limited. Therefore, the results can 

be only interpreted as a preliminary result (score: yellow). 

ENM

TiO2

ZnO/Ag/ 
CuO/Au

differentiation possible for  

PNECPEC

e.g. antimicrobial, UV-blocking,
catalytically active, optical effects

Ceria has several properties, which are not distinguishable based on the crystal form or oxidation state. Hence, the allocation to nano-form 
specific product categories is not yet possible (score: red). 

Ecotoxicological data is rare for the ceria nano-forms, but a differentiation of nano-form is principially possible (score: yellow)

SiO2

CexOx

The determination of nano-form specific environmental exposure assessment is possible since recent studies (Wigger et al 2018, Giese et al. 
2018) have published this data (score: green).

Nano-form specific PNECs can be principally derived, but the data availability on ecotoxicological studies for the nano-forms of silica is 
limited (score: yellow). 

e.g. catalytically active,
 abrasive resistant

Al2O3

No clear allocation to product categories was possible based on the ENM properties and functionalities. All ENMs can be interchangable used 
in the same applications. The information for the allocation are not available so far (score: red). 

The hazard assessment would allow nano-form specific assessments, because the ENMs are characterized in the experimental studies. The data 
availablity is generally good compared to other nanomaterials investigated. (score: green).

SWNT
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Legend: green = possible, yellow = partially possible, red = not possible; Abbreviations: PEC = predicted environmental concentration; PNEC = predicted no 

effect concentration; MWNT = multiwall carbon nanotubes; SWNT =single-wall carbon nanotubes; IONP = iron oxide nanoparticles
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Estimated material flows and predicted environmental concentrations 

The results of the PMFA and the estimated PECs will be presented in the following 

subsections. The results are arranged by ENM and their nano-forms. The main results 

refer to the European system boundary, whereas results for the regions of NE and SEE 

are included in the supporting information (SI). The values described in the sections refer 

to the mean values. 

Nano-TiO2 – anatase and rutile  

The total production volume of nano-TiO2 has a mean of 10'250 metric tons (Sun et al., 

2014). The allocation of the production volume to the product categories was based on 

the photocatalytic activity or stability of nano-TiO2 (anatase) or nano-TiO2 (rutile), 

respectively. The allocation of the applications to the corresponding nano-form is shown 

in table S1. Following the applied allocation scheme, anatase nano-TiO2 represented 

2'750 metric tons (27%) and rutile nano-TiO2 7'500 metric tons (73%) of the total 

production volume. With this separation among applications, two separate material flow 

diagrams for both forms of nano-TiO2 could be constructed (cf. Figure 1). The main 

application of rutile was assumed in cosmetics (59%) as a down-the-drain product that 

was released to wastewater during use. This resulted in 5’500 metric tons of rutile going 

through wastewater. Compared to anatase with 5 metric tons, rutile has a high direct 

release of 370 metric tons to surface waters mainly due to the use in sunscreens. Most of 

the wastewater fraction is treated in the wastewater treatment plant (WWTP). Because of 

the high WWTP removal efficiency, the majority of rutile ended up in the sewage sludge 

that is subsequently used as fertilizer to some extent. Thus, the most relevant sinks for 

rutile were the compartments sludge treated soil (1'600 metric tons), surface water (2'100 

metric tons) as well as landfill (2'200 metric tons) as it is depicted in Figure 1. In contrast 
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to rutile, the main applications of anatase were paints with a share of 8%, electronics with 

7% and filters with 6%. These product categories mainly comprised applications with 

ENMs embedded in a matrix. Consequently, their environmental releases during usage 

were low and the compartments receiving most of the flows from PMC were landfill (960 

metric tons) and recycling/WMS for further treatment (650 metric tons). 
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Figure 1. Material flow charts for nano-TiO2 (anatase) (top) and nano-TiO2 (rutile) 

(bottom) for Europe in 2012. 
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Nano-α-Al2O3 and nano-γ-Al2O3 

Nano-Al2O3 has an overall production volume of 14'800 metric tons (Wang and Nowack, 

2018a). Nano-α-Al2O3 is known for its hardness and consequently it is mostly used in 

abrasive or abrasive-resistant applications. Thus, nano-α-Al2O3 constituted 12'300 out of 

14'800 metric tons, whereas the remaining amount (i.e. 16%) was allocated to nano-γ-

Al2O3 (cf. table S2 for the allocation of product categories to the nano-form). The main 

applications of nano-α-Al2O3 were cement (18%), paints (16%), automotive coatings 

(10%) and cleaning agents (10%). The material flow charts of Figure 2 depict the results. 

Cement, paints and automotive coatings usually go through well-organized 

recycling/WMSs in industrialized countries, which is why the main material flows were 

directed towards this technical compartment (61%). Wastewater was another relevant 

release pathway (25%), which was influenced by the cleaning agent application. In the 

recycling/WMS, most of ENMs go through sorting of embedding materials and transfer 

to either landfills or WIPs. Nano-γ-Al2O3 has less relevant material flows compared to 

nano-α-Al2O3 and is dominated by the application filter (15%). Consequently, the major 

material flows are towards the landfill or recycling/WMS for further treatment.  
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Figure 2. Material flow charts for nano-α-Al2O3 (top) and nano-γ-Al2O3 (bottom) for 

Europe in 2014. 
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MWNT and SWNT 

CNTs had the lowest annual production volume with approximately 400 metric tons 

(mean) (Sun et al., 2014). The total production volume of CNTs was allocated to MWNT 

and SWNT with 97% (equals 380 metric tons) and 3% (15 metric tons), respectively (see 

table S3). Plastics (84%), energy (9%) and aerospace (6%) were the main applications of 

MWNTs, whose use does not trigger high environmental release during use. 

Consequently, the majority of MWNTs was transferred to landfills with 230 metric tons 

(cf. Figure 3). The second relevant receiving compartment was WIP with 90 metric tons 

and the recycling/WMS with 40 metric tons originating from the production, 

manufacturing and consumption box (PMC). The main application of SWNTs were 

electronics, leading to material flows from the PMC to the recycling/WMS compartment 

(8.3 metric tons) as well as to export (2 metric tons). It has to be noted that a major part 

of the disposed MWNTs and SWNTs are eliminated during the thermal treatment in the 

WIP. Thus, environmental releases of MWNTs and SWNTs from WIP were low 

compared to other ENMs. 
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Figure 3. Material flow charts of MWNT (Top) and SWNT (bottom) for Europe in 2012. 
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Determination of specific release profiles of the nano-forms per ENM considered 

In order to describe the characteristic environmental release profile of the two nano-forms 

of the same ENM, the released amounts of the nano-forms can be compared for the 

respective environmental compartment. A ratio was obtained by dividing the released 

amount of rutile and anatase, of MWNT and SWNT as well as α-Al2O3 and γ-Al2O3. The 

higher the ratio, the more different were the applications of the nano-forms regarding the 

environmental release. These release profiles are depicted in Figure 4 and are based on 

the material flows shown in Figures 1 to 3. The ratios of nano-TiO2 rutile and anatase 

showed that the released amounts of rutile were in average 10 to 11 times higher than the 

release amounts of anatase into the environmental compartment. Exceptionally, anatase 

had a higher environmental release to the natural and urban soil compartment than rutile, 

which is shown in Figure 4 as a negative ratio. A similar pattern was obtained for α-

Al2O3/γ-Al2O3 in which the ratios for each compartment showed ratios in the range from 

10 to 13. The ratio of MWNT to SWNT was lower with 2.6 to 3.6 compared to those of 

the other ENMs considered. Interestingly, the main difference of MWNT/SWNT ratio of 

9.8 was identified for the compartment natural and urban soil. This was related to the 

direct releases from paints in which MWNT were incorporated. Due to weathering 

processes, fractions can be consequently released to the soil (natural & urban) 

compartment.  
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Figure 4. Environmental release profiles of of different nano-forms derived by the 

released amounts in each compartment. The higher the ratio, the larger is the difference 

of the released amounts of the nano-forms. 

Legend: WWTP = wastewater treatment plant; N+U = natural and urban 

Predicted environmental concentrations and regional variation 

The results for the European PECs are shown in Table 2, whereas the PECs for the regions 

NE and SEE are listed in the SI. Generally, the highest PEC values were calculated for 

nano-α-Al2O3 and rutile nano-TiO2 due to the high production volume compared to the 

other nano-forms. The lowest PEC values were determined for MWNT and SWNT. 

For the compartments surface water and sediments, the nano-forms showed the 

following ranking (based on the mean): nano-TiO2 rutile > nano-α-Al2O3 > nano-TiO2 

anatase > nano-γ-Al2O3 > MWNT > SWNT, which was mainly determined by the 

production volume. The soil (natural + urban) compartment showed a different ranking 

with nano-α-Al2O3 > nano-γ-Al2O3 > nano-TiO2 anatase > nano-TiO2 rutile > MWNT > 
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SWNT due to the consideration of direct releases. The compartment sludge treated soil 

ranked the nano-forms with nano-TiO2 rutile > nano-α-Al2O3 > nano-TiO2 anatase > 

nano-γ-Al2O3 > MWNT > SWNT. 

Table 2. Predicted environmental concentrations for the nano-forms considered for 

different European environmental and technical compartments*. 
nano-α-Al2O3 

 Q15 Mode Mean Q85 Unit 

Sediments  1.3 1.7 1.9 2.4 [mg/kg] 

Soil (N+U)  1.1 1.4 1.6 2.1 [µg/kg] 

Soil Sludge treated  1'090 1'450 1'590 2'100 [µg/kg] 

Surface water  0.38 0.49 0.53 0.69 [µg/l] 

WWTP effluent  3.5 4.2 14 26.0 [µg/l] 

WWTP sludge  170 220 240 310 [mg/kg] 

nano-γ-Al2O3 

Sediments  0.12 0.15 0.18 0.23 [mg/kg] 

Soil (N+U)  0.08 0.10 0.12 0.16 [µg/kg] 

Soil Sludge treated  80 100 120 160 [µg/kg] 

Surface water  0.03 0.04 0.05 0.07 [µg/l] 

WWTP effluent  0.25 0.28 1.1 1.9 [µg/l] 

WWTP sludge  12 15 18 24 [mg/kg] 

Multi-wall carbon nanotubes 

Sediments  0.0006 0.0008 0.0010 0.0013 [mg/kg] 

Soil (N+U)  0.004 0.005 0.006 0.008 [µg/kg] 

Soil Sludge treated  0.80 1.04 1.23 1.66 [µg/kg] 

Surface water  0.0002 0.0002 0.0003 0.0004 [µg/l] 

WWTP effluent  0.0024 0.0027 0.0051 0.0081 [µg/l] 

WWTP sludge  0.12 0.16 0.18 0.24 [mg/kg] 

Single-wall carbon nanotubes 
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Sediments  0.0001 0.0001 0.0003 0.0004 [mg/kg] 

Soil (N+U)  0.0003 0.0003 0.0006 0.0009 [µg/kg] 

Soil Sludge treated  0.20 0.24 0.46 0.74 [µg/kg] 

Surface water  0.0000 0.0000 0.0001 0.0001 [µg/l] 

WWTP effluent  0.0007 0.0007 0.0019 0.0033 [µg/l] 

WWTP sludge  0.0309 0.0352 0.0686 0.1092 [mg/kg] 

nano-TiO2 anatase 

Sediments  0.13 0.17 0.28 0.45 [mg/kg] 

Soil (N+U)  0.06 0.09 0.10 0.14 [µg/kg] 

Soil Sludge treated  80 110 210 340 [µg/kg] 

Surface water  0.04 0.05 0.08 0.13 [µg/l] 

WWTP effluent  1.1 1.3 5 10 [µg/l] 

WWTP sludge  13 16 30 50 [mg/kg] 

nano-TiO2 rutile 

Sediments  1.8 2.3 3.3 5.1 [mg/kg] 

Soil (N+U)  0.03 0.05 0.07 0.11 [µg/kg] 

Soil Sludge treated  904 1026 2096 3363 [µg/kg] 

Surface water  0.50 0.67 0.94 1.44 [µg/l] 

WWTP effluent  12 15 50 100 [µg/l] 

WWTP sludge  140 160 320 510 [mg/kg] 

*The results are rounded to two or three digits. 

Legend: WWTP = wastewater treatment plant; N+U = natural and urban 

 

As production volumes and waste management vary in different geographical 

systems, PECs can differ depending on the system studied. Therefore, PECs in Northern 

Europe and South Eastern Europe were calculated. The results can be obtained in table 

S7 for each nano-form and region. These PECs will be discussed together with the RCR 

variation as both are linearly dependent. 
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PSSD and PNEC 

The results of the data collection of the ecotoxicological endpoint values are summarized 

in tables S4-S6. Table 3 shows the overview on the number of data points and species 

collected for each nano-form for the freshwater compartment. Overall, nano-TiO2 has the 

highest number of data points despite the fact that the strictest quality criteria were 

applied. The crystal forms P25 and anatase had comparable numbers of data points and 

species, whilst rutile comprised only one third of the data points compared to other nano-

TiO2 forms. MWNT had twice as much data points compared to SWNT, although the 

numbers of species are at a similar level which was higher than the critical amount of ten 

data points. The data points for nano-Al2O3 was based on the PSSD study of Wang and 

Nowack (2018b). Additional studies were not found in the time considered for nano-

Al2O3 (i.e. until October 2018). Several data points of Wang and Nowack (2018b) could 

not be used due to missing information on the crystal form. Although γ-Al2O3 did not 

have sufficient amount of data points to build a representative PSSD, preliminary PSSDs 

for γ-Al2O3 were built. The PNEC for nano-α-Al2O3 was derived by using the LC50 

distribution divided by an assessment factor of 1000. 

Table 3. Number of data points and species for nano-forms considered in the freshwater 

compartment. 

nano-form number of data points number of species 
α-Al2O3 1 1 
γ-Al2O3 7 4 
SWNT 12 10 
MWNT 51 11 

TiO2 anatase 70 14 
TiO2 rutile 25 8 
TiO2 P25 69 17 

 

In Figure 5 and Table 4 the PSSDs and the PNEC distributions for all nano-forms 

are shown. Regarding nano-TiO2, species showed highest sensitivity to P25, which in 
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turn resulted in a low mean PNEC of 4.5 µg/l (Q15: 2.8 – Q85: 6.2 µg/l) compared to rutile 

with a mean PNEC of 33 µg/l (Q15: 22 – Q85: 45 µg/l) and anatase with 38 µg/l (Q15: 12 

– Q85: 68 µg/l). The mean PNECs for CNTs were 120 µg/l (Q15: 59 – Q85: 188 µg/l) for 

MWNTs and 99 µg/l (Q15: 63 – Q85: 135 µg/l). for SWNTs, at a similar level as the 

generic PNEC for CNT derived by Coll et al. (2016) with 55.6 µg/l (95th CI: 39.9-78.0 

µg/l). Nano-γ-Al2O3 presented a PNEC distribution with a mean of 957 µg/l (Q15: 570 – 

Q85: 1'300 µg/l). In contrast, the PSSD method was not applicable the for the dataset of 

nano-α-Al2O3, which is why an AF of 1000 was applied to the only available value. The PNEC mean value for 

nano-α-Al2O3  of 9'300 µg/l (Q15: 6'080 – Q85: 12'500 µg/l) was comparable high due to 

the limited dataset. We took this number into consideration to show the proof of concept 

by separating the product application based on the functionality. Therefore, the results for 

nano-α-Al2O3 should be rather considered as a proof of concept than a final result. 
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Figure 5. Derived probabilistic species sensitivity distributions and predicted no-effect 

concentrations (PNEC) for the nano-forms considered*. 
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Table 4. Predicted no-effect concentrations for the different nano-forms derived from the 

probabilistic species sensitivity distributions*. 

Nano-form mode [µg/l] mean [µg/l] Q15 [µg/l] Q85 [µg/l] 

**α-Al2O3 9'340 9'300 6'080 12'500 

γ-Al2O3 1'050 960 570 1'300 
SWNT 95 99 63 135 
MWNT 110 120 59 188 

TiO2 anatase 15 38 12 68 
TiO2 rutile 33 33 22 45 
TiO2 P25 4.8 4.5 2.8 6.2 

*The results are rounded to two or three digits.  

** Please note that the values for nano-α-Al2O3 are based on a single species PNEC 

European and regional risk characterization ratios 

The RCRs for each nano-form were obtained from the division of the PEC distributions 

by the PNEC distributions. The results are shown in Figure 6 and Table 5. The ratio of 

PEC/PNEC determines the RCR and therefore high PECs and low PNECs may lead to 

RCRs similar to those obtained with low PEC and high PNEC values. The results for 

nano-TiO2 show that the RCRs obtained for rutile and P25 are similar, although different 

PECs and PNECs were derived for each of them. The maximal value of P25 can exceed 

the critical RCR value of one, but with a low likelihood. The RCR mean values for nano-

γ-Al2O3, nano-α-Al2O3, MWNT and SWNT were several orders of magnitude lower than 

one. Whilst the crystal forms of nano-Al2O3 showed no differences in the RCR, MWNT 

and SWNT had different RCR mean values by a factor of three. 
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Figure 6. European risk characterization ratios (RCR) calculated for nano-TiO2 (top-left), 

CNTs (top-right) and nano-Al2O3 (bottom left). Please note that the values for nano-α-
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Al2O3 are based on a single species PNEC. The right handed side of dashed line (red) 

represents the area of potential risks. 

Table 5. Risk characterization ratios for nano-form considered in Europe. Please note that 

the values for nano-α-Al2O3 are based on a single species PNEC. The reddish color of the 

cells represents potential risks. 
Nano-form Mode [-] Mean [-] Q15 [-] Q85 [-] Min[-] Max[-] 

TiO2-anatase 1.19E-03 3.86E-03 8.13E-04 6.69E-03 1.20E-05 2.89E-01 

TiO2-P25 1.04E-02 2.34E-02 7.58E-03 3.43E-02 9.93E-05 1.12E+00 

TiO2-rutile 1.76E-02 3.19E-02 1.40E-02 5.04E-02 2.57E-04 2.07E-01 

α-Al2O3 9.81E-05 1.38E-04 7.82E-05 1.98E-04 2.68E-05 8.97E-04 

γ-Al2O3 8.41E-05 1.32E-04 6.73E-05 1.95E-04 2.23E-05 1.08E-03 

MWNT 1.79E-06 3.20E-06 1.28E-06 4.91E-06 1.16E-07 3.92E-05 

SWNT 4.10E-07 8.99E-07 3.28E-07 1.45E-06 7.50E-08 1.72E-05 

 

The regionalized RCRs consider the geographical differences of NE and SEE. 

Table 6 summarizes the results for both regions. The calculated RCRs for the NE region 

showed no major variations compared to the European average region. In contrast, the 

RCRs for the SEE region indicated higher differences with a factor of 1 to 7.8 compared 

to the European average region. Particularly, the maximal RCR values for nano-TiO2 P25 

and anatase in the SEE scenario can exceed the critical value of one, although with a very 

low likelihood. However, the mean and mode RCR values for the nano-forms considered 

still were below one in the SEE scenario indicating no immediate risk, so far. 

Interestingly, the RCR value for nano-α-Al2O3 decreased by 25% in the SEE scenario 

compared to European average region. Also, the regional results for MWNT and SWNT 

were higher (i.e. SEE scenario) or lower (i.e. NE scenarios), but do not exceed the critical 

RCR value of one. 
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Table 6. Regional risk characterization ratios for Northern Europe and South Eastern 

Europe. The reddish box represents a potential risk. Please note that the values for nano-

α-Al2O3 are based on a single species PNEC 
Northern European countries 

Nano-form Mode [-] Mean [-] Q15 [-] Q85 [-] Min[-] Max[-] 

TiO2-anatase 6.38E-05 3.08E-04 5.29E-05 5.39E-04 1.91E-06 1.88E-02 

TiO2-P25 6.12E-04 1.82E-03 4.95E-04 2.81E-03 7.85E-06 1.35E-01 

TiO2-rutile 1.22E-03 2.52E-03 9.97E-04 4.11E-03 9.70E-07 2.09E-02 

α-Al2O3 7.43E-06 1.05E-05 5.65E-06 1.53E-05 1.86E-06 6.61E-05 

γ-Al2O3 3.08E-06 4.94E-06 2.48E-06 7.37E-06 7.81E-07 4.62E-05 

MWNT 1.25E-07 2.17E-07 8.59E-08 3.34E-07 2.93E-09 3.40E-06 

SWNT 2.37E-08 5.29E-08 1.92E-08 8.59E-08 2.76E-09 1.06E-06 

South Eastern European countries 

Nano-form Mode [-] Mean [-] Q15 [-] Q85 [-] Min[-] Max[-] 

TiO2-anatase 1.04E-02 2.99E-02 6.78E-03 5.29E-02 8.55E-05 1.63E+00 

TiO2-P25 8.74E-02 1.83E-01 6.41E-02 2.56E-01 4.51E-04 1.05E+01 

TiO2-rutile 4.58E-02 7.01E-02 3.34E-02 1.07E-01 8.95E-04 4.26E-01 

α-Al2O3 6.87E-05 1.03E-04 5.57E-05 1.49E-04 1.61E-05 5.39E-04 

γ-Al2O3 8.71E-05 1.39E-04 7.23E-05 2.03E-04 2.65E-05 1.74E-03 

MWNT 4.49E-06 8.04E-06 3.25E-06 1.24E-05 6.81E-07 8.90E-05 

SWNT 1.13E-06 2.48E-06 9.00E-07 4.03E-06 1.36E-07 5.01E-05 

 

Discussion 

The discussion will focus on three different questions that were addressed in the 

introduction. First, the influence of the product volume allocation on the PEC results will 

be examined. Second, the calculation of the PSSDs and PNECs will be discussed. Third, 

the implications of these results on grouping concepts will be highlighted. 
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Allocation of product volumes and predicted environmental concentrations 

In the present approach, the allocation of the production volume to product categories 

assumes that specific material properties (e.g. crystal form) are used to facilitate certain 

functionalities in applications. If the material property can be attributed to a functionality 

that is specifically required for an application, the production volume can be allocated to 

this product category. The proposed approach is applicable to the product categories that 

have a unique identifier with regard to the functionality of the nano-form. As many design 

strategies exist for modifying ENMs, also different ENMs can have similar functionalities 

(i.e. the nano-forms are interchangeable) depending on the surface modifications. Thus, 

the complete knowledge of the market and applications together with the applied nano-

forms would be required to apply this functionality-driven approach to all ENMs. This 

knowledge is usually inaccessible from industries and authorities due to confidentiality 

and vague information reporting (Holden et al., 2014, Walser et al., 2017). However, this 

article has shown that for some ENMs the differentiation of nano-forms is feasible and 

relevant for the determination of the released amount, because the application defines the 

major environmental release pathway, e.g. mainly wastewater vs. mainly solid waste 

handling.  

In order to perform a risk assessment, the released amounts need to be transformed 

into PEC values. The approach chosen in this work was to base this on the procedure 

outlines by the REACH guidance. The derived PECs are worst-case concentrations valid 

for a homogenously mixed compartment in the size of Europe. In order to understand the 

influence of regional variation, regions with very different wastewater treatment and 

waste management systems were considered in this study. The spatial variability can 

influence the PEC results by several orders of magnitude, which has also been shown by 

Gottschalk et al. (2011), Dale et al. (2015), and Meesters et al. (2016). Other authors 
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reported similar differences for national waste management systems (Wigger et al., 2015, 

Wigger, 2017, Heggelund et al., 2016, Adam and Nowack, 2017). Furthermore, recently 

published models for ENM implement stocks and include temporal variations in the 

calculation of the environmental release (Bornhöft et al., 2016, Sun et al., 2016). These 

stocks shift environmental releases to later periods by considering the product lifespans. 

Depending on the product life span, PECs can be under- or overestimated compared to 

static models and particularly products with long lifespans can cause this delay (Muller 

et al., 2014). Typically, such products as for example paints and cements can have an 

expected service life of up to several decades. Recently, researchers have shown that 

considering product lifespans and release dynamics, the PEC values tend to increase over 

time because stocks become more relevant than the production volume per period 

entering the system (Song et al., 2017, Sun et al., 2017, Wang and Nowack, 2018a, Giese 

et al., 2018). The results of our study would likely differ compared to those obtained from 

dynamic models. The extent of the deviation depends on the number of applications 

included that have long product lifespans. Here, products (cements, paints) with a long 

lifespan were contained in nano-α-Al2O3 with 40%, nano-TiO2 (anatase) with 9% and 

MWNTs with 1% of their respective nano-form production volume. Consequently, the 

results of nano-α-Al2O3 and nano-TiO2 (anatase) could differ accordingly. Nevertheless, 

the results of this article should be interpreted as first estimates and as a proof of concept 

regarding the allocation of production volumes to product categories. The main limiting 

factor to perform a dynamic assessment is knowledge about the changes of production 

and product use over time. As this is not available for specific nano-forms, we have 

decided to use for a first assessment a static MFA approach.  

The PEC values that we provide do not include any environmental fate processes 

and are thus overestimating exposure. Nano-TiO2, CNTs and nano-Al2O3 can undergo 
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homo- and predominantly heteroagglomeration processes that affect their environmental 

fate considerably (Lowry et al., 2012, Mitrano et al., 2015). The coupling of the 

environmental release flows calculated in our work with environmental fate models for 

ENMs (Garner et al., 2017, Meesters et al., 2014) would allow a more accurate prediction 

of PEC values. However, these improved PEC values would be smaller than the worst-

case aquatic or sediments PECs derived in our work, which thus constitutes a 

precautionary assessment. A validation of the actual PECs in the real world is still 

difficult due to the challenges related to the environmental analytics (Nowack et al., 

2015).  

Derivation of PSSDs and PNECs for the freshwater compartment 

The reliability of the results generally depends on the quality of the data set used. The 

recommended minimal number of species that are required for an SSD differs within 

regulations (Belanger et al., 2017). The Reach guidelines specify the requirements with 

at least ten species out of the eight taxonomic groups (ECHA, 2008) for applying the SSD 

approach. In contrast, Garner et al. (2015) proposed to have at least four species and 

Cedergreen et al. (2004) proposed six to eight species for generating a SSD (cf. Chen et 

al., 2018). None of the datasets in our study meets the REACH requirements (i.e. in terms 

of taxonomic groups) and would require a case-by-case evaluation as it is requested 

(ECHA, 2008). Here, the crystal forms of nano-TiO2 had the most comprehensive dataset. 

Thus, it was possible to apply strict selection criteria for nano-TiO2 to identify the reliable 

data points (approximately 165). In contrast, data for MWNT/SWNT were less frequently 

found so that all data points were used as long as the ENM was properly characterized 

regarding the morphology.  

The PNEC values show considerable differences for the different nano-forms. 

Nano-TiO2 P25 had the lowest PNEC mean value with 4.5 µg/l compared to anatase with 
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38 µg/l (mean) and rutile with 33 µg/l (mean). This result is reasonable, because P25 is 

known for being more efficient in photocatalytic applications than the pure crystal form 

of anatase (Luttrell et al., 2014), resulting in higher production of reactive oxygen species 

and subsequent toxicity. Surprisingly, the mean PNECs of rutile is at a similar level than 

the one of anatase, which contradicts the hypothesis that anatase is more 

photocatalytically active than rutile. Also, Hund-Rinke et al. (2018) found similar 

indications for anatase and rutile and identified comparable ranges of EC50 for both nano-

forms (0.38–4.4 mg/l compared to 0.38–3.6 mg/l, respectively). When analyzing the here 

used dataset of rutile and anatase in more detail, it shows that several data points of 

different species are at a similar low NOEC concentration of rutile, which explains the 

low PNEC of rutile compared to anatase due to the weight of these data points.. The 

reason can be found in the experimental conditions, as for instance, the most investigated 

species D. magna has NOEC values spanning several orders of magnitude, which is likely 

related to different intensities of illumination and constitution of the exposure media. 

However, if the derived PNEC values are compared to previously published values, the 

results are in the same range as it was determined for generic nano-TiO2 by Gottschalk et 

al. (2013) with 61.5 µg/l (median), Semenzin et al. (2015) with 20 µg/l (mean) and Coll 

et al. (2016) with 15.7 µg/l (mean). Also, the mean PNECs of MWNT and SWNT were 

at a similar level with mean values of 120 µg/l (Q15: 59 – Q85: 188 µg/l).and 99 µg/l (Q15: 

63 – Q85: 135 µg/l), when the quantiles are considered, respectively. These results are in 

a similar range compared to Garner et al. (2015), who derived a generic PNEC of 3'500 

µg/l for CNTs based on EC50 values when an assessment factor of 10 is applied to convert 

the EC50 to a NOEC value. Nevertheless, the results of MWNT/SWNT in this study are 

higher compared to Coll et al. (2016), who derived an median PNEC of 55.6 µg/l for 

CNTs. This is related to the adapted PSSD approach used and the new data considered in 
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this article. In contrast to the review of Jackson et al. (2013), who postulated differences 

in the ecotoxicological sensitivity of D. magna to both MWNT and SWNT, the PSSDs 

approach used in our work did not show a significant difference between the two forms. 

In order to facilitate such conclusions, comparable numbers of experimental data would 

be required. The PNECs for both forms of nano-Al2O3 were considerably larger by 

several orders of magnitude than the generic PNEC (120 µg/l) determined by Wang and 

Nowack (2018b). The reason is that about half of the data set used by Wang and Nowack 

(2018b) was not usable due to missing specification on the crystal form of Al2O3. The 

PNEC for α-Al2O3 was not determined by the SSD-approach but by using the assessment 

factors defined in the REACH guidance (ECHA, 2008). Hence, the derived PNEC should 

be interpreted more like an indication for a potential NOEC range and less as the final 

result. The research still is ongoing and with new upcoming data the shape and value of 

PNEC values can change. However, it has to be considered that a general trade-off 

between data quality and data quantity has to be made. In either way, few high-quality 

data points or more lower-quality data points would limit the representativeness of the 

(P)SSD. Generally, nano-Al2O3 is expected to be toxic only in very high concentrations 

(Stanley et al., 2010). 

Risk characterization ratios and implications for grouping and read across 

concepts 

As the RCRs depend on both PEC and PNEC values, they underlie the same 

aforementioned limitations. Particularly, the regional PEC has shown to which extent it 

can vary depending on the regional variations of relevant model parameters (up to a factor 

of eight). These differences are mainly linked to the population (production volume used), 

population connected to WWTPs, and the volume of the local environmental 

compartment. However due to the predominating data limits, the RCR results have to be 
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interpreted as a tendency of the nano-form towards the reason of concerns. Furthermore, 

the allocation of specific nano-forms to applications is crucial to consider in 

environmental risk assessments since major environmental release pathways are 

influenced considerably by the product lifecycle (i.e. wastewater vs. solid waste 

treatment). Even nano-forms showing higher PNECs (i.e. less toxic), such as nano-γ-

Al2O3 (960 µg/l), can present high RCRs if their PEC is high.  

By considering the nano-form specific assessment, the RCR (together with the 

PEC and PNEC) can vary considerably by several orders of magnitude, which was shown 

in this study for nano-TiO2. These results imply that some ENMs (and their nano-forms) 

cannot be clustered in grouping (and read-across) concepts due to their specificity in 

terms of both release profile (i.e. amounts, form and compartment) and adverse effects. 

For example, photocatalytical nano-TiO2 (i.e. anatase and P25) and photostable nano-

TiO2 (rutile) showed considerable differences not only in the PEC but also in the PNEC 

estimation, which would be an obstacle for a general grouping concept. Consequently, a 

careful testing of grouping concepts could be required with regard to different ENMs and 

their nano-forms focusing on hazard and exposure aspects. Particularly, future grouping 

concepts should include the environmental release potential by considering the nano-form 

specific releases throughout the product life cycle (i.e. together with production volume 

and its allocation to product categories). 

Conclusions 

Grouping concepts have moved into the center of the current discussion in order to enable 

and to streamline environmental risk assessments of ENMs. Generally, these grouping 

concepts focus on hazard related aspects and categorize ENMs by relevant intrinsic 

properties (e.g. size, reactivity, crystal form) and only partially consider extrinsic 

properties (Arts et al., 2016, Lamon et al., 2018). As both hazard and exposure contribute 
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to the environmental risk, this study investigated the applicability of a selected grouping 

category "crystal form" to a comprehensive environmental risk assessment. The 

environmental risk assessment has been performed in three steps by considering the 

crystal form of selected ENMs (i.e. TiO2, Al2O3 and CNT). First, the production volume 

was allocated to product categories based on the crystal form and associated 

functionalities that are required in specific applications. Second, environmental release 

and PECs as well as PNECs were determined by means of probabilistic material flow 

modeling and species sensitivity distribution and in case of nano-α-Al2O3 on a single 

PNEC for all nano-forms considered. Third, nano-form specific RCRs were derived based 

on the previous steps. Whilst, PSSDs can be easily generated for the nano-forms 

considered when enough data is available, the allocation of the production volume (the 

most influential parameter in environmental exposure models) to specific product 

categories is not always feasible based on the functionality that the crystal form 

comprises. However, the RCR results for nano-TiO2 (anatase, rutile), MWNT/SWNT and 

nano-Al2O3 (alpha and gamma) indicated considerable differences with a factor up to 

eight when nano-forms of the same ENM are compared. Finally, the results implied that 

some ENMs (and their nano-forms) cannot be clustered in grouping (and read-across) 

concepts due to their specificity in terms of bothenvironmental release profile (i.e. 

amounts, form and compartment) and adverse effects, which should be carefully 

considered in future grouping concepts, if a combined risk assessment is followed in these 

approaches. 
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