Aluminium-Substituted ZnO Thin Films: Thermoelectric Properties and Structural Characterisation

Nina Schaeuble^{1)*}, Yaroslav E. Romanyuk²⁾, Songhak Yoon¹⁾, Anke Weidenkaff¹⁾ Myriam H. Aguirre¹⁾

1) Laboratory for Solid State Chemistry and Catalysis

*nina.schaeuble@empa.ch

2) Laboratory for Thin Films and Photovoltaics

Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland

Introduction and Motivation

Zinc Oxide as a Thermoelectric Material

- High Seebeck coefficient S for bulk material (-300 to -400 μV/K [1])
- · Low production costs and non-toxicity
- High electrical resistivity ρ and thermal conductivity κ (10 Ωcm and 50 W/mK at RT [1])

Substituting Zinc with Aluminium: $Zn_{0.98}AI_{0.02}O$

- · Lower electrical resistivity (ca 0.005Ω cm from RT to 1000° C [1])
- · Thermal conductivity still a drawback

Reducing Thermal Conductivity

- Lower dimensionality
- Morphology on nano-scale range and 2D thin films [2]

Synthesis

Magnetron Sputtering [3]:

- · Radio-frequency (RF) method, plasma power 200 W
- Gas: mixture of Ar and Ar with 3% O₂
- Target: 2 wt% Al₂O₃-doped ZnO
- Deposition pressure: 10-3 mbar
- Deposition time: 16 min
- · Substrate: Soda-lime glass
- Film thickness: 470 nm

Morphology

Columnar grains:

Fig. 2: TEM images of as grown $Zn_{0.98}AI_{0.02}O$ films: a) BF, b) DF Film thickness th = 470 nmgrains ca 450 nm long and 15-35 nm wide The preferential orientation c-axis the perpendicular substrate.

Thermoelectric Properties

Abrupt change in thermoelectric properties when heating in air above around 640 K:

Fig. 6: Thermoelectric properties of a $Zn_{0.98}Al_{0.02}O$ thin film. From left to right: 1) Electrical resistivity $\rho(T)$, 2: Seebeck coefficient S(T), 3: Estimated ZT values as a function of the temperature calculated from the $\rho(T)$ and S(T)from the thin film and an approximation of the thermal conductivity of a bulk sample from solid state reaction.

Morphology and Crystal Structure with Temperature Treatment

Possible change in orientation with temperature: Similar morphology before and after annealing treatment::

But more different orientations after than before annealing treatment:

Fig. 3: XRD patterns of Zn_{0.98}Al_{0.02}O thin films measured after annealing treatment at different temperatures

Fig. 4: TEM images of $Zn_{0.98}Al_{0.02}O$ thin films: a) before annealing treatment, b) after annealing treatment at 800 K.

Fig. 5: Electron diffraction of Zn_{0.98}Al_{0.02}O thin films: a) before annealing treatment, b) after annealing treatment at 800 K.

Conclusions

- ⇒The films show columnar grains with preferred orientation of the c-axis perpendicular to the substrate.
- ⇒ There is an abrupt change in the thermoelectric properties around 640 K.
- ⇒ The change could be due to the anisotropic character of the ZnO sample with a hexagonal structure (ρ_{ab} + ρ_c [4]). The orientation of the grains change to more ab-plane contribution perpendicular to the substrate
- ⇒ However, as the difference in the electrical resistivity before and after annealing treatment is large, the more reasonable explanation is due to a change in the oxygen

Outlook

⇒ More investigation on the grain orientation and the change in oxygen content with temperature will be done by TEM and by X-ray photoelectron spectroscopy (XPS).

Acknowledgement

financial support.

The Swiss National Science Foundation

(SNF) is highly acknowledged for the

- [1] Tsubota T. et al. *J. Mater. Chem.* 7(1) (1997) 85 [2] Dresselhaus M.S. et al. *Adv. Mater.* 19 (2007) 1043
- [3] Haug F.-J. et al. *J. Vac. Sci. Technol. A* 19 (2001) 171 [4] Kaga H. et al. *Ceramics International* 34 (2008) 1097