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Abstract
Purpose Improving the quality and quantity of unit process datasets in Life Cycle Inventory (LCI) databases affects every LCA
they are used in. However, improvements in data quality and quantity are so far rather directed by the external supply of data and
situation-driven requirements instead of systematic choices guided by structural dependencies in the data. Overall, the impact of
current data updates on the quality of the LCI database remains unclear and maintenance efforts might be ineffective. This article
analyzes how a contribution-based prioritization approach can direct LCI update efforts to datasets of key importance.
Methods A contribution-based prioritization method has been applied to version 3 of the ecoinvent database. We identified the
relevance of unit processes on the basis of their relative contributions throughout each product system with respect to a broad
range of Life Cycle Impact Assessment (LCIA) indicators. A novel ranking algorithm enabled the ranking of unit processes
according to their impact on the LCIA results. Finally, we identified the most relevant unit processes for different sectors and
geographies.
Results and discussion The study shows that a relatively large proportion of the overall database quality is dependent on a small
set of key processes. Processes related to electricity generation, waste treatment activities, and energy carrier provision (petro-
leum and hard coal) consistently cause large environmental impacts on all product systems. Overall, 300 datasets are causing
60% of the environmental impacts across all LCIA indicators, while only 3 datasets are causing 11% of all climate change
impacts. In addition, our analysis highlights the presence and importance of central hubs, i.e., sensitive intersections in the
database network, whose modification can affect a large proportion of database quality.
Conclusions Our study suggests that contribution-based prioritization offers important insights into the systematic and effective
improvement of LCI databases. The presented list of key processes in ecoinvent version 3.1 adds a new perspective to database
improvements as it allows the allocation of available resources according to the structural dependencies in the data.
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1 Introduction

Life Cycle Assessment is a technique for the comprehensive,
quantitative assessment of the environmental impacts of prod-
ucts1 throughout their entire life cycle (Finnveden et al. 2009).
This involves the mapping of complex globalized networks
consisting of thousands of interlinked human activities
(Hellweg and Milà i Canals 2014). Tracing and measuring
the exchange flows of and between these activities is realized
on the basis of nodes called unit processes. A unit process
represents one specific activity or a group of activities allocat-
ed to one unique output and records (i) the exchanges with
environment, i.e., the input of natural resources and output of
emissions; (ii) the intermediate exchanges from and to the
technosphere, i.e., the input of usable energy and raw mate-
rials and the output of products and waste (Reinhard et al.
2016).

A product system represents the complete network of all
unit processes involved in the life cycle or partial life cycle of
a product (depending on the scope of the product under anal-
ysis). A typical product system covers thousands of unit pro-
cesses, each of which needs to be described with exchange
flow values (Bourgault et al. 2012). This information cannot
usually be gathered as primary data within a specific project
due to the high cost that would be involved in data collection
(Reinhard et al. 2016). It is therefore a common practice to
focus data collection efforts on selected activities that reflect
the space for action—these activities are together called the
foreground system—and to use generic data from Life Cycle
Inventory (LCI) databases,2 such as ecoinvent (Weidema et al.
2013), to model the remaining activities, called the back-
ground system (Tillman 2000; Bourgault et al. 2012;
Reinhard et al. 2016). Even when 100 processes are modeled
with primary data, the foreground system would still not ex-
ceed 5% of the entire product system as it typically involves
thousands of unit processes (Steubing et al. 2016). Bearing
this in mind, background data from LCI databases can be
considered the backbone of any LCA study (Reinhard et al.
2016). The unit processes in such background databases there-
fore form the basic building blocks required by all LCA ap-
plications (Sonnemann and Vigon 2011).

However, unit process datasets are subject to uncertainties.
The exchange flow data required for the accurate compilation
of a unit process can be unavailable, wrong, or unreliable
(Heijungs and Huijbregts 2004; Ciroth et al. 2016). As unit
processes typically represent average conditions of a whole
country, a given time period, and different instances of real
processes, natural variability is always present (Huijbregts
1998). Both cases affect the overall accuracy of the unit

process (Sonnemann and Vigon 2011). Consequently, LCI
databases are under continuous extension and improvement.
For example, ecoinvent has issued five updates in the past
5 years.

However, improvements are becoming progressively diffi-
cult due to the increasing numbers of datasets stored in
existing databases. For example, version 3.5 of the ecoinvent
database includes roughly 17,000 unit processes. If updating
one unit process would, on average, require only one person-
day,3 a systematic update of the entire database within 1 year
would require the continuous work of more than 75 re-
searchers. Capacities for such extensive improvement efforts
are typically not available and consequently LCI database
improvements have to be prioritized.

To date, prioritization of LCI database improvements is
mainly driven by the Bcontinuing evolution in consumer pref-
erences, and market and industry imperatives, and public
policy^ (Sonnemann and Vigon 2011). In addition, routines
are in place to monitor existing datasets and to integrate newly
available technological information on processes and product
systems, on raw data, and on elementary flows (Sonnemann
and Vigon 2011). Such improvements are important and can
have a significant influence on the adequateness, representa-
tiveness, and actuality of LCA results. However, exclusively
relying on this type of prioritization is Bprobably not the most
effective use of resources in improving overall database
quality^ (Mutel 2012). Overall, the impact of current data
improvements on the quality of the LCI database remains
unclear and maintenance efforts might be ineffective.

We believe that insights into relative process relevance in
existing LCI databases are one crucial—and currently
missing—condition to organize data collection efforts more
effectively. Knowledge about relative process relevance in a
LCI database would offer a valuable perspective for Bdoing
the right thing,^ namely improving the data elements with the
largest influence on overall database quality. The goal of this
article is therefore to rank the unit processes of ecoinvent 3.1
considering their importance across 19 selected LCIA indica-
tors according to the following steps:

& We apply and improve the prioritization method from
Reinhard et al. (2016) to the version 3.1 of the ecoinvent
database. We first focus on three selected LCIA indicators

1 The term product includes both goods and services.
2 Our definition of LCI database follows the definition of the Shonan
Guidance Principles (Sonnemann and Vigon 2011).

3 The workload for updating a dataset varies greatly. Depending on the given
level of completeness of a dataset, it might take weeks (e.g., when a global
dataset is disaggregated into many country specific datasets) or only 1 h (e.g.,
when the quantity of one emission flow in one dataset is updated). Updating a
dataset typically involves data collection, data entry/manipulation, and data
submission to peer review (using a software tool called EcoEditor). Any
change in an existing datasets or the submission of new datasets requires a
peer review to be accepted into the database (Weidema et al. 2013). Therefore,
one person-day should be considered as a rough but realistic estimate of the
average effort associated with updating a dataset.
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in order to establish a basic understanding and to highlight
important characteristics of the approach.

& We identify and present the most relevant unit processes
according to a set of 19 selected LCIA indicators using a
newly developed ranking algorithm. The algorithm calcu-
lates the overall rank of unit processes considering their
relevance across all LCIA indicators. We use the final
prioritization list to identify the sectors and locations of
particular relevance.

& We discuss and analyze possible reasons for the presence
of systemic datasets and associated insights. We also de-
fine the limitations of the approach and related future
work.

Section 2 presents the method and its implementation
and Section 3 presents the results of applying the method
to ecoinvent. Section 4 discusses these results and the
merits of the method. Section 5 concludes with some final
remarks.

2 Methods

2.1 Contribution-based prioritization

The application of contribution analysis (CA) is quite com-
mon in LCA and is implemented in all of the commercially
available software tools (Goedkoop and Oele 2004; Ciroth
et al. 2016; Ebner 2013). CA focuses on the disaggregation
of aggregated results into a number of elements to identify the
ones with the highest contributions (Heijungs and Kleijn
2001). Our elements of interest are the relative contributions
of each unit process throughout each product system repre-
sented with respect to different LCIA4 indicators.

Reinhard et al. (2016) have formalized CA for matrix-
based LCI databases using the matrix inversion approach.
Their method allows the database-wide computation of rela-
tive process contributions according to two perspectives:

& The causer perspective (cau) focuses exclusively on the
elements of each unit process directly causing environ-
mental interventions, i.e., the direct exchanges with the
environment (resources consumed and emissions re-
leased) that cause environmental impacts. The database-
wide application of the causer perspective helps to pin-
point the unit processes with consistently large contribu-
tions in terms of environmental interventions.

& The connector perspective (con) focuses exclusively on
the connecting elements of each unit process, that is, the
intermediate exchanges (e.g., the input of usable energy
and raw materials) from other processes of the
technosphere. The database-wide application of the con-
nector perspective helps to pinpoint the unit processes that
consistently link to large upstream contributions.

Reinhard et al. (2016) provide a comprehensive explana-
tion of the method on the basis of a contrived example. In the
following example, we therefore focus on the illustration of
selected steps and results. SI3 (Electronic Supplementary
Material) provides our implementation of the overall prioriti-
zation procedure in MATLAB for the illustrated example and
the contrived exampled given in (Reinhard et al. 2016).

Figure 1 shows a streamlined workflow of the method on
the basis of a very simple LCI database example.5 Our exam-
ple database is shown in matrix form and consists of three unit
processes (X, Y, and Z), three corresponding products (x′, y′,
and z′), and three elementary flows (CO2, CH4, and iron) (see
technosphere matrix A and biosphere matrix B, step 1). In the
technosphere matrix A, inputs and outputs are listed by row
and unit processes by column. Positive numbers represent the
production of outputs, while negative numbers represent the
consumption of inputs. For example, unit process X consumes
0.75 units of product z′, 0.2 units of product y′, and produces
one unit of product x′. We generally assume that the
technosphere matrix is non-singular and square. The bio-
sphere matrix B defines the environmental interventions (re-
sources consumed and emissions released) per unit of process.
For example, unit process Yand unit process Z both emit 1 kg
of CO2 emissions per unit of process.

We calculate the relative LCIA contributions of each unit
process according to the causer perspective on the basis of an
adapted version6 of the LCA standard calculation procedure
(Fig. 1, steps 1–2, Eqs. 1–5). By computing the inverse of the
technosphere matrix and by multiplying it with the identity
matrix,7 I, we can calculate the amount needed of each process
to satisfy a unit amount of product demand for all products in
the database, i.e., the supply matrix S (step 1, Eq. 1). For
example, the product system associated with the production
of one unit of product x′ involves one unit of process X,
0.2 units of process Y, and 0.77 units of process Z. We then

4 In principle, CA can also be applied on the inventory level (Heijungs and
Kleijn 2001). We focus on environmental impacts, since we believe that a CA
on the inventory level is of little practical interest in the context of prioritization
of improvement efforts.

5 Table S1 in SI1 (Electronic Supplementary Material) provides detailed in-
formation on all matrices and equations involved and SI2 (tab. BLCI database
example^) shows the example in excel.
6 The key adaptations concern the diagonalization (expressed by the hat, ) of
vector e in Eq. 3, which facilitates an in-depth analysis of the contribution per
process and the use of a demand matrix I (instead of a demand vector f)
(Reinhard et al. 2016).
7 In this context, the identity matrix explicitly introduces a unitary product
demand (reference flow) for all product systems (Heijungs and Suh 2002, p.
85). Algebraically, this multiplication has no effect, and for numerical efficien-
cy, it can be omitted.
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calculate the direct environmental impacts associated with the
use of one unit of each process,8 i.e., vector e, bymultiplying a
selected row (w) from the characterization matrixW—we use
the first row, i.e., the LCIA indicator IPCC2007, GWP100a—
with the biosphere matrix B (step 1, Eq. 2). Transforming the
vector e into a diagonal matrix and multiplying it by the sup-
ply matrix S delivers the direct environmental impacts associ-
ated with every single process throughout all product systems,
i.e., matrix Mcau (step 1, Eq. 3). The column-wise sum of
Mcau, tcau, then expresses the total environmental impact as-
sociated with the production of a unitary demand of each
product in the database (step 1, Eq. 4). Finally, we compute,
for each product system, the relative contribution of each pro-
cess in relation to the contribution of all processes (step 2, Eq.
5) (Reinhard et al. 2016). The relative direct contribution ma-
trix,Rcau, expresses the relative process-specific contributions
for each product, i.e., throughout the product systems associ-
ated with the provision of products x′, y′, and z′. For example,
the unit processes Y and Z both have 1 kg of CO2 emissions
and, due to the characterization factor of one, also an impact
equivalent to that of 1 kg of CO2. Consequently, when

involved in a product system, these unit processes have a
relative contribution in the causer perspective. Vice versa, unit
process X has no exchange of greenhouse gases and therefore
has a direct contribution of zero throughout all product
systems.

We calculate the relative contributions of each unit process
according to the connector perspective (Fig. 1, steps 1 and 3,
Eqs. 7–11) by first computing the cumulated (direct and up-
stream) environmental impacts of all processes throughout all
product systems in the database (step 3, Eqs. 79 and 8) (Mcum).
We then calculate the relative proportion of each unit process
which is caused upstream (p) and apply this proportion to the
corresponding process contribution inMcum to calculateMcon,
the process-specific upstream contribution throughout all
product systems (step 3, Eqs. 9 and 10). We divide the process
contributions inMcon by the corresponding total environmen-
tal impact per product, i.e., tcau, (step 3, Eq. 11). The resulting
upstream contribution matrix, Rcon, expresses the relative
process-specific upstream contributions associated with each
product, i.e., throughout the product systems associated with
the provision of products x′, y′, and z′. In this perspective, the

8 Note that e expresses environmental impacts (in terms of CO2 equivalents)
and not the elementary flow CO2.

9 The operation in Eq. 7 ensures that the total environmental impacts refer to
exactly one unit of a process and not one unit of product. It has no influence on
our simple example but is important to achieve correct results in the presence
of loops.

Fig. 1 Workflow of the prioritization method explained on the basis of a
very simple database example consisting of three processes (X, Y, and Z).
The workflow describes the computation of one LCIA indicator
(IPCC2007, GWP100a). The database is shown in matrix form
(technosphere matrix A and a biosphere matrix B) with a corresponding
characterization matrixW (step 1). We compute the relative contribution
of all unit processes according to their causing (steps 1–2 and 4, Eqs. 1–6)
and their connecting characteristics (step 1, 3 and 4, Eqs. 7–12) for the
LCIA indicator IPCC2007, GWP100a, i.e., one row w of the characteri-
zation matrix W. The resulting matrices (Rcau and Rcon) express the rel-
ative contribution of a unit process (row) throughout the product system
associated with the provision of product x′, y′, and z′ (column). We de-
termine the average importance (rank) of a unit process based on themean
of absolute importance (β) of its contributions throughout all product

systems (columns), e.g., for process Z in the causer perspective the mean
of absolute importance is computed with 1/3 × (0.79 + 0.09 + 1) = 0.63
(step 4). Symbols used: the hat, B̂,^ indicates diagonalization of vector
(Eqs. 3 and 7) OR filter-out off-diagonal elements of matrix (Eq. 7); BT^
indicates transpose of matrix or vector; B⊘^ in Eqs. 5, 7, 9, and 11
indicates element-by-element division; B∘^ in Eq. 10 indicates element-

by-element multiplication, i.e., the Hadamard product; 1
!

in Eqs. 5, 10,
and 11 represents a vector of ones used to expand vector tcau and p to
matrix form. Table S1 in SI1 provides detailed information on all matrices
and equations involved, SI2 (tab. BLCI database example^) shows all
matrices associated with the example in a more comprehensive manner
and SI3 provides our implementation in MATLAB code
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environmental impact of unit process X is fully determined by
the environmental impacts associated with its intermediate
exchanges, in this case the cumulated impacts associated with
the provision of product y′ and product z′. Similarly, the envi-
ronmental impacts of unit process Y are determined by the
cumulated impact associated with the provision of product z
′. However, as process Yalso has a direct emission, its relative
upstream contribution is lower than the relative upstream con-
tribution of process X. As unit process Z has no inputs of
intermediate exchanges, it has a relative contribution of zero
in the connector perspective.

Finally, we use the (arithmetic) mean of absolute impor-
tance10 (β) to determine the average importance of the unit
process throughout all product systems (columns) in the data-
base (Fig. 1, step 4). In the causer perspective, the result, re-
ferred to asβcau of a particular process, expresses the (absolute)
mean contribution caused by its elementary flows throughout
all product systems in the database (Eq. 6). That is, highly
ranked unit processes in the causer perspective are important
to the overall environmental impacts throughout the database
because of their elementary flows. Highly ranked unit process-
es in the connector perspective are important because of their
intermediate exchanges. For the connector perspective βcon

expresses the (absolute) mean contribution which are transmit-
ted by all intermediate inputs of a unit process throughout all
product systems in the database (Eq. 12). To put it differently, it
expresses the average loss throughout all product systems that
would occur if we removed all intermediate inputs from a unit
process. This characteristic results in double counting when
adding up the individual elements in βcon for all processes in
the connector perspective since the βcon of a particular process
(double) counts (at least part of) the contribution already
accounted for in the βcon of its connected processes.
Therefore, and in contrast toβcau, the sum ofβcon can be much
larger than one.11 In fact, any cumulated sum of βcon must be
interpreted as a theoretical maximum that expresses the amount
of contribution which, on average, Bflows through^ each of the
connectors in the database when they are measured indepen-
dently of each other (Reinhard et al. 2016).

We sort the elements of vector β in descending order
(see Eq. 13 and Fig. 2, step 1) and store the results into
βsort. This sorted vector is used to compute the cumula-
tive contribution, hold by the h processes with the largest
contribution. (βsort _ cum)h indicates the cumulated mean of
absolute importance of the h processes with the largest
contribution (see Fig. 2, step 1).

βsort¼ β nð Þ; β n−1ð Þ;…;β 1ð Þ
� �

where βsortð Þi≤ βsortð Þ jfor all i < j

ð13Þ
βsort cumð Þh ¼ ∑h

i¼1 βsortð Þi for h ¼ 1;…; n ð14Þ
In order to express the mean of absolute importance in

relation to the cumulated importance of all other processes,
we compute the mean of relative importance, (βsort _ rel)i, by
dividing the (βsort)i of a particular process i by the sum of (β)
all processes (Eq. 15).

βsort relð Þi¼
βsortð Þi
∑n

i βi
ð15Þ

Finally, we need the cumulative relative importance,βsort _

cum _ rel, defined by

βsort cum relð Þh ¼
βsort cumð Þh
∑n

i¼1βi
ð16Þ

This workflow has to be executed separately12 for every
LCIA indicator, so for every row ofW. It is applicable to any
disaggregated LCI database that provides, or can be trans-
formed into, the technosphere matrix A and a biosphere ma-
trix B. Moreover, a corresponding characterization matrix W
is needed.

2.2 Prioritizing across many LCIA indicators

Unit process importance refers to the ranking of one particular
LCIA indicator, i.e., is determined by the process order in
βsort. Yet, process importance varies across LCIA indicators
(Reinhard et al. 2016). That is, different unit processes are
important across different LCIA indicators. Therefore, Brobust
prioritization requires computation across a large set of LCIA
indicators^ (Reinhard et al. 2016).

We aim to establish a ranking of unit process relevance,
i.e., a ranking of unit processes considering their importance
acrossmanyLCIA indicators. However, assessing the variable
importance and establishing a corresponding ranking of pro-
cess relevance across a large set of LCIA indicators is a re-
source intensive and a challenging task which is very sensitive
to potential size differences13 in the mean of absolute impor-
tance. To date, there is no algorithm which facilitates ordering
of the unit processes in an LCI database according to their
process relevance.

We developed an algorithm that uses the properties of the
Lorenz curve to rank unit processes according to their rele-
vance across any set of LCIA indicators. The Lorenz curve is10 We use the modulus for the calculation ofβ. This reduces distortions due to

negative contributions which can result from negative characterization factors
and/or negative elementary flows (e.g., an uptake of heavy metals by plants in
a cultivation dataset) in the biosphere matrix.
11 To date, a value lower than one was only observed for very simplistic
database example (e.g., the sum of βcon is lower than one (0.36) in our very
simplistic database example) but not for actual LCI databases.

12 Note that, once computed, S can be reused without further adaptation and
consequently one matrix inversion is sufficient for the computation of any set
of LCIA indicators.
13 As shown by Reinhard et al. (2016), the importance of one and the same
unit process can vary a lot across different LCIA indicators.
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well known for comparing income and wealth inequality in
the field of economics and provides the basis for statements
such as Bthe bottom 50% of the households have only 10% of
the total income^ (Duclos and Araar 2006). We first construct
a mirror image (inverse) of the Lorenz curve (MLC) for each
LCIA indicator and perspective. That is, instead of plotting the
lowest contribution first, we start with the process whose
mean of absolute importance throughout the database is the
largest and proceed by adding all other contributions in de-
scending order. Our MLC indicates the cumulated mean of
relative importance, held by h processes.

More formally, the discrete MLC is defined as the polygon
segment joining the points (h, (βsort _ cum _ rel)h) for all h = 1, 2,
… , n as well as the points (0, 0) and (n, 0).

Figure 2 shows the MLC tables (left) and corresponding
polygon segments (right) of the example system shown in
Fig. 1, for the impact categories IPCC 2007 (GWP100a) and
metal depletion. It illustrates the general ranking procedure
for the causer perspective. However, there it works in ex-
actly the same way for the connector perspective. βsort _ cum

_ rel represents the sorted and cumulated mean of relative
importance, for each LCIA indicator q, with q = 1, 2… in-
dicating the particular MLC table or LCIA indicator (see
Fig. 2, step 2). Together with the unique IDs for each unit
process, the data table for each MLC consists of three col-
umns (see Fig. 2, step 2).

Our ranking algorithm operates on the basis of the
zero-deprived14 MLC tables (see Fig. 2, step 3). We
start with the smallest cumulative relative contribution
value (ccv) in the MLC tables and increase until 1. At
every unique ccv—in our example case 0.41, 0.63, 0.77
and 1—the algorithm identifies, separately for each
LCIA indicator, the process index/indices of the cumu-
lated process contribution(s) which

1. Are lower than a given ccv
2. Is/are equal to a given ccv and

14 As the zeros in the MLC tables do not relate to any process index, they are
not required for the ranking algorithm.

Fig. 2 Ranking procedure, with illustrative numbers for the causer
perspective. (Step 1) Note that column Bβsort _ cum^ results from sorting
and cumulating βcau (obtained from Fig. 1) in descending order. (Step 2)
The value pairs in columns h and Bβsort _ cum _ rel^ (left) are used to con-
struct the MLCs (right). (Step 3) Using the MLC tables as a basis, we
identify the process indices needed to equal or to succeed a given cumu-
lated contribution value (ccv) for both LCIA indicators and pass them into
a prioritization table (step 4) where they are stored in distinct reference to

the corresponding ccv and the LCIA indicator. (Step 5) The unsorted
ranking table indicates the cumulative process relevance, i.e., the impor-
tance of a particular process across all LCIA indicators for a particular
ccv. (Step 5) The final ranking table is sorted in descending order, first
according to the ccv in the first bin, then according to the ccv in the
second bin, and so forth. SI3 provides our implementation of this proce-
dure in MATLAB code

Int J Life Cycle Assess (2019) 24:1778–1792 1783



3. Directly follows/succeeds a given ccv15

Note that conditions 2 and 3 are mutually exclusive. That
is, if the algorithm identifies, in oneMLC table, one or several
cumulated process contribution(s) which equal a given ccv,
then the third query is not executed for that MLC table and the
algorithm moves to the next MLC table.

At each match, the algorithm passes16 the corresponding
process index/indices into a prioritization table where they are
recorded in distinct reference to their ccv and the LCIA indi-
cator (see Fig. 2, step 4). The column-specific process indices
in the prioritization table facilitate statements such as Bto equal
or succeed a ccv of x% across all considered LCIA methods,
the process/es with index/indices t1, t2, etc. is/are required.^
Figure 2, step 3, illustrates the core steps of the procedure by
highlighting for each unique ccv the corresponding cumulated
process contributions which are

& Lower than (gray rectangle, dashed line),
& Equal to (orange rectangle, straight line), or
& Which directly succeed the ccv (green rectangle, dotted

line) across all MLC tables.

For example, the algorithm identifies process Y to equal a
cumulated contribution of 0.41 for Metal depletion and—as
we do not have a lower or an equal match in the IPCC2007
MLC table—the cumulative contribution which follows/
succeeds the given ccv, namely process Z. Next, to equal or
succeed a ccv of 0.63, the cumulative contribution of process
Z and process Y (IPCC2007) and process Z (metal depletion)
are required. To equal or succeed a ccv of 0.77, we require the
cumulative contribution of process Y and Z (metal depletion)
and process Z and Y (IPCC2007). Finally, to equal or succeed
a ccv of 1, all processes are required.

In the next step, we compute the process frequency in dis-
tinct reference to the process ID (see Fig. 2, step 5), basically
by counting for each process (row) and ccv (column) the pro-
cess occurrence in the prioritization table (step 4) across all
LCIA indicators,17 i.e., by merging the process IDs prioritized
by different LCIA indicators. The number in the ranking table
indicates, for each process ID, the frequency this particular
process is required to equal or succeed a given ccv across all
considered LCIA indicators.

Finally, the algorithm ranks unit processes according to
their frequency (Fig. 2, step 5) by sorting them in descending
order, at first according to the lowest ccv (highest priority),
then according to the second lowest ccv (2nd highest priority),
and so forth, until the numbers across all ccv’s are sorted. This
ensures that the order of processes resembles their actual fre-
quency according to their size classes and facilitates their
ranking across any set of LCIA indicators. We will explore
distinct properties of this algorithm in the discussion section.

2.3 Implementation

Version 3.1 of the ecoinvent database offers three system
models. A system model consists of a predefined set of rules
for the transformation of unlinked multi-output activities into
interlinked, single-product processes. We work with the sys-
tem model BAllocation, cut-off by classification^ (cut-off).18

The cut-off systemmodel results in 11,304 unit processes, i.e.,
a square technosphere matrix of the size 11,304 × 11,304 (see
Table S3 in SI1, Electronic Supplementary Material). All unit
processes are allocated into single-product processes accord-
ing to the cut-off approach.19

We first loaded the linked database model and 19 pre-
selected LCIA indicators into MATLAB and applied Eqs. 1–
5 and 7–11 (see Fig. 1) to compute Rcau and Rconrepeatedly
for each LCIA indicator. We selected LCIA indicators based
on their scientific quality20 and their availability.

Next, we calculated theβ of each process listed inRcau and
Rcon (see step 6 and 7 in Fig. 1) according to all LCIA
indicators.

Subsequently, we ranked the processes according to their
mean of absolute importance (β) in descending order (βsort)
and compute βsort _ cum, βsort _ rel and the discrete MLC—for
each LCIA indicator—defined by the polygon joining the val-
ue pairs in h and the corresponding cumulated relative contri-
bution in βsort _ cum _ rel. Due to the limitations in space, LCIA
indicator-specific results are only presented for the indicators
CC, Etox, and ReCiPe. We aimed to highlight important char-
acteristics of the most important processes according to these
different LCIA indicators.

Finally, we use the novel ranking algorithm to calculate an
overall rank of unit processes considering their relevance
across all 19 LCIA indicators. For the sake of efficiency, in-
stead of using all βsort _ cum _ rel values across the 19 LCIA

15 In the presence of more than one successor of equal size—as with 1.00 (Y)
and 1.00 (X) in IPCC 2007 for a ccv of 0.77—the successor with the lower h
index is selected.
16 Only the index/indices which is/are not already recorded will be added to
the LCIA indicator specific row of the prioritization table.
17 One possibility is to vertically concatenate the rows (LCIA indicators) of the
prioritization table (Fig. 2, step 3) into one matrix and then count the occur-
rence of each process ID separately for each ccv (column). SI3 (Electronic
Supplementary Material) shows our implementation in MATLAB (see func-
tion BdetermineProcessrelevance^).

18 The system model is based on the cut-off approach where primary (first)
production of materials is always allocated to the primary user of a material.
Furthermore, a primary producer of a recyclable material does not receive any
credit for its provision. Therefore, recyclable materials are available burden-
free to recycling processes, and secondary (recycled) materials bear only the
impacts of the recycling processes (Wernet et al. 2016).
19 In this system model, processes are only allowed to have more than one
output if the non-unitary output represents a recyclable product.
20 Scientific quality is determined according to the recommendations in the
ILCD-Handbook (EC-JRC 2011).
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indicators, we work with a predefined set of 9 ccv, i.e., ccv =
0.1, 0.2,… , 0.9, which uniformly divides the value domain of
βsort _ cum _ rel. The complete prioritization list presented in SI2
(Electronic Supplementary Material), however, uses a more
fine-grained division of 99 ccv.

3 Results

3.1 Prioritization according to selected LCIA indicators

Figure 3 visualizes the MLC’s of the three selected LCIA
indicators for the causer (left) and the connector (right) per-
spective. To improve readability, we used a logarithmic scale
for the number of processes h (X-axis).

Tables 1 and 2 show the corresponding seven unit process-
es with the largest mean of absolute importance β, once for
the causer and once for the connector perspective, respective-
ly. The results are sorted in descending order according to the
value of β. For the connector perspective, we also show—in
addition to the mean of absolute process importance—the cu-
mulated mean of absolute importance, (βcon)sort _ cum, and the
mean of relative importance, (βcon)sort _ rel. While (βcon)sort
and (βcon)sort _ cum provide insight into the absolute
Bthroughput^ associated with the intermediate flows of the
most important unit processes, (βcon)sort _ rel highlights the rel-
ative importance of a process contribution in relation to the
mean contribution of all other connectors in the database. The
full list covering all processes and all LCIA indicators is avail-
able in the SI2 (Electronic Supplementary Material).

Figure 3 in combination with Tables 1 and 2 reveals a
remarkable concentration of process importance. In re-
gard to the causer perspective, the seven processes with
the largest relative importance already accumulate 21%
(CC), 16% (ReCiPe), and 66% (Etox) (see column
B(βcau)sort _ cum _ rel^ in Table 1). In other words, less than

one per mill of the processes in the database already
cause a significant proportion of the overall contribution
throughout all product systems.

The seven processes with the largest relative importance
in the connector perspective accumulate 5% (ReCiPe), 7%
(CC), and 17% (Etox), respectively (see column B(βcon)sort
_ cum _ rel^ in Table 2 and Fig. 3). However, in terms of the
absolute Bthroughput,^ the same processes accumulate
49% (CC), 42% (ReCiPE), and 169% (Etox) of the contri-
bution (see column B(βcon)sort _ cum^ in Table 2). For exam-
ple, removing all intermediate flows from the process
Bsulfidic tailing, off-site//[GLO] treatment of sulfidic tail-
ing, off-site^ would reduce environmental impacts of Etox
throughout all product systems on average by roughly
42%. This highlights that the connecting elements (inter-
mediate exchanges) of a process typically transmit more
environmental impact (contribution) than caused by its
causing elements (elementary exchanges). That is, the ac-
curacy of the intermediate exchanges of the major connec-
tors has a very large influence on the quality and the results
of many product systems in the database.

Third, we can notice some similarities between the unit
processes prioritized by the causer and the connector perspec-
tive, i.e., the same unit processes can be important according
to both perspectives. For example, Belectricity, high voltage//
[CN] electricity production, hard coal^ and Bhard coal//[CN]
hard coal mine operation^ are consistently important accord-
ing to both perspectives. At the same time, however, the most
important connector, Bpetroleum//[GLO] market for
petroleum^ has—according to ReCiPe—no contribution in
the causer perspective. The same holds true for many other
connectors and becomes apparent when looking at the corre-
lation between the two perspectives shown as a scatter plot
(see Fig. S7 in SI1, Electronic Supplementary Material).

Fourth, we can spot some similarities across LCIA indica-
tors, i.e., different LCIA indicators point to the same unit

Fig. 3 MLCs for the causer (left) and the connector perspective (right) illustrating the cumulated mean of relative importance associated with h (1, 2,…
11,304) unit processes for three selected LCIA indicators
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processes. For example, Bclinker//[RoW] clinker production^
and Bsulfidic tailing, off-site//[GLO] treatment of sulfidic tail-
ing, off-site^ are consistently important across both ReCiPe
and CC. At the same time, however, different LCIA indicators
have, due to their different foci, quite different inventory sup-
port,21 and thus prioritize different unit processes. For exam-
ple, the third largest process of ReCiPe, Bpetroleum//[RoW]
petroleum and gas production, on-shore,^ does not show up in
the prioritization list of the other LCIA indicators. That is, the
most important unit processes may correlate among a subset
of LCIA indicators but show divergent results for others. It
follows that a broad and diverse spectrum of LCIA indicators
is needed to avoid a one-sided prioritization of database
improvements.

3.2 Prioritizing across the full set of LCIA indicators

3.2.1 Unit processes in the prioritization space

We use the algorithm elaborated in Section 2.2 in order to
identify, for all 19 selected LCIA indicators, the minimum
number of processes required to equal or to succeed a given
ccv. Table 3 shows an extract for the causer perspective of the
sorted ranking table (corresponding to Fig. 2, step 6). The full
table and the table for the connector perspective are both
shown in SI2 (Electronic Supplementary Material). Table 3
is sorted in the following way: first according to the process
frequency in the first ccv, then according to the process fre-
quency in the second ccv and so forth, until the last ccv is
reached. This sorting procedure ensures that the order of pro-
cesses reflects their actual relevance according to their process
frequency in the ccv bins across all LCIA indicators.

According to this ranking procedure, the unit process
Belectricity, high voltage//[CN] electricity production, hard coal^
turns out to be the most important unit process in the database as
it has a process frequency of 10. This means that the process

21 With inventory support, we refer to the total amount of unit processes in the
database which have a contribution according to a particular LCIA indicator,
i.e., which include an elementary flow addressing one of the characterization
factors contained in a particular LCIA indicator (see Table S4 in SI1
(Electronic Supplementary Material) for some examples).

Table 1 Excerpt of the summary table for the seven causers with the
largest mean contribution for three selected LCIA indicators. The
cumulated mean of relative importance (βcau)sort _ cum _ rel of the seven
causers with the largest mean contribution is highlighted in italic
format. The full list can be viewed in the SI2. Ecoinvent uses
geographical shortcuts (also shown in SI2): CN, China; RoW, Rest-of-

the-World; GLO, global; RME, Middle East; RNA, northern America.
RoW has been introduced to cover all locations where a local process is
not yet available. Consequently, the spatial scope of RoW varies.
Currently, it can represent more than 100 different locations (Wernet
et al. 2016)

LCIA Rank Name [product //[geographical location] activity] (βcau)sort (βcau)sort _ cum _ rel

CC 1 Electricity, high voltage//[CN] electricity production, hard coal 0.049 0.05

2 Hard coal//[CN] hard coal mine operation 0.031 0.08

3 Clinker//[RoW] clinker production 0.030 0.11

4 Heat, district or industrial, other than natural gas//[RoW] heat production, at hard coal industrial furnace
1-10 MW

0.029 0.14

5 Diesel, burned in building machine//[GLO] diesel, burned in building machine 0.024 0.17

6 Pig iron//[GLO] pig iron production 0.023 0.19

7 Electricity, high voltage//[IN] electricity production, hard coal 0.015 0.21

ReCiPe 1 Hard coal//[CN] hard coal mine operation 0.029 0.03

2 Sulfidic tailing, off-site//[GLO] treatment of sulfidic tailing, off-site 0.029 0.06

3 Petroleum//[RoW] petroleum and gas production, on-shore 0.023 0.08

4 Electricity, high voltage//[CN] electricity production, hard coal 0.023 0.11

5 Petroleum//[RME] petroleum production, onshore 0.023 0.13

6 Hard coal//[RoW] hard coal mine operation 0.016 0.15

7 Hard coal//[RNA] hard coal mine operation 0.014 0.16

Etox 1 Sulfidic tailing, off-site//[GLO] treatment of sulfidic tailing, off-site 0.212 0.21

2 Scrap steel//[RoW] treatment of scrap steel, municipal incineration 0.142 0.36

3 Scrap copper//[RoW] treatment of scrap copper, municipal incineration 0.137 0.50

4 Spoil from hard coal mining//[GLO] treatment of spoil from hard coal mining, in surface landfill 0.076 0.57

5 Spoil from lignite mining//[GLO] treatment of spoil from lignite mining, in surface landfill 0.045 0.62

6 Slag, unalloyed electric arc furnace steel//[RoW] treatment of slag, unalloyed electric arc furnace steel,
residual material landfill

0.026 0.65

7 Natural gas, unprocessed, at extraction//[GLO] natural gas production, unprocessed, at extraction 0.015 0.66
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contributes in such magnitude and across such a wide array of
impact categories that its cumulated contribution is required to
equal or succeed the ccv of 0.1 across 10 LCIA indicators. The
ranking order of the 3 subsequent processes is not determined by
the ccv of 0.1—they all contribute significantly, i.e., are located
in the first ccv bin of 0.1, in regard to 3 LCIA indicators—but by
their frequency in the succeeding ccv bins. Note that the process-
es prioritized by just one LCIA indicator in the ccv bin of 0.1 are
often prioritized by another LCIA indicator in one of the higher
bins. It is also noteworthy that part of the process frequency is
not shown as it is beyond the ccv of 0.6.

As this format is difficult to interpret, we aggregate the
process frequency of these processes to their corresponding
ISIC sector and geographical location.

3.2.2 The most important sectors

Figure 4 shows the proportion of total process frequency per
ccv differentiated into ISIC rev.4 sectors,22 the activity-based
classification system used by the ecoinvent database. For

example, the first stacked bar (ccv of 0.1) shows the total
process frequency (39) of the (22 largest) unit processes
(shown in Table 3) per ISIC sector. Each bin illustrates only
the additional process frequency and does not include the total
process frequency of the preceding ccv.

Figure 4 shows that processes referring to electric power
generation, treatment and disposal of hazardous waste, extrac-
tion of crude petroleum, and mining of hard coal have the
largest overall effect on database quality (see first bar).
Overall, electric power generation causes roughly 30% of
the total process frequency. The connector perspective also
highlights the frequency of the electricity sector for the trans-
mission of environmental impacts (see Fig. S8, SI1, Electronic
Supplementary Material). Processes related to electric power
generation, manufacture of basic iron and steel, treatment and
disposal of hazardous waste, extraction of crude petroleum,
mining of hard coal, and freight transport are of relevance.
They accumulate roughly 70% of the total process frequency
in the first ccv. Surprisingly, market datasets constantly repre-
sent only around 40% of the connectors throughout the first
ccv (see SI2, Electronic Supplementary Material).

Figure 4 also visualizes the sector relevance throughout the
ccv’s. From the total process frequency added throughout the

22 International Standard Industrial Classification of All Economic Activities,
Revision 4 (see http://unstats.un.org/unsd/cr/registry/isic-4.asp)

Table 2 Excerpt of the summary table for the seven connectors with the
largest mean contribution for three selected LCIA indicators. The
cumulated mean of relative importance B(βcon)sort _ cum _ rel^ and the
cumulated mean of absolute importance B(βcon)sort _ cum

" of the

processes with the seven largest mean contributions are highlighted
in italic format. The full list can be viewed in the SI2. Used
geographical shortcuts: CN, China; RoW, Rest-of-the-World; GLO, glob-
al; RME, Middle East; RAS, Russia

LCIA Rank Name [product //[geographical location] activity] (βcon)sort βconð Þsort cum βconð Þsort rel βconð Þsort cum rel

CC 1 Electricity, high voltage//[CN] electricity production, hard coal 0.117 0.12 0.015 0.02

2 Pig iron//[GLO] pig iron production 0.071 0.19 0.009 0.02

3 Hard coal//[CN] hard coal mine operation 0.065 0.25 0.009 0.03

4 Clinker//[RoW] clinker production 0.065 0.32 0.009 0.04

5 Heat, district or industrial, other than natural gas//[RoW] heat production,
at hard coal industrial furnace 1-10 MW

0.064 0.38 0.009 0.05

6 Electricity, high voltage//[CN] market for electricity, high voltage 0.055 0.44 0.007 0.06

7 Diesel, burned in building machine//[GLO] diesel, burned in building
machine

0.055 0.49 0.007 0.07

ReCiPe 1 Petroleum//[GLO] market for petroleum 0.092 0.09 0.012 0.01

2 Electricity, high voltage//[CN] electricity production, hard coal 0.065 0.16 0.008 0.02

3 Hard coal//[CN] hard coal mine operation 0.063 0.22 0.008 0.03

4 Sulfidic tailing, off-site//[GLO] treatment of sulfidic tailing, off-site 0.058 0.28 0.007 0.04

5 Copper//[GLO] market for copper 0.049 0.33 0.006 0.04

6 Petroleum//[RoW] petroleum and gas production, on-shore 0.048 0.37 0.006 0.05

7 Petroleum//[RME] petroleum production, onshore 0.047 0.42 0.006 0.05

Etox 1 Sulfidic tailing, off-site//[GLO] treatment of sulfidic tailing, off-site 0.423 0.42 0.046 0.05

2 Scrap steel//[RoW] treatment of scrap steel, municipal incineration 0.283 0.71 0.031 0.08

3 Scrap copper//[RoW] treatment of scrap copper, municipal incineration 0.274 0.98 0.030 0.11

4 Sulfidic tailing, off-site//[GLO] market for sulfidic tailing, off-site 0.211 1.19 0.023 0.13

5 Spoil from hard coal mining//[GLO] treatment of spoil from hard coal
mining, in surface landfill

0.151 1.34 0.016 0.14

6 Scrap steel//[GLO] market for scrap steel 0.141 1.48 0.015 0.16

7 Scrap copper//[GLO] market for scrap copper 0.137 1.62 0.015 0.17

Int J Life Cycle Assess (2019) 24:1778–1792 1787

http://unstats.un.org/unsd/cr/registry/isic-4.asp


ccv’s, between 12% (second ccv) and 32% (fifth ccv) refer to
Belectric power generation…^ indicating its consistent rele-
vance across all ccv’s. The same insight applies to the extrac-
tion of crude petroleum and the mining of hard coal. The
treatment and disposal of hazardous waste, in turn, is of par-
ticular relevance with regard to the first ccv. This results from
the fact that the most important processes in this sector hold a
large amount of contribution such as the mentioned Btailing,
from uranium milling.^

3.2.3 The most important locations

Figure 5 shows the proportion of total process frequency per
ccv differentiated into geographical locations.

Figure 5 shows that the most important causers predomi-
nantly relate to geographical locations with a low spatial spec-
ificity, i.e., RoW, GLO, and CN. These locations are particu-
larly relevant for the first ccv where they represent 90% of the
process frequency, i.e., 36%, 33%, and 21% for RoW, CN,
and GLO, respectively. The dominance of CN and GLO ge-
ographies decreases with increasing size of the ccv whereas
RoW is consistently important across all ccv. The reason for
this is that in many cases, local production datasets only cover
a small proportion of the global production volumes. The
relevance of RoW datasets therefore indicates a general lack
of regionally appropriate data.

The connector perspective is also dominated by processes
referring to RoW, GLO, and CN (see Fig. S9 in SI1, Electronic

Table 3 The most relevant 25 unit processes (causer perspective)
according to our set of LCIA indicators. The results are sorted
incrementally according to their process frequency in the cumulated

contribution bins. The full list is shown in SI2. Used geographical
shortcuts: CN, China; RoW, Rest-of-the-World; GLO, global; RME,
Middle East; RAS, Asia; CA-ON, Ontario; BR, Brazil; IN, India

Rank Name [product //[geographical location] activity] Total frequency across all
LCIA indicators

Cumulated contribution
value

0.1 0.2 0.3 0.4 0.5 0.6

1 Electricity, high voltage//[CN] electricity production, hard coal 14 10 0 0 0 0 0

2 Hard coal//[CN] hard coal mine operation 16 3 3 1 0 1 2

3 Petroleum//[RoW] petroleum and gas production, on-shore 10 3 1 0 1 0 0

4 Sulfidic tailing, off-site//[GLO] treatment of sulfidic tailing, off-site 8 3 0 0 2 1 0

5 Diesel, burned in building machine//[GLO] diesel, burned in building machine 12 2 5 1 0 0 0

6 Clinker//[RoW] clinker production 13 2 2 1 1 2 1

7 Heat, district or industrial, other than natural gas//[RoW] heat production, at hard coal
industrial furnace 1-10 MW

13 1 4 3 1 0 0

8 Petroleum//[RME] petroleum production, onshore 12 1 3 0 2 0 0

9 Blasting//[RoW] blasting 9 1 2 1 2 0 0

10 Natural gas, high pressure//[RoW] natural gas production 14 1 1 2 1 1 1

11 Spoil from hard coal mining//[GLO] treatment of spoil from hard coal mining, in
surface landfill

7 1 0 3 1 1 0

12 Slag, unalloyed electric arc furnace steel//[RoW] treatment of slag, unalloyed electric
arc furnace steel, residual material landfill

8 1 0 1 0 0 0

13 Copper//[RAS] copper production, primary 12 1 0 0 1 2 2

14 Copper//[RoW] copper production, primary 12 1 0 0 1 1 2

15 Sawlog and veneer log, softwood, measured as solid wood under bark//[RoW]
softwood forestry, pine, sustainable forest management

4 1 0 0 1 1 1

16 Electricity, high voltage//[CA-ON] electricity production, nuclear, pressure water
reactor, heavy water moderated

6 1 0 0 0 1 1

17 Tailing, from uranium milling//[GLO] treatment of tailing, from uranium milling 5 1 0 0 0 0 2

18 Soybean//[BR] soybean production 14 1 0 0 0 0 0

19 High level radioactive waste for final repository//[RoW] treatment of high level
radioactive waste for final repository

1 1 0 0 0 0 0

20 Water, decarbonised, at user//[RoW] water production and supply, decarbonised 2 1 0 0 0 0 0

21 Zinc concentrate//[GLO] zinc-lead mine operation 13 1 0 0 0 0 0

22 Oxygen, liquid//[RoW] air separation, cryogenic 2 1 0 0 0 0 0

23 Electricity, high voltage//[IN] electricity production, hard coal 15 0 2 2 4 2 0

24 Transport, freight, sea, transoceanic ship//[GLO] transport, freight, sea, transoceanic
ship

12 0 2 2 3 1 0

25 Pig iron//[GLO] pig iron production 13 0 2 1 1 0 0
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Supplementary Material). Processes referring to these geogra-
phies cause almost 90% of the process frequency in the first
ccv, i.e., 27%, 22%, and 40% for RoW, CN, and GLO, respec-
tively. Overall, datasets belonging to these geographies gen-
erate about 62% of the total process frequency.

4 Discussion

The application of our prioritization approach to the ecoinvent
database reveals a remarkable concentration in the distribution
of internal process relevance, even when considering 19 se-
lected LCIA indicators. That is, a relatively large proportion of
the overall database quality is dependent on the quality of a
small set of processes. Concentrating research efforts on the
increase of information density in these systemic processes
offer important starting points for the systematic and effective
improvement of the entire database.

We investigated two prioritization perspectives which sup-
port the detection of two crucial characteristics of unit process-
es. The causer perspective prioritizes processes with ex-
changes of resources and emissions that are consistently im-
portant across product systems and LCIA indicators. Overall,
3% of the processes in the database cause more than 60% of

the total process relevance. Processes referring to electricity
generation, waste treatment activities, and energy carrier pro-
vision (petroleum and hard coal) are consistently important.
The connector perspective prioritizes sensitive hubs whose
modification can alter the results for the overall database con-
siderably. In total, 8% of the processes transmit more than
50%, if normalized to the contribution transmitted by all con-
nectors. In absolute terms, the contributions Bflowing
through^ these most important connectors translate into
roughly four times the total contribution in the database.
This highlights the overall relevance of such hubs for database
quality and suggests that they receive more attention.
Particularly, electricity generation but also iron and steel pro-
duction have strong Bnetwork effects.^

The relatively low number of systemic datasets should not
be automatically taken as a general characteristic of LCA or
the economic system it strives to model. In fact, besides the
high correlation among LCIA indicators already mentioned, it
is also the evolution of partly arbitrary and partly intended
modeling choices that explains the inequality in the database
structure.

1. The presence of different process types that fosters in-
equality in relative process relevance. In addition to

Fig. 4 Accumulated process frequency per ccv and ISIC rev. class. The total number of processes required to exceed a given ccv is given in square
brackets. For clarity, only 9 ISIC categories are shown. The remaining 35 categories are consolidated into the BOther^ category
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transforming processes, ecoinvent has always used con-
solidating processes to represent geographical and tech-
nological averages or to maintain a certain modeling
structure (e.g., production mixes or markets). Typically,
such datasets cause no direct environmental intervention
and consequently show no contribution in the causer per-
spective. Version 3.1 of the database maintains 3196 mar-
ket datasets. That is, a large proportion of the processes in
the database are a priory irrelevant for the causer perspec-
tive (see Table S3 in SI1, Electronic Supplementary
Material).

2. Some elementary flows (resources or emissions) are only
listed in a few unit processes. Consequently, the inventory
support for some LCIA indicators is rather low (see
Table S4 in SI1, Electronic Supplementary Material).
This is not necessarily a characteristic of our physical
reality but results, at least in part, from the fact that more
attention has been paid to some emissions or impact cat-
egories than others. For example, among the assessed
mid-point methods, LCIA indicators related to climate
change have the largest inventory support—3500 process-
es cause emission with a global warming potential—
while agricultural land occupation and resource depletion
indicators appear at the other end of the scale with an

inventory support of roughly 300 processes. The endpoint
method with the largest inventory support is the Swiss
ecological scarcity method (2013) with roughly 6000 pro-
cesses (see Figs. S2 and S4 in SI1, Electronic
Supplementary Material). The inventory support seems
to be one important driver for the inequality observed
among different LCIA indicators, i.e., the degree of con-
centration in βcau and βcon as measured by the Gini coef-
ficient (see Table S4 in SI1, Electronic Supplementary
Material).

3. The ecoinvent database has been evolving as an incom-
plete model of our economic system. The incomplete spa-
tial and technological coverage has at least two notable
effects. First, it limits the selection of appropriate interme-
diate inputs required for the accurate representation of
new processes. This fosters, at least to a certain degree,
the iterative use of the same (generic) intermediate inputs
and favors a network structure with consistent dependen-
cies. For example, the relevance of the process Bdiesel,
burned in building machine//[GLO]^ (rank 5) results, at
least in part, from its lack in spatial and technological
specificity and the lack of alternatives. Second, the incom-
pleteness in spatial process support causes (since version
3.0) the repetitive linking to generic geographical

Fig. 5 Accumulated process frequency per ccv and geographical location. The total process frequency per ccv is given in square brackets. RoW, Rest-of-
the-World; CN, China; GLO, global; RME, Europe; RAS, Russia. The remaining 44 geographical locations are consolidated under BOther^
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locations and consequently promotes the relevance of
such locations. Whenever local datasets are unavailable
for the supply of a certain product, the product is supplied
by the GLO dataset. If local production datasets are avail-
able but only cover a small proportion of the global pro-
duction volumes, most of the production volume is sup-
plied by a RoW dataset. That is, the overrepresentation of
generic geographical locations in the first ccv indicates a
clear lack in spatial process support.

Some issues of importance need to be considered with re-
gard to the prioritization method. First, our approach repre-
sents an internal perspective from which the optimal alloca-
tion of inventory efforts follows relative process relevance
across different LCIA indicators. This is useful for the identi-
fication of consistently important processes but provides no
direct23 support for the identification of Bblank spots^ and is
therefore Bunable to direct research efforts to economic sectors
that may be underrepresented^ (Reinhard et al. 2016).
Therefore, improvement efforts around LCI databases should
not be exclusively guided by internal process relevance. In
fact, the proposed ranking of most relevant processes should
be seen as a complement to already existing routines and
approaches. Its inward-oriented perspective should be
complemented with more outward-oriented prioritization
methods such as the one presented by Majeau-Bettez et al.
(2011).

Further, our ranking algorithm ensures, for a given set of
LCIA indicators, that all processes required to equal or suc-
ceed a certain ccv are considered. It operates on the basis of
the Lorenz curve which is a common tool for analyzing and
comparing income inequality (Duclos and Araar 2006).
However, the discretization to size classes comes at the cost
of information loss, notably large contributions are reduced to
the size class of the ccv. In general, as the order of processes is
first determined by their actual size class (the ccv) and only
then by their process frequency, the sorting procedure pre-
serves essential information about the actual size of a unit
process contribution. It ensures that processes in the first
ccv, only prioritized by one rather uncorrelated LCIA indica-
tor (such as ALOP or IR), will still receive more attention than
a process which is relevant according to many LCIA indica-
tors in the second ccv.We recognize the potential utility of this
ranking procedure within every LCA application which in-
volves the use of many LCIA indicators (Hellweg and Milà i
Canals 2014). That is, the algorithm could be used to identify
key process datasets in every standard LCA application. The
selection of the ccv in this article is rather coarse; the complete

prioritization list presented in SI2 (Electronic Supplementary
Material) uses a much finer scale. Note, however, that the
amount of the ccv’s only affects the ranking of the processes
within a particular ccv but not the actual amount of processes
associated with this ccv. That is, the same 22 unit processes
shown in Table 3 are required to equal or exceed the ccv of
10%, independent on the amount of used ccv’s.

The discretization also guarantees a basic equivalence
among the LCIA indicators. While this avoids (implicit)
weighting of LCIA indicators on the basis of the inequality
in their mean of absolute importance, it means that each LCIA
indicator is treated equally. That is, a unit process added by the
midpoint indicator Bclimate change^ (IPCC2007) is consid-
ered of equal importance than a unit process added by the
endpoint indicator BReCiPe total.^ One can imagine multi-
criteria approaches which assign different weights to different
LCIA indicators. However, as we keep all unique unit pro-
cesses on the prioritization list, such a weighting would only
affect the rank of the processes in the list but not change the
actual amount of processes on the list.

The actual amount of processes on the list is dependent on
the set of selected LCIA indicators. Each LCIA indicator can
be considered as a unique optimization vector. Therefore,
adding or removing LCIA indicators from the selected set
can change the amount of prioritized processes. Our prioriti-
zation method is applicable to any set of LCIA indicators and
future work should analyze different LCIA indicator perspec-
tives, e.g., a set of midpoint methods versus a set of endpoint
methods, and the corresponding differences in their recom-
mendations. This would reveal the detailed inventory support
of different LCIA paradigms and therefore offer important
feedback for LCIA method and LCI database developers.

5 Conclusions

Knowing the unit processes with the largest contribution is a
prerequisite of systematic, targeted LCI database improve-
ment. We demonstrated a contribution-based prioritization ap-
proach using version 3.1 of the ecoinvent database as a prac-
tically relevant example. Our approach facilitates the align-
ment of data collection efforts to unit processes with the
highest relevance in terms of their overall influence on the
results calculated with many different LCIA indicators.
Focusing research efforts on these processes, which play a
dominant role in nearly every LCA application, allows for
effective improvement of the datasets.

The list of most important unit processes we presented
offers new starting points for the effective improvement of
the ecoinvent database as it allows the allocation of available
resources according to the structural dependencies in the data.
This strengthens the basis for decision-making of the people
managing the data, who can systematically process the list and

23 Note, however, that the method offers some indirect support for the identi-
fication of blank spots, namely via the identification of processes which are
modeled at a too generic level. Such process models should be replaced by
more specific ones in a spatial or in technological scale.
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decide for each unit process if and how it should be improved.
To improve LCI database quality where it matters the most,
unit processes of systemic relevance should achieve a high
data quality rating.

Considering the high cost of data collection, the improve-
ment of LCI databases should be organized as effectively as
possible.We observe a general lack of operational tools for the
analysis of LCI databases which help to realign the focus of
inventory efforts to more systematic choices—as opposed to
choices guided by external data availability and situation-
driven requirements. Certainly, such data and requirements
have a great importance, but future research should also en-
sure that coverage and specificity of LCI databases progress
towards a more representative model of the complex econom-
ic system LCA strives to capture at its physical level. The
structural dependencies in the example database, as discussed
in this article, represent a meaningful perspective for improve-
ment but should be complemented with existing routines and
other, more outward-looking prioritization approaches.
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