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Copper sulfide nanoparticles 
as high-performance cathode 
materials for Mg-ion batteries
Kostiantyn V. Kravchyk1,2, Roland Widmer3, Rolf Erni  4, Romain J.-C. Dubey  1,2, 
Frank Krumeich2, Maksym V. Kovalenko  1,2 & Maryna I. Bodnarchuk2

Rechargeable magnesium batteries are appealing as safe, low-cost systems with high-energy-density 
storage that employ predominantly dendrite-free magnesium metal as the anode. While significant 
progress has been achieved with magnesium electrolytes in recent years, the further development 
of Mg-ion batteries, however, is inherently limited by the lack of suitable cathode materials, mainly 
due to the slow diffusion of high-charge-density Mg-ions in the intercalation-type host structures and 
kinetic limitations of conversion-type cathodes that often causes poor cyclic stability. Nanostructuring 
the cathode materials offers an effective means of mitigating these challenges, due to the reduced 
diffusion length and higher surface areas. In this context, we present the highly reversible insertion of 
Mg-ions into nanostructured conversion-type CuS cathode, delivering high capacities of 300 mAh g−1 
at room temperature and high cyclic stability over 200 cycles at a current density of 0.1 A g−1 with a high 
coulombic efficiency of 99.9%. These materials clearly outperform bulk CuS, which is electrochemically 
active only at an elevated temperature of 50 °C. Our results not only point to the important role 
of nanomaterials in the enhancement of the kinetics of conversion reactions but also suggest that 
nanostructuring should be used as an integral tool in the exploration of new cathodes for multivalent, 
i.e., (Mg, Ca, Al)-ion batteries.

Rechargeable Mg-ion batteries are considered an attractive energy storage system for both mobile and station-
ary energy storage applications1. Unlike metallic Li, Na or K, metallic Mg foils can be used as anodes due to the 
predominantly2 smooth, fast and dendrite-free electrodeposition of Mg, and reduced fire hazards related to this 
metal. Metallic Mg anodes also present numerous other advantages, such as the high natural abundance of Mg 
and its largely explored reserves, its high volumetric (3833 mAh cm−3) and gravimetric (2205 mAh g−1) capac-
ities, high safety and suitably low electrode potential (−2.4 V vs SHE)3–5. Some of the challenges facing Mg-ion 
batteries are as follows. With respect to the anode, highly stable magnesium oxide (MgO) can readily form from 
traces of moisture or some oxygen-containing solvents/electrolytes. Thin films of MgO can fully deactivate the 
Mg anode, as this oxide is neither electronically nor ionically conductive to a sufficient degree. This is one of the 
reasons for using highly reductive electrolyte formulations. Hence, the major bottleneck in the development of 
Mg-ion batteries has been the lack of suitable electrolytes that can support reversible plating of Mg on the anode, 
yet provide a suitable voltage range for operating the cathode. In recent years, this voltage range had expanded 
from less than 2 V to ca. 3.5 V6–10. This progress stimulates and enables the exploration of novel cathode materials. 
In this field, there are important differences between Mg2+ and monovalent Li+ and Na+ ions. Intercalation of 
Mg2+ ions, which are as small as Li-ions but have a much higher charge density, is found to be sluggish in most 
cases, due to strong coulombic interactions with the negatively charged host lattice11. A closely related problem is 
the desolvation of Mg-ions at the electrolyte-cathode interface, where strong coordination of these ions prevents 
rapid insertion into the cathode or fully hampers this process12. Nearly all known magnesium cathode materials 
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are characterized by their limited rate-capabilities and cyclabilities, as well as their high overpotentials between 
charging and discharging, yielding low energy efficiency1,4,13–20. The chevrel phase (Mo6S8) developed by Aurbach 
et al.21 in the 2000s remains the best known Mg-ion cathode. Its theoretical energy density is estimated to be ca. 
126 Wh kg−1 based on the reported operation voltage of ~1.2 V and specific charge-storage capacity of 110 mAh 
g−1. Cathode materials offering higher operational voltages and higher capacities are thus urgently needed in 
order to narrow the gap between Mg-ion batteries and Li-ion batteries, where the latter exhibit theoretical energy 
densities are 360–450 Wh kg−1, due to their higher voltages of 2.8–4.4 V and cathodic capacities are 130–300 mAh 
g−1 22–26.

To date, creating nanostructures in Mg-ion-storing cathode materials has been the only plausible strategy for 
improving the overall kinetics of reversible Mg2+ insertion by drastically decreasing the in-solid diffusion path 
(Figure S1)11,27–33. Nanostructuring has been somewhat controversial in the field of Li(Na)-ion batteries for both 
anode and cathode materials: besides presenting obvious new opportunities (broader scope of usable electrode 
materials), it has exhibited important shortcomings, the foremost of which is due to enhanced formation of the 
solid-electrolyte interface (SEI) due to the higher surface area34–38. This SEI layer is often soft and highly unstable. 
Formation of SEI consumes Li(Na)-ions and leads to irreversible capacity loss. In contrast to Li(Na)-ion batteries, 
SEI formation issues are different for Mg-ion batteries. Mg electrolytes are usually stable at the potentials needed 
for Mg electroplating/stripping, and hence do not lead to the formation of SEI on the anode side (Mg foil)3,5. 
However, similarly to Li/Na cathodes, Mg cathodes with the high surface area have enhanced side reactions with 
the electrolyte, which might lead to SEI formation. On the other hand, the sluggish Mg diffusivity in Mg cathodes 
makes nanostructuring the most, and essentially only, effective general strategy for ensuring a satisfactory degree 
of magnesiation over practically relevant time-scales and temperatures. Bulk cathodes often allow magnesiation 
at elevated temperatures. Some recent examples of nanostructured Mg cathode materials include TiS2 nano-
tubes27, MoS2 nanoribbons28, VOx nanotubes29, and nano-sized, open-frame, conformable V2O5

30, all of which 
exhibited higher capacities, energy efficiencies and rate capabilities compared to their bulk counterparts.

In this work, we were motivated to probe nanostructuring approaches in order to study conversion-type cop-
per (II) sulfide cathodes for Mg-ion batteries. CuS offers one of the highest available capacities at 560 mAh g−1 
and has a high electrical conductivity of 103 S cm−1 39–47. The CuS conversion electrodes reported to date, however, 
suffered from reduced rate capabilities and cycling stabilities at room temperature, which is associated with the 
large structural reconstruction of the electrodes during cycling44. This leads to large volume changes and thus 
destruction of the electrodes. Specifically, up to recently, the best cycling stability tests for CuS cathodes at room 
temperature showed a rather low gravimetric capacity of 153 mAh g−1 after 20 cycles, with a low capacity reten-
tion of 75% and a large voltage hysteresis, resulting in a poor energy efficiency of 68%46. Notably, Fei Xu et al.48 
reported on CuS NPs as cathodes for Mg-ion batteries, using commercial 90–150 nm CuS NPs and achieved a 
high charge-storage capacity of 175 mAh g−1 at a current density of 50 mA g−1. In this context, nanostructuring 
and the formulation of suitable soft composites could be an effective way to accommodate large structural changes 
in conversion-type cathode materials and enhance the kinetics of the electrochemical conversation reactions.

Herein, we report that nanostructured CuS in the form of 20 nm nanoparticles (NPs) delivers at room tem-
perature a high capacity of 300 mAh g−1 at a current density of 100 mA g−1, outperforming its bulk counterparts. 
Bulk CuS showed negligible electrochemical activity at room temperature, which improved only at an elevated 
temperature of 50 °C. The mechanism of magnesiation/demagnesiation in CuS NPs has been probed by X-ray 
photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX).

Results and Discussion
In short, monodisperse CuS NPs were synthesized using a previously reported method by heating up of copper 
(I) chloride, oleylamine (Oam), oleic acid (OA) and octadecene to 180 °C, following the injection of 1 M solu-
tion of sulfur in oleylamine49. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) (Fig. 1a,b 
and S2) confirmed the formation of uniform and highly crystalline hexagonal CuS NPs (space group P63/mmc, 
a = b = 3.788 Å, c = 16.333 Å, JCPDS No. 00-079-2321) with sizes on the order of 20 nm. EDX measurements of 
CuS NPs in high-angle annular dark-field scanning transmission electron microscopy mode (HAADF-STEM) 
revealed that Cu and S were uniformly distributed throughout each NP (Fig. 1c,d). After the synthesis, highly 
insulating long-chain capping ligands (OA/Oam) were removed through mild chemical treatment using 
a hydrazine-based ligand-stripping protocol that was initially developed for colloidal quantum dots (see 
Figure S3)50. For the electrochemical measurements, the CuS electrodes were prepared by mixing a powder of the 
CuS NPs with carbon black (CB), polyvinylidene fluoride (PVdF) and N-methylpyrrolidone (NMP). The resulting 
slurries were cast onto a tungsten current collector. Coin-type cells were employed for the electrochemical tests. 
The cell consisted of magnesium foil as the counter and reference electrode, CuS as the working electrode, and a 
glass-fiber separator that was placed between both electrodes and soaked with magnesium electrolytes based on 
Mg(HMDS)2/AlCl3/MgCl2 in tetraglyme51,52.

Figure 2a shows the voltage profiles of the Mg ion battery at a current density of 0.1 A g−1 using CuS NPs as 
the cathode material. During the first discharge, two distinct plateaus at approximately 1.2 V and 0.9 V vs. Mg2+/
Mg were observed, indicating a multi-step Mg insertion and reaction mechanism. The insertion of approximately 
0.48 and 0.43 moles (first and second plateaus) of Mg2+ ions per mole of CuS corresponds to the total initial dis-
charge capacity of 512 mAh g−1. Only about half of the Mg cations can be extracted on the first charge because 
the others are trapped in the structure. From the second cycle onward, the reversibility improved dramatically, 
and the capacity stabilized at approximately 300 mAh g−1 with a high coulombic efficiency of 99.9% (Fig. 2b). 
Relatively high capacities of 110–212 mAh g−1 were measured for CuS NPs even at high current densities varied 
from, accordingly, 1 to 0.2 A g−1 (Figure S4).

The detailed Mg2+ insertion mechanism was analyzed by ex situ XPS and EDX methods with the pristine, dis-
charged and charged electrodes. Figure 3a–c show the changes in the Cu 2p3/2, S 2 s and Mg 1 s XPS peaks. After 
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discharge, the Cu 2p3/2 peak position shifted towards a higher binding energy, indicating the reduction of Cu2+ 
towards the formation of metallic copper. After the first charge, copper is only oxidized back to Cu+, which is in 
agreement with the electrochemical results that show that only half of the CuS capacity can be extracted after the 
charge process. The larger broadness of Cu 2p3/2 peak for the charge state in comparison with pristine and dis-
charge states indicates on the different chemical environment of Cu+ sites on the surface and might be related to 
the formation of SEI on the CuS electrodes at high voltages. The latter could be a reason of limited oxidation reac-
tion of the Cu upon charge. As shown in Fig. 3c (XPS) and Fig. 3d (EDX), the Mg peak appears after discharge, 
and is half the intensity after the following charge. The oxidation state of sulfur is S;2− however, it does not change 
while cycling (Fig. 3b), indicating that Cu is the only redox-active element in the magnesiation/de-magnesiation 
of CuS NPs. Following the above discussion, the initial discharge process for CuS NPs can be described according 
to the following equation:

Figure 1. TEM image (a) and XRD pattern (b) of CuS NPs. X-ray wavelength is λ = 1,54056 Å. The reflection 
at 2 Theta of 48 degrees ((110) peak) was narrower and sharper in comparison with other reflections suggesting 
that CuS NPs were grown along directions perpendicular to the c-axis and have platelet shape morphology49. 
The elemental maps of a single CuS NP using EDX measurements in the HAADF-STEM mode for Cu + S, Cu 
and S (c); the white frame shows the area from where the line scans were extracted. (d) Line scans representing 
the intensity distribution of Cu (red) and S (green) within CuS NPs.
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+ + → ++ −CuS Mg e Cu MgS2 (1)2

From the cycling, the charge/discharge reactions can be presented as:

Figure 2. Electrochemical performance of CuS NPs. (a) Galvanostatic charge-discharge curves during the 1st 
and 50th cycle at a current density of 0.1 A g;−1 (b) Cyclic stability measured at a current density of 0.1 A g−1.

Figure 3. Ex situ XPS (a,b,c) and EDX (d) measurements of electrodes composed of CuS NPs after discharge 
and charge. Atomic ratios of S, Cu and Mg for pristine, discharged and charged CuS NPs derived from 
corresponding XPS spectra are shown in the Table S1. The intensities of EDX spectra were normalized to the 
intensity of Cu peaks. Prior to these measurements, the electrodes were rinsed from the Mg electrolyte with 
pure tetraglyme.
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+ ↔ + ++ −Cu MgS Cu S Mg e2 2 (2)2
2

We note that the proposed electrochemical reactions are in line with the CuS magnesiation mechanism 
reported by Nazar et al.44, which includes a two-step reduction of CuS, eventually forming MgS and Cu. As fol-
lows from EDX results (Fig. 3d), the part of MgS being formed during first discharge is trapped and can not be 
recovered upon the charge.

The crystallographic phase change in the CuS NPs after discharge were identified via ex situ XRD analysis 
(Figure S5). The decrease in intensity from the CuS diffraction peaks after discharge indicated that magnesiation 
of CuS NPs occurred with continuous amorphization of the material. We suspect that phase transitions within the 
amorphized electrode can lead to lower mechanical stress during cycling, compared with that of crystalline NPs, 
which may explain the high cycling stability that was observed for the CuS NPs. The superior performance of 
CuS NPs can be also attributed to the amorphous MgS (irreversibly formed on the first cycle) acting as a matrix, 
buffering volume changes in CuS electrode. In addition, the amorphization of CuS NPs during cycling might 
facilitate magnesiation/de-magnesiation reactions, thereby leading to higher use of the capacity, as indicated by 
the increasing capacity values during initial cycling (Fig. 2b).

Figure 4a,b compare the voltage profiles of CuS NPs with its bulk counterpart, as measured at a current density 
of 0.5 A g−1. To compare the favorably intrinsic electrochemical behavior of both nano and bulk CuS, the elec-
trode formulation (amounts of binder and conductive additive), electrode thickness and electrolyte were fixed in 
our experiments. As follows from Fig. 4, nano-CuS showed superior electrochemical performance over bulk CuS 
(Figure S6). At room temperature, bulk CuS did not show electrochemical activity, which was only improved at an 
elevated temperature of 50 °C. In contrast, the electrochemical performance of nano-CuS only slightly improved 
at higher temperature. Similar electrochemical cycling behaviors were obtained with Cu2S NPs (Figure S7). 
Namely, a stable capacity of 200 mAh g−1 was retained over at least 50 cycles, clearly outperforming bulk Cu2S 
(Figure S6, S8), which showed very low electrochemical activity at room temperature. Apparently, decreasing the 
size of the copper sulfide particles significantly enhances the kinetics of magnesiation/de-magnesiation which is 
associated with the increase of the active area of the material/electrolyte interface. As a result, the use of CuS in 
the form of NPs gave drastically enhanced activity in comparison with microcrystalline bulk particles.

Conclusions
In summary, we have reported CuS NPs as new cathode materials for Mg-ion storage. These CuS NPs exhibit high 
capacities of approximately 300 mAh g−1 at a current density of 100 mA g−1 (~1 C) and high cyclic stability over 
200 cycles. The magnesiation/demagnesiation mechanism was studied by ex situ XPS and EDX measurements 
and suggests the reduction/oxidation of copper during the discharging/charging of CuS NPs, wherein sulfur in 
the form of S2− does not change during cycling. A side-by-side comparison of nano and bulk CuS showed that the 
electrochemical performance of bulk CuS is only comparable with that of nano CuS at an elevated temperature 
of 50 °C, and its performance was negligible at room temperature. These results highlight that nanostructuring 
is an effective approach to overcome kinetic limitations of conversion-type copper (II) sulfide cathodes that are 
observed in the bulk system.

Methods
Chemicals. Copper (I) chloride (99.99%, STREM), Oleylamine (Oam, 95%, STREM), Oleic acid (OA, 90%, 
Aldrich), Octadecene (ODE, 90%, Sigma-Aldrich), Copper (I) acetate (ABCR), Copper (II) acetylacetonate (97%, 
Sigma-Aldrich), TOPO (Strem, 99%), chlorobenzene (anhydrous, 99.8%, Sigma-Aldrich), Sulfur (99.998%, 
Sigma-Aldrich), 1-dodecanethiol (98%, Sigma Aldrich), Toluene (99.9%, Sigma-Aldrich), Ethanol (Fluka), 
Hydrazine (Gerling Holz+Co), Acetonitrile (ACN, max. 0.005% H2O, Merck), Copper (II) sulfide (CuS, 99.5%, 
STREM), Copper (I) sulfide (Cu2S, 99.5%, Alfa Aesar), Magnesium-bis(hexamethyldisilazide (Mg(HMDS)2, 97%, 

Figure 4. Typical galvanostatic charge-discharge curves of CuS NPs (a) and microcrystalline CuS (b) measured 
at a current density of 0.5 A g−1 and at a temperature of 25 and 50 °C, respectively.
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Sigma-Aldrich), Magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2, 99.5%, Solvionic), Magnesium 
chloride (MgCl2, 99.9%, Alfa Aesar), Tetraglyme (99%, ABCR).

Battery components. Carbon black (Super C65, provided by TIMCAL), a glass-fiber separator (EUJ-grade, 
Hollingsworth & Vose Company Ltd., United Kingdom), Poly(vinylidene fluoride) (PVDF, average Mw ~534 g/
mol, Sigma Aldrich), N-Methyl-2-pyrrolidone (NMP, 99%, Sigma Aldrich).

Synthesis of CuS NPs. Copper (II) sulfide nanocrystals (NPs) were synthesized using a previously reported 
method49. Copper (I) chloride (49 mg), oleylamine (2 ml), oleic acid (0.21 ml) and octadecene (8 ml) were mixed 
in a three-neck flask and degassed under vacuum for 20 min at 100 °C and then 20 min at 130 °C. Then, the mix-
ture was heated to 180 °C under Ar flow, and 2 ml of a 1 M sulfur solution in oleylamine was injected into the flask. 
The solution was allowed to react for 10 min at 180 °C and then cooled down to room temperature. NPs were 
purified with a chloroform/acetone mixture twice and then stored in chloroform (3 ml).

Synthesis of Cu2S NPs. Copper (I) sulfide NPs were synthesized using a previously reported method53. 
Copper (I) acetate (48 mg), TOPO (1 g) and octadecene (30 ml) were mixed in a three-neck flask, degassed under 
vacuum for 30 min at 100 °C and then heated to 160 °C. At 160 °C, a quick injection of 1-dodecanethiol (1 ml) was 
performed, and the solution was again heated to 210 °C. The solution was allowed to react for 80 min at 210 °C, 
and then cooled down naturally to room temperature. NPs were purified with a chloroform/ethanol mixture 
twice, and finally stored in chloroform (3 ml).

Ligand removal. Ligands were removed from the surface of the NPs by treatment with hydrazine. NPs were 
stirred for 2 hours in a solution of hydrazine (0.8 ml) in anhydrous acetonitrile (25 ml). Afterwards, the material 
was washed three times with acetonitrile and dried under vacuum at room temperature.

Preparation of Mg/CuS or Mg/Cu2S cells and electrochemical testing. CuS or Cu2S electrodes were 
prepared by ball-milling the respective CuS or Cu2S NPs after ligand removal or bulk material (64 wt%) with 
carbon black (21 wt%) and PVDF binder (15 wt%) in NMP for 1 h and casting the obtained slurry onto a tung-
sten current collector. The current collectors were then dried for 12 h at 80 °C. Coin-type cells were assembled 
in a glovebox using a one layer glass fiber separator. Polished Mg metal served as both the reference and counter 
electrode. A solution of Mg(HMDS)2/AlCl3/MgCl2 in tetraglyme was used as the Mg electrolyte51,52. Assembled 
cells were cycled using a MPG2 multi-channel workstation (Bio-Logic). The obtained capacities were normalized 
to the mass of the CuS or Cu2S active materials.

Materials Characterization. TEM images were obtained using a JEOL JEM-2200FS microscope operat-
ing at 200 kV. Carbon-coated TEM grids from Ted-Pella were used as substrates. For element mapping using 
HAADF-STEM combined with EDX, a beam current of 6 nA (no difference when measured with 1 or 3 nA) and 
detection with a SuperEDX system (4 detectors) were used. The measurements were performed on an FEI Titan 
Themis microscope operated at 300 kV with a probe semiconvergence angle of 18 mrad (beam current 70 pA). 
EDX spectroscopy maps were collected on an FEI Talos F200X microscope operated at 200 kV. SEM images were 
measured using a Hitachi 3030Plus tabletop electron microscope. Powder XRD was measured on a STOE STADI 
P diffractometer (Cu-Kα1 irradiation, λ = 1.540598 Å). XPS measurements were carried out in normal emission 
using a monochromatized Al Kα X-ray radiation source and a Scienta R3000 display analyzer. For the quanti-
fication of the near-surface composition, core levels of S2s, Cu2p and Mg2s were fitted with Voigt-Lorenthian 
curves using XPSmania (implemented in Igor Pro) which was kindly provided by the ALOISA beamline staff of 
the ELETTRA synchrotron facility. The energy dependency of the mean free path was included in the photoion-
ization cross sections54 resulting in the following values (see Table S1).
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