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Abstract 
Hazard assessments for ENMs are made more difficult by the multitude of different nano-forms that have to be 

tested if a case-by-case approach is applied. Predictive hazard assessments are currently being developed to 

streamline the environmental risk assessment of ENMs. The present study compiled an ecotoxicological dataset 

for nano-TiO2 and aimed to identify potential descriptors for the prediction of toxicological effects induced by 

different nano-forms based on their material properties and experimental conditions. We collected 219 nano-

TiO2 data points (in vivo), of which 205 were from freshwater studies. Only 23 of the 65 data points for Daphnia 

magna—the most investigated species—were considered as high-quality according to the DaNa2.0 criteria. 

Nano-TiO2’s EC50 was predicted using a multiple linear regression (MLR) model for six selected features including 

intrinsic (primary particle size, crystal composition) and extrinsic parameters (exposure duration, UV and non-

UV illumination, concentrations of divalent cations). The EC50 was found to form two main clusters according to 

the type of illumination, with experiments conducted under UV light resulting in a lower EC50. Nano-TiO2’s 

toxicity to D. magna could be predicted with an R2 of 0.95 (p = 0.15) for the UV dataset and an R2 of 0.55 (p = 0.19) 

for the non-UV dataset. This was a better performance than the full dataset MLR model which had an R2 of 0.29 

(p = 0.41). A one-factor-at-a-time sensitivity analysis identified the share of anatase and the exposure duration 

as the most sensitive parameters triggering adverse effects. The main impediment to the development of better 

predictive models is the lack of high-quality datasets with coherent sets of parameters. Future studies will have 

to overcome several challenges in order to enable a comprehensive approach for measuring and reporting 

critical parameters and making comparisons between studies.  

 

Keywords: nanomaterials; titanium dioxide; meta-analysis; ecotoxicology, prediction, D. magna 

  



3 

Introduction 
The environmental risk assessment of engineered nanomaterials (ENMs) still has several challenges to overcome 

before it can offer adequate risk management and governance for this promising key field of technology. ENMs 

are versatile in terms of their use in applications, their material configurations, and their surface modifications 

(Warheit, 2018). Hazard assessments, therefore, have to deal with a multitude of nano-forms which must be 

tested separately if the case-by-case testing paradigm is followed. Although modes of action have been partially 

identified, such as the formation of reactive oxygen species (ROS) (Bundschuh et al., 2018), hazard assessments 

are hampered by the heterogeneous data available from the variety of nano-forms tested, different testing 

strategies, and the differing exposure conditions applied (Hjorth et al., 2017; Sayre et al., 2017). Standard 

operational procedures, reference materials, and testing guidelines were introduced to align data generation 

and thereby decrease data variability (Rasmussen et al., 2016; Sayre et al., 2017). Physicochemical parameters 

such as particle size distribution, zeta potential, solubilization, crystalline phase, morphology, and surface 

chemistry are often discussed as being toxicologically relevant particle characteristics (Rasmussen et al., 2018). 

Moreover, these parameters should not be considered individually when evaluating potential adverse effects 

(Hund-Rinke et al., 2018; Fernández-Cruz et al., 2018). A minimal set of reported physicochemical parameters 

has yet to be agreed upon, although ECHA (2017) has proposed a preliminary list that ought to be considered 

when using grouping and read-across approaches (Fernández-Cruz et al., 2018).  

Faced with the challenge of testing multitudes of ENM forms, grouping, read-across, and computational 

predictive (eco)toxicological approaches are being put into place. Although the term grouping is not yet 

commonly defined (Mech et al., 2018), grouping concepts generally aim to pool different nano-forms of different 

parent ENMs, or different nano-forms of the same ENM, by common parameters. The underlying assumption is 

that grouped nano-forms exhibit similar adverse effects driven by the same physicochemical parameters. 

Consequently, grouping is an initial step towards enabling read-across, in which data gaps about one nano-form 

can be filled in by using data available on another nano-form in the same group (Lamon et al., 2018a).  

Several grouping concepts have been proposed, each differing in the extent to which their assessments consider 

intrinsic and extrinsic parameters (Lamon et al., 2018a; Arts et al., 2014; Oomen et al., 2015; Braakhuis et al., 

2016; Hund-Rinke et al., 2018). Most of the currently available grouping concepts are still in the developmental 

stage, and practical applications to case studies are still limited (Arts et al., 2016; Aschberger et al., 2018; Lamon 

et al., 2018b; Park et al., 2018). Furthermore, different methods have been proposed to determine the similarity 

of two (or more) nano-forms. For example, Park et al. (2018) developed a similarity index based on a pragmatic 

scoring system to overcome the current data gaps linked to analytical challenges in determining similarities. 

Aschberger et al. (2018) used the hierarchical clustering technique and principal component analysis to assess 

different nano-forms of multiwalled carbon nanotubes. In this case, functionalization and impurities were not 

the main drivers of endpoint genotoxicity. However, these methods require complete datasets on ENMs’ 

physicochemical properties, and this limits their applicability.  

Computational (nano)toxicology attempts to predict adverse effects by relating in vitro to in vivo phenomena 

based on a set of molecular or atomic descriptors (Chen et al., 2018; Puzyn et al., 2018). Concepts are named 

differently depending on the outcome desired: quantitative (nano)structure activity relationship (QSAR/QNAR), 
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quantity structure property relationship (QSPR), quantitative structure toxicity relationship (QSTR) (Roy et al., 

2018; Burello, 2017; Chen et al., 2016), or quantity property-property relationship (QPPR) (Quik et al., 2018). 

These concepts use different kinds of descriptors to relate molecular or atomic descriptors to the 

activity/property (e.g., toxicity). The descriptors include morphological structural properties, physicochemical 

properties, or other theoretical descriptors such as constitutional properties, electronic properties, and others 

(Ying et al., 2015; Basei et al., 2019). The modeling approaches using these descriptors range from conventional 

multiple linear regression (MLR) models to non-linear (un)supervised machine learning algorithms such as 

artificial neuronal networks, support vector machines, decision trees, principal component analyses, dosimetry 

models, hazard ranking, clustering analyses, and others (Puzyn et al., 2018; Basei et al., 2019; Chen et al., 2017; 

Liu et al., 2015a; Liu et al., 2015b; Harper et al., 2015). Sizochenko and Leszczynski (2016) made a comprehensive 

review of the QSARs developed for inorganic nanomaterials, and they identified approximately fifty QSAR 

models focusing more on the in vitro toxicity than on the in vivo toxicity towards bacteria, cell lines, and 

microorganisms. Such models generally require substantial datasets (of similar substances, like different metal 

oxides) to obtain statistically significant predictions (Raies and Bajic, 2016). These modeling approaches are then 

applied to a dataset comprising several ENMs, using the selected descriptor to predict the activity or property 

(e.g., toxicity) of similar substances for which information is missing from the dataset (Sizochenko et al., 2018). 

The challenge for the QSAR approach to ENMs is the development of meaningful descriptors, as they not only 

depend on the intrinsic material parameters but also on other extrinsic parameters in a dynamic system (Ying et 

al., 2015). However, a general acceptance of nano-QSAR models is still being debated because there are 

questions as to whether sufficient data will be available in short-term perspectives (Gajewicz, 2017). Consensus 

models may improve the accuracy of individual models, however, as shown by Roy et al. (2018).  

When examining data availability, many of the last decade’s in vivo studies on the ecotoxicological effects of 

ENMs have described different parent materials and nano-forms. Meta-analyses of these studies, performed 

using species sensitivity distributions, have shown that the range of ecotoxicological values can span up to six 

orders of magnitude, depending on the nano-forms and test organisms involved (Wigger and Nowack, 2019; 

Gottschalk et al., 2013; Wang and Nowack, 2018). This large variability may be attributed to the varied exposure 

conditions and nano-forms used in the experiments. For instance, Wigger and Nowack (2019) showed that the 

predicted no-effect concentrations for nano-TiO2 varied by up to a factor of six when different crystal forms (i.e., 

anatase and rutile) were considered. Furthermore, the relevance of intrinsic material properties is stressed by 

the fact that anatase is known to be more photoreactive than rutile. Anatase is therefore used primarily in 

photocatalytic applications (e.g., air and water purification), whereas rutile is employed in applications requiring 

photostability (e.g., sunscreens) (Wigger and Nowack, 2019). Anatase can produce ROS in sunlight, causing 

several detrimental effects to organisms, such as cell injury and oxidative damage (Jovanović, 2015). This large 

variability in ecotoxicological values triggered our question about whether it is possible to predict 

ecotoxicological effects based on the intrinsic properties of different nano-forms and the exposure conditions 

(extrinsic properties) provided in published studies. Since nano-TiO2 is one of the most widely used ENMs, with 

a production volume of approximately 10,000 metric tons per year in Europe (Sun et al., 2014), it is also one of 
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the most often-tested ENMs. Consequently, the data available on nano-TiO2 was expected to be one of the most 

extensive, helping to answer our research question. 

The present study therefore aimed first to compile an ecotoxicological dataset for nano-TiO2 based on published 

research and then to assess the quality of the data points collected. The species with the most reported 

ecotoxicological values was selected to identify the most relevant intrinsic (primary particle size, crystal 

composition) and extrinsic parameters (exposure duration, UV and non-UV illumination, concentrations of 

divalent cations) driving ecotoxicological effects. We considered the intrinsic and extrinsic properties of nano-

TiO2 because they are interlinked and either might trigger the observed effect.  

Material and Methods 
The meta-analysis was based on a three-step analysis of the nano-TiO2 case study. To build an ecotoxicological 

database for nano-TiO2, we first identified relevant studies by using a keyword-based query on the Web of 

Science (WoS) platform. Second, parameters relevant to nano-TiO2 toxicity were determined, and the quality of 

the database was evaluated. Only data points that fulfilled our quality criteria were considered. Third, we applied 

both single correlation and multiple linear regression (MLR) models to the selected dataset to identify relevant 

parameters and enable the prediction of nano-TiO2 toxicity. MLR results were evaluated statistically using T- and 

F-tests. Additionally, we applied a one-factor-at-a-time (OAT) sensitivity analysis to identify the most sensitive 

parameters in the MLR prediction models. 

 

Data collection for nano-TiO2 

Studies published before 2014 were taken from Coll et al. (2016), who provided a complete listing of the 

published ecotoxicological in vivo studies on nano-TiO2. Based on this study, a literature search was conducted 

in the WoS to identify studies published after 2014. We used the query “(nano* AND toxic* AND titanium *oxide) 

OR (nano* AND toxic* AND titania) OR (nano* AND toxic* AND TiO2) NOT (in vitro)”, which was modified from 

the keywords used by Juganson et al. (2015). A total of 3,444 records were revealed for the period from January 

2014 to December 2018, but only 41 papers were identified as relevant due to false-negative and false-positive 

hits. We considered toxicological studies on organisms that were exposed to nano-TiO2 in freshwater, soil, and 

sediment, focusing on the endpoints of mortality, growth, reproduction, and change in significant metabolic 

processes (e.g., photosynthesis), as per the approach proposed by Coll et al. (2016). Finally, 96 publications—

the 41 papers from the WoS search and 55 publications taken from Coll et al. (2016)—were considered as 

relevant during the timeframe from 1990–2018. 

The data points were extracted using the approach developed by Coll et al. (2016). To avoid a bias towards 

studies reporting more than one data point, only one endpoint concentration was collected from each 

experimental study, as an EC50 calculated based on the nominal concentration. If a study reported several 

endpoints, only those considering different nano-forms of TiO2, exposure media, or illumination conditions were 

selected. We omitted the effective dose, as this was not calculated statistically based on a dose-response curve.  

In all, 219 data points were extracted from 96 publications, including 205 data points for the freshwater 

compartment and 14 for the soil compartment. Daphnia magna (D. magna) was the most frequently reported 
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species, with 65 data points in 28 studies (Table 1). We later excluded the soil compartment from the assessment 

due to the limited number of studies. 

 

Table 1. Number of publications and data points collected. 

Overall Environmental compartment Species 

96 studies (n = 219) 
Freshwater: 85 studies (n = 205) D. magna: 28 studies (n = 65) 

Pseudokirchneriella subcapitata: 7 studies (n = 14) 

Soil: 11 studies (n = 14) Eisenia fetida: 4 studies (n = 4) 
Soil microbial community: 3 studies (n = 3) 

 

 

Quality evaluation of the experimental studies identified 

To evaluate the preselected studies and establish a comprehensive, high-quality database for nano-TiO2, we 

used the DaNa2.0 criteria catalogue (DaNa, 2016), which recommends a minimal set of parameters that should 

be reported in experimental studies (Table 2). This catalogue was also used for evaluating the quality of the 

OECD’s nano-silver dossier (Schmutz et al., 2017). Its minimal set of parameters not only ensures that a particular 

study is understood but also that its experimental results are evaluated with regard to their quality.  

 

Table 2. Parameters considered for checking the quality of the studies collected, modified from DaNa (2016).  

Category Parameters 

Characterization 
pristine form: manufacturer, purity, composition, primary particle size,  
specific surface area 
in an aqueous system: medium, concentration, hydrodynamic diameter, zeta potential 

Sample preparation medium of the stock suspension, dispersion method 

Testing parameters protocols, duration, illumination conditions, pH, charged ions, natural organic matter, 
conductivity 

Toxicity descriptor    endpoint concentration 
 

Since D. magna had the greatest amount of data available, later assessment focused solely on this species. 

Additionally, D. magna plays an important role in regulatory chemical testing, has been included in several 

international standards (OECD, 2004; OECD 2012; ISO, 2012), and is therefore commonly used in toxicological 

tests on ENMs. Regarding exposure media, standard testing guidelines recommend the use of the OECD medium 

(OECD, 2004) or reconstituted water (ISO, 2012), without natural organic material (NOM), in which D. magna is 

then exposed to the substance being tested in suspension. Depending on the study aims, experimental duration 

is usually set to 48 hours for an acute test (OECD, 2004) and to 21 days for a chronic test (OECD, 2012). The 

OECD acute test guideline also recommends a cycle of 16 hours of light and 8 hours of dark, although without 

indicating light intensity. The chronic test guideline proposes 16 hours of illumination with an intensity below 

15–20 µE•m-2s-1. 

The quality of the experimental studies on D. magna was investigated, and results are shown in Table 3. The 

most frequently reported parameters, in more than 95% of the 65 data points, were exposure duration, the 

manufacturer’s name, and primary particle size. The medium’s electrical conductivity was the least reported 

parameter, available in only 20% of studies. It should be noted that this relative share, even though at a high 
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percentage, fails to reflect the fact that none of the studies (65 data points out of 28 studies) reported all of the 

parameters of the criteria in list in Table 3. These omissions in the reporting of nano-TiO2’s intrinsic properties 

and exposure conditions made the consideration of all the relevant parameters for constructing predictive 

models of ecotoxicological effects more difficult.   

 

Table 3. The quality parameters tested and the percentage rate of reporting in the nano-TiO2 dataset for D. magna (65 data 
points from 28 studies). 

Category Parameters Percentage 

Material characterization 

Manufacturer 97% 
Purity 54% 
Crystal composition 91% 
Primary particle size* 97% 
Specific surface area 74% 

Material characterization in 
aqueous suspension 

Test medium 83% 
Test concentration 65% 
Hydrodynamic diameter 88% 
Zeta potential 57% 

Sample preparation 
Medium for the stock suspension 85% 
Dispersion method for preparing the aqueous suspension 83% 

Experimental condition 

Exposure duration 100% 
Protocols 74% 
Illumination 78% 
pH 85% 
Composition of exposure medium/charged ions 92% 
Natural organic matter 95% 
Conductivity 20% 

Endpoint Quality (i.e., statistical analysis) 66% 
*When the size of the primary particle being measured was available, this was preferred. Otherwise, the 
nominal size was considered. However, both cases were considered to be reported. 
 

Feature selection, data harmonization, and data selection 

To compile a high-quality dataset from the limited number of available data points, we had to determine the 

most critical features. Omitting relevant parameters could not be avoided due to low amounts of data. We 

oriented our approach around the appendix of REACH guideline R6.1 (ECHA, 2017), which recommends twelve 

key physicochemical parameters that should be considered in QSARs, grouping, and read-across concepts (Table 

4). Even though zeta potential is a relevant parameter, it could not be considered due to insufficient available 

data. We therefore included the sum of the concentrations of Ca2+ and Mg2+ in mg/L as an alternative parameter 

closely related to zeta potential and affecting particles’ colloidal properties. Ca2+ and Mg2+ are the two most 

abundant divalent cations in the standard medium used for the D. magna toxicity test (OECD, 2004; EPA, 1994), 

and they are known to strongly affect the agglomeration behavior of ENMs. Besides the parameters listed in 

Table 4, pH and the concentration of NOM are often regarded as two of the most influential factors on the 

toxicological effects of nano-TiO2. However, we had to omit the pH value because it was mostly reported as a 

range over the entire experiment. Together with the relatively small range of pH-values reported (pH 6.5–8.6), 

a consideration of pH would have introduced too much uncertainty into our assessment. Moreover, we also 

attempted to include NOM in our initial assessment as it is known to be the main driver for agglomeration 

processes in aquatic media (Zhang et al., 2009; Wormington et al., 2017). However, it was impossible to include 
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NOM because only one of the 28 studies on D. magna was carried out in the presence of NOM. Standard test 

guidelines do not require the use of NOM in D. magna tests (OECD, 2004). Furthermore, our assessment included 

the duration of exposure because a longer exposure time affects the total exposure of organisms to stressors 

(Rozman, 2000). 

 

Table 4. Feature selection based on the ECHA list (ECHA, 2017). 

Category ECHA list Selection Comment 

Chemical 
parameters 

Crystalline 
structure Yes The percentage of anatase was selected. 

Impurities No The reporting rate was relatively low (54%), and 70% of these studies 
reported purities above 99%. 

Physical 
parameters 

Particle size Yes 
Primary particle size was preferred over hydrodynamic diameter since 
the latter was determined in different media at various concentrations 
and time points, and these were incomparable between studies. 

Shape No Nano-TiO2 was spherical in all the studies selected. 

Surface area No The reporting rate was relatively low (74%); surface area is implicitly 
included in the particle size parameter. 

Behavior 

Solubility No Nano-TiO2 has low solubility in water. 
Hydrophobicity No Not available in the studies selected. 

Zeta potential No Despite being a relevant parameter, it was not regularly reported 
(54%). 

Dispersibility No Hardly reported. 
Dustiness No This parameter is not relevant for aquatic exposure. 

Reactivity 
Biological/surface 
reactivity No Normally not reported in the studies selected. 

Photoreactivity Yes Illumination conditions were considered. 
 

The six features of primary particle size, crystal composition, UV and non-UV illumination conditions, exposure 

duration, and the presence of cations in the exposure medium were selected as the input values for the meta-

assessment. Twenty-three data points for D. magna reported on all these parameters and were consequently 

used in our assessment for predicting nano-TiO2’s potential toxicity towards D. magna. 

 

Preparing and transforming the database  

The studies selected reported illumination conditions differently, which required data harmonization. Most 

reported one of three illumination conditions: simulated solar radiation (SSR), laboratory light, and darkness. 

The energy received on the test system’s surface was determined since it is one of the most important factors 

influencing the toxicity of photocatalytic materials such as nano-TiO2. To compare the energy received from 

different light sources, units of energy were converted into mWh/m2 using Equation (1), where I is the irradiance 

[mW/m2], t is the duration [h], and E [mWh/m2] is the energy received at the water’s surface.  

  

𝐸𝐸 = 𝐼𝐼 ∗ 𝑡𝑡                                                                                                                                𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (1) 

 

Because UV radiation contains more energy than non-UV radiation, the total energy of (light) irradiation was 

broken into two parts: UV (260–400 nm wavelengths) and non-UV (400–800 nm wavelengths). Assumptions 

were then made to estimate the energy received from UV or non-UV light (See SI). Briefly, we estimated the 
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share of UV and non-UV light from SSR according to the spectral power distribution provided by the company 

which provided the test chamber (Q-Lab, 2011). Moreover, for experiments that were conducted under ordinary 

laboratory conditions, the use of non-UV light irradiance was assumed according to the OECD guideline (OECD, 

2012). 

 

Multiple linear regression analysis 

Nano-TiO2’s EC50 was predicted using a multiple linear regression (MLR) model of six selected features. MLR was 

used to assess each feature’s influence on toxicity, as shown in Equation (2):  

 

EC50 =  𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑎𝑎 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑏𝑏 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑐𝑐 ∗ 𝑈𝑈𝑈𝑈 + 𝑑𝑑 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑒𝑒 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑓𝑓 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶                    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (2) 

 

Where: 

𝑰𝑰𝑰𝑰𝑰𝑰: Intercept [-] 

𝑨𝑨𝑨𝑨𝑨𝑨: Percentage of anatase [%] 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺: Primary particle size [nm] 

𝑼𝑼𝑼𝑼: Energy received from UV light at the water surface [mWh/cm2] 

𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏: Energy received from non-UV light at the water surface [mWh/cm2] 

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻: Duration of exposure [h] 

𝑪𝑪𝑪𝑪𝑪𝑪: Concentration of cations [mg/L] 

 

All the MLR models were built using the “Fitting linear models” function in R software (version 3.4.3) (Team, 

2018). The algorithm’s output is the sum of the weighted variables. Three MLR models were built for three 

datasets: M-Full for all of the data points (n = 23); M-UV for data points with UV illumination (n = 9); and M-non-

UV for those without UV illumination (n = 14). The models’ input values can be found in Table S3. Finally, 

statistical T- and F-tests were performed to determine the significance of the model and each parameter.  

 

Sensitivity analysis 

Six independent parameters drove the model to predict the toxicity of nano-TiO2. An OAT sensitivity analysis 

was performed to evaluate each parameter’s influence on the MLR results. This analysis was done by varying a 

single parameter by ± 10% while keeping the other inputs at their mean values. The percentage change of output 

y as a function of the changing input x was calculated using Equation (3):  

 

Change in % =
𝑦𝑦𝑥𝑥±10% − 𝑦𝑦

𝑦𝑦
∗ 100%                                                                                       𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (3) 
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Results and discussion 

Correlation of single parameters with the EC50 

To assess the influence of the six selected features on the EC50, we first plotted each parameter against the EC50, 

as shown in Figure 1. Datasets were divided into two groups based on the type of illumination applied during 

the experiments. Experiments run under UV light tended to result in a lower EC50. The other intrinsic (percentage 

of anatase, primary particle size) and extrinsic parameters (exposure duration, non-UV light irradiance, 

concentration of cations in the medium) demonstrated no clear correlation with the EC50. However, in each 

independent parameter evaluation, two main clusters formed linked to the UV and non-UV datasets. This led us 

to the conclusion that UV light was the main factor affecting the toxicity of nano-TiO2. Variations in all the other 

parameters showed no correlations with the EC50. To improve the assessment, we applied the MLR method to 

simultaneously evaluate all the selected features influencing the EC50.  

 

Figure 1. Correlation plots between single parameter evaluations and the reported EC50: a) share of anatase; b) primary 
particle size; c) concentration of cations; d) experiment duration; e) energy received from UV illumination; f) energy received 
from non-UV light. EC50 was calculated based on the nominal concentration.  

 

Multiple linear regression models and sensitivity analysis 

Three MLR models (M-full, M-UV, and M-non-UV) were built for the datasets including the six selected features, 

and results are shown in Figure 2, Table 5, and Table S3. The MLR obtained a correlation coefficient (R2) of 0.29 

for the complete dataset, indicating an insignificant correlation. This was confirmed by the F-test, resulting in a 
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p-value of 0.41. This low significance is depicted in Figure 1, where most of the parameters demonstrated no 

clear correlation with the EC50. It is also depicted in Figure 2a, showing two main clusters that represent the non-

UV (blue) and UV (red) datasets.  

The UV and non-UV datasets were then analyzed separately, resulting in a very good R2 value of 0.95 for the UV 

dataset (Figure 2b) and a lower R2 of 0.55 for the non-UV dataset (Figure 2c). The F-test returned p-values of 

0.15 and 0.19 for the M-UV and M-non-UV models, respectively. This means that although the R2 and p-values 

were better than those of the M-Full dataset, none of the models was statistically significant at p < 0.05. 

Nevertheless, in the context of predictive hazard modeling, an R2 ≥ 0.64 has been suggested as good for in vivo 

data analysis within QSARs (Puzyn et al., 2011).  

 

 

Figure 2. Multiple linear regression models: a) Full for the full dataset (n = 23); b) UV for the UV dataset (n = 9); and c) non-
UV dataset (n = 14). The black line is the 1:1 line and not a fit to the data. 

 

Table 5. Parameters calculated for the three M-full (full dataset), M-UV (UV dataset), and M-non-UV (non-UV dataset) models 
based on the multiple linear regression (MLR) method and the F-test.  

Model INT 
[-] 

ANA 
[%] 

SIZE 
[nm] 

TIME 
[h] 

UV 
[mWh/cm2] 

non-UV 
[mWh/cm2] 

CAT 
[mg/L] R2 p 

M-Full -51 0.22 2.1 0.38 1.6 -0.95 0.17 0.29 0.41 
M-UV 12 -0.05 -0.11 -0.10 -0.33 0.07 0.01 0.95 0.15 

M-non-UV -145 1.3 5.1 0.63 - -2.1 -0.39 0.55 0.19 

Abbreviations: intercept (INT); percentage of anatase (ANA); primary particle size (SIZE); energy received from UV (UV); 
energy received from non-UV light (non-UV); concentration of cations (CAT); correlation coefficient (R2); P-value in the F-test 
(P). 

An OAT sensitivity analysis was applied to the three MLR models and the relative output changes calculated are 

shown in Table 6. The values indicate the changes in the results (i.e., EC50) if one parameter is varied by ±10% at 

a time. A negative value indicates a decrease in the EC50 (i.e., an increase in toxicity) with an increase in input. 

All the MLR models showed symmetrical behavior in their sensitivity analysis, whether single parameters were 

increased or decreased. Nevertheless, parameters showed different sensitivities depending on the model 

investigated. The primary particle size was the most sensitive parameter in the M-Full model, whereas the 
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relative share of anatase was the most sensitive feature in the M-UV and M-non-UV models. The concentration 

of cations was predicted to have the lowest sensitivity in all three models.  

Table 6. Results of the sensitivity analyses for the six parameters in the Full, UV, and non-UV multiple linear regression (MLR) 
models. The table only shows the relative change in y when increasing x by 10%. The full sensitivity analysis can be found in 
Table S4. 

Model ANA  
[%] 

SIZE  
[nm] 

Time  
[h] 

UV  
[mWh/cm2] 

non-UV  
[mWh/cm2] 

CAT  
[mg/L] 

M-full 8.7% 20% 10% 2.6% -12% 4.0% 
M-UV -65% -32% -51% -37% 40% 5.4% 

M-non-UV 29% 28% 12% - -11% -7.2% 

Abbreviations: percentage of anatase (ANA); primary particle size (SIZE); energy received from UV (UV); energy received from 
non-UV light (non-UV); and concentration of cations (CAT). 

 

Predicting nano-TiO2’s toxicity to D. magna 

We observed the interesting fact that the separate models for the UV and non-UV datasets demonstrated 

considerably better performance than the model for the M-Full dataset combining both the other complete 

datasets. In general, nanoparticle toxicity was reported to correlate with physicochemical parameters 

nonlinearly, as did the relative share of anatase (Marcone et al., 2012) and the primary particle size (Wyrwoll et 

al., 2016). Using linear models to predict toxicity may therefore lead to inaccurate results. However, our 

assessment showed that the UV dataset could acceptably predict toxicity towards D. magna with an R2 of 0.95. 

The main reason that the UV dataset performed better than the other two models was the thorough data 

preparation and thus the exclusion of data points that had been evaluated under non-UV conditions. This was 

also supported by the sensitivity analysis, which showed both the relevance of UV exposure and the share of 

anatase triggering adverse effects. Another reason for UV dataset’s better fit could be that the M-UV model only 

comprised photocatalytic nano-TiO2, whereas the M-non-UV model included different nano-forms of TiO2. The 

share of anatase used in our assessment does not seem to be the best predictor for the crystal form of a diverse 

set of nano-TiO2 particles. 

 

M-UV dataset 

Most of the parameters predicted by the MLR for the M-UV dataset had a negative correlation with the reported 

EC50, suggesting that an increase in any one parameter increased toxicity. Two exceptions were the energy 

received from non-UV light and the concentration of cations, which were positively correlated with the EC50. 

Furthermore, the MLR’s results and the sensitivity analysis suggested that intrinsic and extrinsic properties 

exhibited different influences on the overall toxicity to D. magna.  

Anatase content showed the highest sensitivity in the M-UV model, with -65%, although this parameter was less 

sensitive in the non-UV dataset (29%). This result seems reasonable because UV exposure and the share of 

anatase are crucial for the production of ROS (Jovanović, 2015). Nano-TiO2 is known for its synergistic 

photocatalytic effects that crystalline mixtures of anatase and rutile generally outperform pure crystal forms 

with regard to their photoactivity. Consequently, anatase–rutile mixtures increase toxicity due to their greater 

production of free radicals during UV illumination (Pfeifer et al., 2013; Luttrell et al., 2014). The study by Wigger 
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and Nowack (2019) also concluded that P25/NM105, with an anatase share of approximately 80%, exhibited 

greater toxicity than the pure anatase or rutile. However, we did not observe this effect from the MLR model 

which might due to the limited anatase/rutile mixtures data in our study (either 80% or 100% shares of anatase, 

see Figure 1a). 

The exposure duration was the second most sensitive parameter (-51%) in the M-UV dataset. The model 

predicted a decreasing trend for the EC50 as exposure time lengthened, which is in accordance with the current 

knowledge about how exposure duration affects the substance’s total exposure (Rozman, 2000): longer 

exposure duration leads to higher cumulative exposure resulting in higher toxicity.  

Regarding the percentage of anatase and exposure duration, both UV light and non-UV light energy showed 

lower sensitivity in the M-UV dataset, at -37% and +40%, respectively. The M-UV model predicted that nano-

TiO2’s toxicity to D. magna increased with higher UV light energy. This is not only in agreement with the 

observation in Figure 1e but also in line with results from several experimental studies (Ma et al., 2012; Li et al., 

2014; Clemente et al., 2014). On the other hand, it was surprising that UV light and non-UV light energy exhibited 

similar parameter sensitivity. Non-UV light energy was expected to have a lower influence on toxicity than UV 

light since the spectrum of non-UV light does not have enough energy to excite electrons from the valence band, 

causing radicals. The reason for this unexpected result is likely related to the data harmonization, which assumed 

the use of the standard UV-lamp spectrum in cases of missing information. Ideally, as Haynes et al. (2017) 

pointed out, researchers should use specific programs to calculate the actual light field present at the organism’s 

surface, which is usually influenced by the composition of the natural media. However, the studies available did 

not provide the required information with which to apply a more sophisticated approach to calculating the true 

UV-illumination on the organism.  

Primary particle size also showed low sensitivity, at 32%, although it is commonly assumed that particle size 

matters a lot in the context of ecotoxicological effects (Seitz et al., 2014; Wyrwoll et al., 2016). The M-UV model 

predicted that the EC50 decreased with higher particle sizes (Table 5). Indeed, many studies have reported that 

the toxicity of nano-TiO2 may not decrease linearly with bigger primary particle size (Wyrwoll et al., 2016; 

Metzler et al., 2011). Nano-TiO2 particles sized between 20 nm and 30 nm exhibited the highest toxicity to D. 

magna in the experiment by Wyrwoll et al. (2016). As mentioned before, hydrodynamic diameter would be a 

more appropriate parameter, representing the actual stressor on the organism, including potential 

transformations (e.g., agglomeration) of ENMs in their respective media (Maguire et al., 2018). However, this 

parameter was only available in a small subset of studies and could not be included in our meta-analysis.  

Finally, the concentration of Ca2+ and Mg2+ was the least sensitive parameter, suggesting their relatively low 

influence on the EC50 in this medium. The EC50 values were predicted to be positively correlated with the 

concentrations of the two divalent cations, meaning that higher concentrations of cations would result in lower 

toxicity. This result is in agreement with the fact that divalent cations lead to a higher likelihood of 

agglomeration/aggregation, which reduces the intracellular uptake of ENMs by organisms and thus subsequent 

toxicity (Zhang et al., 2009; Tan et al., 2017).  

 

M-non-UV dataset 
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The results from the M-non-UV model exhibited a lower correlation coefficient (R2 = 0.55) than those of the M-

UV model. Surprisingly, the mathematical terms for the exposure duration and cation concentration parameters 

had values opposite to those expected. For instance, a longer exposure time led to lower toxicity, which was the 

opposite of the expected outcome. We analyzed the dataset in detail in order to find an explanation for this 

result. The M-non-UV dataset included more studies, different nano-forms of TiO2 (i.e., crystal forms), and 

experiments with different exposure duration and illumination conditions (i.e., darkness). Consequently, the 

results from the non-UV dataset included greater variability due to the addition of heterogeneous data from 

different studies. For instance, it has been shown that different crystalline phases of anatase and rutile can have 

antagonistic and/or additive effects (Li et al., 2017; Iswarya et al., 2015), which is why the consideration of 

different crystal forms may have been conflicting in this regard. However, removing rutile data points did not 

significantly improve the results from the M-non-UV dataset. 

 

Limitations and challenges 

The present study started with a broad search for all the published studies addressing the toxicity of nano-TiO2 

on living organisms in several environmental compartments, focusing on the endpoints of mortality, growth, 

reproduction, and changes in significant metabolic processes. We found 219 data points covering all species and 

65 data points for D. magna. Due to reasons of data availability and quality, only 23 of the 65 data points could 

be used in the final model. This suggests that although many studies have been published with a focus on the 

toxicity of nano-TiO2, high-quality data with a complete characterization of materials and experimental 

conditions used are still scarce. Indeed, our study has revealed the current challenges related to reporting on 

time-dependent parameters that change dynamically throughout an experiment. For instance, hydrodynamic 

diameter is usually regarded as an important parameter influencing the toxicological behavior of nano-TiO2 in 

aqueous suspensions. It is a better descriptor than primary particle size since the hydrodynamic diameter is the 

actual size of the particle to which an organism is exposed. However, the studies selected determined the 

hydrodynamic diameter in different media at various concentrations and time points before or during the 

experiment, which made them incomparable. Another example was pH, which is often reported as a range 

throughout an experiment without indicating the time of measurement: it thus could not be considered in the 

model. These missing descriptors influenced the predictive model’s accuracy. Coherent approaches for 

measuring and reporting hydrodynamic diameters and pH throughout experiments are urgently needed. These 

parameters should be monitored and recorded continuously during the exposure experiment in the test medium 

and be parts of the published article.  

Moreover, for some frequently reported parameters, descriptions lack important details regarding the 

experimental set-up. Thus assumptions were necessary for their consideration in our study. For example, 

illumination conditions were often reported as types of illumination (UV, non-UV) with their corresponding 

duration, but the type and spectra of the UV exposure were not reported. We thus assumed the use of a 

commonly used UV lightbulb, which introduced additional uncertainty to one of the most crucial parameters. A 

similar problem was found for studies carried out without UV illumination. Although the OECD acute test 

guidelines for D. magna mention the requirements for illumination (OECD, 2004), they do not specify how much 
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energy the organism should be exposed to. Actual non-UV light intensities during experiments were rarely 

reported, and we had to estimate this parameter based on the standard conditions in the chronic test guidelines 

for D. magna (OECD, 2012). We acknowledge that this might have been the source of additional uncertainties 

but disregarding such data points would have decreased our small dataset even further. The relevance of the 

experimental setup and reporting were emphasized by Haynes et al. (2017) and Jovanović (2015). Future 

experimental studies (and test guideline revisions) should address these issues, especially for photocatalytic 

materials, and they should report illumination conditions in detail to enable comparisons between studies.  

Furthermore, most of the ecotoxicological studies in our assessment only reported nominal concentrations of 

the nanomaterial that were either calculated at the beginning or during the experiment at specific points in 

time. However, the nominal concentration is not the actual concentration to which the organism is exposed. 

Therefore, measured concentrations would be better descriptors of ecotoxicological effects, and we can only 

encourage other authors to report on this in future articles. 

There are three additional aspects which make environmental hazard assessments more difficult with regards 

to the availability of data and the nano-forms tested. Firstly, we could not include NOM in the model due to the 

lack of sufficient studies conducted in the presence of NOM. The addition of NOM has generally been found to 

reduce nano-TiO2 ecotoxicity due to the reactive oxygen quenching process (Li et al., 2016). Secondly, the 

majority of the data available related to pristine nanomaterials, which are likely not present under relevant 

environmental conditions (Maurer-Jones et al., 2013; Nowack et al., 2016). It is known that the ENMs released 

from products into the environment may transform there, and their transformation may affect the composition 

of the materials measured (Nowack et al., 2016). Also, since ENMs are often incorporated into products, they 

can be released as ENMs bound in a matrix (Froggett et al., 2014). Future ecotoxicological studies should try to 

represent the realistic forms of ENMs found in the environment. The need for predictive approaches is 

highlighted by the fact that there are continuously new nano-forms which need to be tested. Thirdly, the 

available data are heterogeneous and it is therefore challenging to compare them as many of their parameters 

are defined as ranges, which may differ significantly between studies despite standard procedures being 

followed (Park et al., 2018).   

Finally, it should be kept in mind that the model presented in this study only addressed the effects of one 

photocatalytic, non-soluble ENM on one invertebrate. Thus the model may not apply to non-photocatalytic or 

soluble ENMs. The study’s results are nevertheless relevant to other freshwater species despite their focus on 

one species. Although D. magna is a model organism and a good indicator of toxicity, it can only provide a partial 

insight into broader ecotoxicity. Other species may be less prone to ENMs and results may not be transferrable 

to higher organisms such as fish or the organisms living in the other environmental compartments. Nevertheless, 

the challenges requiring the development of a coherent approach to measuring and reporting some of the 

parameters critical to nano-TiO2 ecotoxicity, as revealed by this study, are likely also true for other ENMs and 

species.  
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Conclusion and outlook  
Computational hazard assessments using QSARs can lead to the prediction of adverse effects due to exposure 

to ENMs. Streamlining hazard assessments could obviate the need for case-by-case examinations. To date, such 

models have mainly focused on datasets that included different parent ENMs and nano-forms to identify 

potential descriptors for the prediction of toxicity in similar ENMs. The present study attempted to predict 

ecotoxicity by using an in vivo dataset focusing on one nanomaterial—nano-TiO2—and the freshwater organism, 

Daphnia magna. We considered the intrinsic and extrinsic parameters of the experimental setup and applied a 

multilinear regression analysis. Our work was partially successful, as it used the available data to elucidate the 

influence of selected intrinsic (primary particle size, crystal composition) and extrinsic parameters (exposure 

duration, UV and non-UV illumination, concentrations of divalent cations), especially for the M-UV dataset, 

which demonstrated a correlation coefficient of 0.95. Our results revealed that UV illumination was the most 

important factor in determining the toxicity of nano-TiO2, which is also influenced by other factors such as crystal 

form, primary particle size, exposure duration, and the concentration of cations. The biggest challenge to the 

development of predictive models is the availability of high-quality datasets. Although hundreds of studies have 

been published to address the toxicity of nano-TiO2, those that have reported data on a broad, coherent set of 

parameters are still scarce. Future studies should develop a coherent approach to measuring time-dependent 

parameters throughout the experiment, provide a complete description of the illumination conditions applied, 

especially for photocatalytic materials, and report measured exposure concentrations rather than nominal 

concentrations.  
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