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Tacticity in chiral phononic crystals
A. Bergamini 1,3*, M. Miniaci 1,3*, T. Delpero2, D. Tallarico 1, B. Van Damme1, G. Hannema1, I. Leibacher2 &

A. Zemp 1

The study of vibrational properties in engineered periodic structures relies on the early

intuitions of Haüy and Boscovich, who regarded crystals as ensembles of periodically

arranged point masses interacting via attractive and repulsive forces. Contrary to electro-

magnetism, where mechanical properties do not couple to the wave propagation mechanism,

in elasticity this paradigm inevitably leads to low stiffness and high-density materials. Recent

works transcend the Haüy-Boscovich perception, proposing shaped atoms with finite size,

which relaxes the link between their mass and inertia, to achieve unusual dynamic behavior at

lower frequencies, leaving the stiffness unaltered. Here, we introduce the concept of tacticity

in spin-spin-coupled chiral phononic crystals. This additional layer of architecture has a

remarkable effect on their dispersive behavior and allows to successfully realize material

variants with equal mass density and stiffness but radically different dynamic properties.
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The rational design of periodic structures has recently
allowed to attain performances otherwise inaccessible by
naturally available materials1, such as being ultra-light and

ultra-strong2–5, hard to compress yet easy to deform6 or simul-
taneously exhibiting negative stiffness, Poisson’s ratio and/or
mass density7,8. This offers unique potential for phonon manip-
ulation9 and wave isolation10,11, including nonreciprocal12–14 and
scattering free15,16 propagation, cloaking17, and frequency
bandgap nucleation18.

Except for structures including locally resonant elements19–22

or inertial amplification mechanisms23, so far the tailoring of the
dynamics of periodic structures has mainly relied on the Bragg
scattering mechanism24 and the exploration of their vibrational
properties on the early intuitions of Haüy25 and Boscovich26,
who regarded crystals as periodic ensembles of point masses that
interact via attractive and repulsive forces (inter-atomic links).
This allowed to conceptualize continuous as well as composite
media as a series of discrete mass-spring systems24,27 in analogy
to the atoms and inter-atomic links of a crystal, predicting the
essence of the wave propagation as a function of material den-
sity ρ, stiffness C, and size of a representative unit cell a.
However, the Haüy-Boscovich model necessarily considers
the inter-atomic links as coaxial with the line connecting the
atoms. Therefore, an atom can translate but there is no meaning
in considering its rotation, leading to the concept of transla-
tional oscillator (TO), with a single degree of freedom (DOF)
per space direction, the motion of which is described by the
equation:

€umþ uk ¼ 0; ð1Þ

being m the mass of the oscillator, k its axial stiffness and u the
displacement of the mass. Equation (1), applied to a mass-spring
chain, implies that the vibrational properties of the TO and
consequently the bandgap nucleation, are indissolubly linked to
the stiffness and density of the material24. The constraint
becomes more evident by normalizing the bandgap frequency as

ω� ¼ fBGa
ffiffiffi
ρ
C

q
; being fBG the bottom edge frequency of the

bandgap, ρ the density and C the stiffness of the material. In the
case of a 1D bi-atomic mass-spring chain we can show that 1/π
≤ ω∗ ≤ 2/π (see Supplementary Note 1), raising a fundamental
theoretical limitation to the conception of structures with
simultaneously high stiffness and low density but also small unit
cell size and low-frequency bandgap, which has indeed been
elusive so far. However, recent works28–30 have proposed the use
of chiral links to couple the longitudinal motion of finite size
mass elements (atoms) to their rotation, referred to in what
follows as spin, in analogy to the angular momentum carried by
elementary particles in quantum mechanics. This inclusion of
spin energy in the equation of motion allows to relax the bond
between the aforementioned quantities determining ω∗28.

Here we show that, beyond the exploitation of inertial effects,
the relative orientation of adjacent chiral centers, known from
polymer science as tacticity, strongly affects the nature of the
coupling between the spins of atoms in the chain. Our numerical
and experimental investigations show that the syndiotactic pho-
nonic crystal arrangement nucleates low-frequency full bandgaps,
while the isotactic variant exhibits wave modes in the same fre-
quency range, responsible for a transmissive behavior. None-
theless, the two variants are characterized by the same density and
quasistatic stiffness. This is expected to have an impact on the
understanding and design of chiral phononic crystals, making
them a promising new class of materials for low frequency
vibration isolation applications.

Results
Chirality. The experimental confirmation of the above ideas, is
obtained by preparing two samples, each comprising two unit
cells arranged in the iso- and syndiotactic configuration, respec-
tively, as shown in Fig. 1a, by means of an additive manufacturing
process. The two structures essentially exhibit the same static
stiffness in z-direction and have the same homogenized density
(see Methods).

The transmissibility of the two systems is investigated by
scanning laser Doppler vibrometry (SLDV) of the two samples
(see Supplementary Fig. 1 for the description of the experimental
set-up). The transmissibility is calculated as the ratio of the
detected and imposed velocity along the principal axis at a
scanning point and are presented in Fig. 1b, c. The clear drop in
the transmission (Fig. 1c) can be seen as a direct observation of
the numerically predicted bandgap. The experimental results are
well supported by finite element numerical models, where the
orthotropic material properties were obtained by matching the
numerical model response of Fig. 1c to measured transmissibility
data. Nominal data sheet material properties were used as an
initial guess. Elastic constants derived from the transmission
spectra are in excellent agreement with numerically simulated
and experimental static tests (see Supplementary Fig. 2).

The introduction of chirality in phononic crystals transcends
the Haüy-Boscovic crystal model by enriching the TO kinematics
so as to weaken the link between the mass and the inertia of the
atoms by means of non-centrosymmetric links coupling the
translational motion of the atoms along one direction to their
rotation about the same axis, in sharp contrast to ordinary
Cauchy media (Fig. 2), which do not allow for chiral effects31.
The concept of chirality has been long known in the literature and
while it has been largely explored in the field of electromagnetic/
optical metamaterials, its potential only recently emerged in
elasticity32–35. Although substantial differences between the two
domains (the absence of static chiral effects in optics and the mass
density tensor additionally entering via the equation of motion in
the elastic case) do not allow a direct transposition of concepts
explored in one field to the other, a close mathematical analogy at
the level of effective-medium description allows cross-fertilization
inspiring new physics, such as negative refractive indices36 or
opening the path to the exploration of quasistatic properties of
micropolar materials37 and the dispersion relation of continua38,
among others.

The non-centrosymmetric architecture, made of elastic
elements transferring axial and shear loads as well as bending
moments, forces the atoms to rotate, clockwise (Fig. 2c) or
counter-clockwise (Fig. 2d), under uni-axial tension, allowing
for the conception of a coupled translational-rotational
oscillator (TRO). The twist of the ligaments defines the
direction of the atom rotation Φ with respect to its translation,
leading to the definition of two variants of the chiral TRO, (+)
and (−).

To unequivocally prove that the introduced spin allows to relax
the restriction imposed by the Haüy-Boscovich model, we
performed numerical forced frequency response analyses on the
three oscillators reported in Fig. 2b–d, characterized by the same
axial stiffness k and mass m (for further details, refer to
Supplementary Notes 2 and 3). The amplitudes of the axial
displacement as a function of the exciting frequency are reported
in Fig. 2e for both the achiral TO (black line) and the two chiral
TRO with enriched kinematics (superimposed dashed green and
solid purple lines). While the harmonic response of the TO is

determined by
ffiffiffi
k
m

q
; the introduction of the spin into the unit cell

kinematics leads to a considerable reduction of the first rigid atom
mode (~30%), shifting the peak from 273 Hz in the case of the
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ordinary TO to 196 Hz in the case of a TRO. Furthermore, the
reconstruction of the mode shapes clearly confirms the coupling
mechanism between torsional and translational oscillation of the
shaped atom, as shown in Fig. 2b–d and detailed in Supplemen-
tary Notes 2 and 3.

The enriched kinematics makes our work distinct from
previous studies, as the frequency shift is solely due to the spin
introduction and not to any stiffness or mass changes of the unit
cell19,39, and is described in the following section.

Coupling of longitudinal and torsional motion. The kinematics
and statics of the coupling mechanism between translational
and rotary motion of the inertia elements is detailed in Fig. 3.
Here, for a matter of better understanding, the two main
functions of the links between atoms are separately represented
by different colors: (i) the blue spring elements, with stiffness
constant k, provide a restoring force upon changes of the inter-
atomic distance from the equilibrium condition (the analogue
of the elastic elements in Brillouin’s mass-spring chain), (ii)
the black links, represent ideally stiff struts connected to
the disks via frictionless pivots, imposing kinematic constraints
to the motion of the gray disks by coupling the linear
and rotational degrees of freedom, and (iii) the orange tor-
sional springs provide restoring moment upon rotation of the
atoms.

At the equilibrium condition, the struts connected at a distance
r from the axis of the unit cell and laying in a plane tangential to a
circle, form an angle ψ to the surface of the disks. The number of
struts determines the order of the n-fold symmetry axis (n= 3, in
the case at hand). For small displacements u, the rotation Φ of the

middle disk is given by:

Φr ¼ u
tanðψÞ ð2Þ

The restoring force and moment originating from the elements
with stiffness k and kts in longitudinal and rotatory direction are:

Fk ¼ k � u; ð3Þ

Mts ¼ kts �Φ; ð4Þ
respectively. From the situation shown in Fig. 3 and the
consideration of the kinematic constraints (2), we can write the
equation of motion for the phononic crystal as follows:

€u mþ Θ

tan2ðψÞr2
� �

þ u kþ kts
tan2ðψÞr2

� �
¼ 0: ð5Þ

where m is the mass of the atoms, Θ ¼ 1
2mr2, assuming that the

struts are connected to the external circumference of the disk of
radius r, ψ is the angle of the struts between two adjacent disks, k
is the axial stiffness, and kts is the torsional stiffness of the
structure.

In spite of the fact that part of the energy is coupled into a
rotary oscillation, the system described by (5) can be still regarded
as a one-dimensional monoatomic mass-spring chain, similar to
the one discussed in ref. 24. Hence, the equation of motion has the
form of the Eq. (1), except that the mass terms now include a
contribution accounting for the moment of inertia of the disk-
shaped atoms.

Therefore, the introduction of chiral elements, made possible
by the shape and finite size of the atoms of the phononic crystal,
creates additional design elements, such as the angle ψ, which
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Fig. 4c) that presents few flat modes with small gaps in between them. c Calculated (blue) and measured (gray) transmission spectra of the syndiotactic
crystal. The clear drop in the transmission can be seen as a direct observation of the numerically predicted bandgaps. It should be noted that a very simple
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position of features moves slightly, the character of the curves does not change
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controls the ratio between the longitudinal and rotational motion
(u and Φ), and the ratio of moment of inertia Θ and mass m, that
can be exploited to tailor the propagation of mechanical waves.
Similarly, also the symmetry operations with respect to the atoms
of the unit cell represent an additional tailoring property.

Concatenation of chiral centers and tacticity. So far, structured
materials with mono-dimensional periodicity have relied on the
concatenation of mass-spring oscillators24, occasionally including
chiral elements40,41; however, lacking spin-spin coupling, con-
trary to later works28,30 where this effect was present but not
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specifically studied. Up to now, the assembly strategy has been
driven by a simple translation of the unit cell, whereas the con-
catenation of non-centrosymmetric elements into 1D objects has
been widely studied in the framework of polymer chemistry with
respect to substituted poly-olephines, such as polypropylene. The
critical effect of the assembly on the physical properties on
otherwise chemically identical polymers has been proved42,43. In
this context, the notion of tacticity was introduced as the relative
stereochemistry of chiral elements. Inspired by this concept, we
show the influence of tacticity on the dynamic behavior of chiral
structured periodic media, by contrasting the dispersion proper-
ties of iso- and a syndiotactic crystals, originating from the dif-
ferent natures (Cosserat and Cauchy, respectively) of the two
arrangements.

To this end, we consider two phononic crystals, made of
periodic diadic arrays of the TROs reported in Fig. 2c, d in
isotactic (Fig. 4a) and syndiotactic (Fig. 4b) arrangement, that
correspond to two point groups, namely 3

m and 31 (in Hermann-
Mauguin notation). In analogy to a polymer (top panels of
Fig. 4a, b), the constitution of the building blocks of the two
structures is identical, in both cases periodically arranged in the z-
direction with the same lattice parameter a and only differ for the
configuration of the chiral elements (stereoisomers), (+)/(+) and
(+)/(−), respectively. Their band diagrams are reported in Fig. 4c,
d and are calculated by imposing Bloch-Floquet periodic
boundary conditions over the top and bottom atom surfaces
and varying the reduced wave number k� ¼ kz � πa along the Γ −
X boundary of the first irreducible Brillouin zone (see Methods
for further details).

To better understand the nature of the calculated modes, the
dispersion curves are color-coded based on a polarization
coefficient p44 that quantifies the absolute value of the average
z-component of the curl of the displacement field (i.e., the
rotation about the z-axis) of the atoms, representative of the
enriched rigid body kinematics of the structures reported in
Fig. 2c, d. The color bar representing the polarization factor varies
from 0 (blue), indicating that the deformation is localized within
the struts, mainly subjected to flexural deformation or as local
disk modes, to 400 (red), characterized by a predominantly rigid
body motion (rotation+ translation) of the disks. This allowed us
to identify the modes preeminently involving local deformations
(resulting from the continuous nature of the investigated system,
blue curves) and those activating the rigid atom rotation in the
deformation mechanism of the unit cell (typical of the chiral
behavior, the remaining curves). Among the latter, we observe
that in the isotactic arrangement, the rigid body rotation of its
atoms decreases as the reduced wave number k∗ increases,
whereas the syndiotactic structure increases the polarization
factor p (the color shading of the bands goes from dark blue to
light green) as k∗ increases. Inspecting the mode shapes of the
two structures, we observe that the tacticity strongly influences
the phase of the rotation of the atoms. In the first case (isotactic
arrangement), we can recognize the typical behavior of mass-
spring chains24, where the atoms move in phase along the
acoustic branch (A1 in Fig. 4c) and switch to out of phase after
their folding at the X point of the edge of the Brillouin zone
(optical mode O1 in Fig. 4c). However, this is no longer true, in
the case of syndiotactic arrangement, where the top and bottom
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disks are always in opposition of phase leaving the central one
still (M1 and M2 in Fig. 4d). This is a direct consequence of the
reversed twist of the ligaments connecting the central disk,
implying opposite relative displacement of neighboring disks and
torsional stress associated with it. This allows the opening of a
large bandgap between 374 Hz and 1816 Hz in the syndiotactic
arrangement implying the absence of any propagative mode in
this frequency range, contrary to the isotactic case. The key idea is
that the syndiotactic arrangement of the atoms leads to
alternately stationary (with respect to rotation) and moving
disks, whereas in the isotactic one, rotation is accumulated along
the z-axis, breaking the Cauchy media requirements. In other
words, in the case of isotactic crystals, under static loads and for a
given strain level, the maximum absolute twist will increase
proportionally to the distance from the fixed boundary condition,
as a function of the number of unit cells, as quantitatively shown
in Fig. 5a, c. For the sake of clarity, it is useful to mention that
systems such those discussed in the seminal work of Frenzel
et al.31 and the isotactic phononic crystal treated in the present
manuscript, cannot be considered a Cauchy continuum. As a
consequence, boundary conditions also influence the static
properties of these systems. Specifically, if the rotations at their
edges are blocked, the stiffness will be higher than if the rotational
degrees of freedom are not. On the other hand, the situation is
different for the syndiotactic crystal, as the rotation can be
considered ‘concentrated’ in every other disk also under static
loads (see Fig. 5b, c). As such, the static stiffness of the material
does not depend on the boundary conditions.

It should be pointed out that in this work, the presented band
diagrams are calculated through the Bloch-Floquet formalism,
which considers the material of infinite extension (i.e., no
boundary conditions are given).

Discussion
In conclusion, we showed that parting from the notion of atoms
as point mass elements and embracing the fact that, in phononic
crystals, atoms are bound to have a finite size and can thus be
attributed a shape, have demonstrably a dramatic effect on the
wave propagation properties. This step is a fundamental leap
from the idealized model of natural crystals. The introduction of
inertia terms, originating from the shape of atoms, in the dis-
persion equation alone allows to break the otherwise indissoluble
link between wave velocity and atomic mass, with obvious
practical implications for the phononic materials community.
The finite geometry extension of the atoms leads to the definition
of (i) coupling ratios between kinematic degrees of freedom
(linear+ rotational), and (ii) an inertial multiplication factor that
determines the effect of inertia on wave velocity. Finally, the
introduction of the concept of tacticity in the concatenation of
chiral elements adds an additional layer of architecture allowing
for the conception of material variants with substantially differing
dynamical properties but with the same density and quasistatic
stiffness, reminiscent of the differentiation between isotactic and
syndiotactic polymers42,43. Specifically, beyond the exploitation of
inertial effects, the relative orientation of adjacent chiral centers
allows to strongly affects the nature of the coupling between the
spins of the atoms. The consequent radically different dynamic
behaviors, including the nucleation of low frequency full band-
gaps, makes tacticity a powerful design strategy of interest in all
the fields where vibrations play a crucial role, such as for instance
civil, aerospace and mechanical engineering.

Methods
Calculation of the frequency response of finite systems. Mode shapes showing
the different behaviors of the achiral and chiral oscillators and the diagram of the
vertical displacement presented in Fig. 2b–e are calculated by means of ANSYS

v19.2 as a result of a numerical forced frequency response analysis. The excitation
configuration is the same for the three systems and the force is applied at the center
of the disks.

The numerical transmission spectra of the isotactic and syndiotactic crystals
shown in Fig. 1b, c are calculated using ANSYS v19.2. The elastic properties of the
constituting material (DuraForm HST SLS) were estimated from a best match of
the numerical and experimental results for the isotactic and syndiotactic crystal,
respectively. This approach was used to account for effects on the material
properties due to the combination of geometry and manufacturing process. The
material properties for the calculations used in Fig. 1b, c were the same as for the
calculation of the dispersion curves (Fig. 4c, d) and the static stiffness
(Supplementary Fig. 2).

The properties of the struts of the TO of Fig. 2b were divided by a factor of ≈100
to match the static stiffness of the TROs reported in Fig. 2c, d. These modifications
are justified by the general nature of the considerations presented in Fig. 2.

Calculation of the dispersive properties of materials. Dispersion diagrams and
mode shapes presented in Fig. 4c, d are computed using the Bloch-Floquet theory
in full 3D FEM simulations, carried out via the Finite Element solver COMSOL
Multiphysics. Full 3D models are implemented to capture all possible wave modes.
Material densities ρM,syndio= 1200 kg · m−3 and ρM,iso= 1251 kg · m−3, based on
the measured mass and volume of the phononic crystals shown in Fig. 1a, are
assumed. The following orthotropic stiffness matrices and Poisson’s ratios were
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disks for the isotactic (red lines) and syndiotactic (blue lines) crystals. The
twist increases proportionally to the number of unit cells composing the
structure in the isotactic crystal differently from the syndiotactic case
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assumed for the numerical investigation, respectively:

Csyndio ¼
3:03 1:14 0:86

1:14 3:03 0:86

0:86 0:86 1:6

2
64

3
75 � 109 Pa; ð6Þ

νsyndio ¼ 0:33 0:33 0:33½ �; ð7Þ

Ciso ¼
2:74 1:06 0:82

1:06 2:74 0:82

0:82 0:82 1:47

2
64

3
75 � 109 Pa; ð8Þ

νiso ¼ 0:29 0:29 0:29½ �; ð9Þ
Domains are meshed by means of 10-node tetrahedral quadratic elements of

maximum and minimum size Lmax
FE ¼ 3:3mm and Lmin

FE ¼ 0:2mm, respectively,
which allowed for accurate eigensolutions up to the frequency of interest. Mesh
refinement was implemented in proximity of the hinge connections. The band
structures shown in Fig. 4c, d are obtained assuming periodic conditions along the
z-direction. The resulting eigenvalue problem (K− ω2M)u= 0 is solved by varying
the non-dimensional wavevector k∗= kz ⋅ a along the boundary of the irreducible
Brillouin zone [Γ, X], with Γ ≡ (0, 0), X ≡ (0, π/a), where a= 59 mm is the lattice
parameter.

In all the calculations, a linear elastic material assumption is made and
geometric non-linearity excluded. Indeed, if geometric non-linearity were at some
point triggered, the Bloch-Floquet analysis of the unit cell may loose validity.
However, if we consider the typical wave propagation regime for acoustic waves
(considering a realistic finite power source of 1 Pa at 500–3000 Hz), the likelihood
of triggering geometric non-linearity is minor.

The complex frequency-wave number relations shown in Supplementary Note 4
delivers a straightforward way of investigating the wave attenuation efficiency of
metamaterials. The imaginary part of the wave number, calculated by solving a
polynomial eigenvalue problem45,46, quantifies the amplitude decay per meter traveled
by the considered wave. The full model was first reduced to a superelement with only
1740 degrees of freedom, chosen for a set of master nodes along the edges of the disks.
The stiffness and mass matrices of the superelement have been calculated using the
component mode synthesis reduction method47, readily available in a built-in ANSYS
v19.2 routine. We generate the superelement including a truncated set of 125 traction-
free eigenmodes, in a frequency range between 50Hz and 20 kHz.

The resulting dispersion relation predicts the same bandgap as the full model
described above, and deviates slightly at higher frequencies due to the model
reduction.

Experimental measurements. The isotactic and syndiotactic phononic crystals
shown in Fig. 1a are manufactured through selective laser sintering (IRPD AG, St.
Gallen, Switzerland). The specimens were made of Duraform HST, a commercially
available mineral fiber reinforced polyamide, with the following nominal proper-
ties: density ρM= 1200 kg · m−3, Young modulus Ex,y= 5.5 GPa, Ez= 3 GPa, and
Poisson ratio ν= 0.33. The geometrical parameters are the following: a= 59 mm,
r= 25 mm, ψ= ≈ π/4, d= 5 mm.

The experimental data shown in Fig. 1b, c were obtained by using a Polytec PSV
400-H SLDV that measured the out-of-plane velocity of points on a predefined grid
(Supplementary Fig. 1) over the structure. The reference input velocity was
measured with a Polytec single point LDV (PDV 100) at the edge of the top plate.
Elastic waves were excited through a B&K 4801 System V by Brüel & Kjær
electrodynamic shaker, driven by the PSV 400. The shaker was screwed to the top
surface of the plate at the yellow dot shown in Supplementary Fig. 1. A linear
frequency sweep (with harmonic content ranging from 50 Hz to 3000 Hz) lasting
30 s was used as the excitation signal.

The equivalent static stiffness of the two isotactic and syndiotactic phononic
crystals under torsional free boundary conditions were experimentally verified as
well by performing compression tests in a Zwick Z005 universal testing machine.
The experimental setup and the results are shown in Supplementary Fig. 2.

Data availability
The data (measurement results, code, and models) that support the plots within this
paper and other findings of this study are available from the corresponding author upon
reasonable request.
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