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Valley-based splitting of topologically protected helical waves in elastic plates
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Topological protection offers unprecedented opportunities for wave manipulation and energy transport in
various fields of physics, including elasticity, acoustics, quantum mechanics, and electromagnetism. Distinct
classes of topological waves have been investigated by establishing analogs with the quantum, spin, and valley
Hall effects. We here propose and experimentally demonstrate the possibility of supporting multiple classes of
topological modes within a single platform. Starting from a patterned elastic plate featuring a double Dirac cone,
we create distinct topological interfaces by lifting such degeneracy through selective breaking of symmetries
across the thickness and in the plane of the plate. We observe the propagation of a new class of heterogeneous
helical-valley edge waves capable of isolating modes on the basis of their distinct polarization, i.e., the specific
mode wave field distribution within the unit cell. Our results show the onset of wave splitting resulting from the
interaction of multiple topological equal-frequency wave modes, which may have significance in applications
involving elastic beam splitters, switches, and filters.

DOI: 10.1103/PhysRevB.100.024304

I. INTRODUCTION

Interfaces between distinct topological phases of matter
[1] support exotic localized wave modes that allow defect-
immune, lossless energy transport in various fields of physics,
including elasticity [2–6], acoustics [7,8], quantum mechanics
[9], and electromagnetism [10–12].

Distinct classes of topological phases exist depending on
the dimension and the symmetries associated with different
interface modes [13,14]. Examples in two dimensions include
analogs of the quantum Hall [15–17], spin Hall [18], and
valley Hall [19] effects, supporting chiral, helical, and valley
modes, respectively [20–28].

While chiral modes require the breaking of time-reversal
symmetry, helical and valley modes involve solely passive
components and arise from the breaking of geometrical sym-
metries in lattices whose reciprocal space is characterized by
singularities such as double Dirac cones [29] and Weyl points
[30]. However, while structures supporting chiral, helical, and
valley modes separately have been broadly investigated so far,
the implementation of a single platform supporting multiple
classes of such modes has only recently been proposed and
its experimental observation is limited to pioneering works
in photonics [31–34], while this approach has not been il-
lustrated in elasticity, yet. This is mainly due to the fact
that the governing equations of the full three-dimensional
(3D) elasticity implies the unique coupled shear-longitudinal-
compressional behavior (described by the well-known Lamé
system of equations), implying that, differently from the
transverse optical wave and longitudinal acoustic wave cases,
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elastic waves in solids can support both the longitudinal and
transverse components simultaneously. Therefore, realizing
the iso-frequency wave splitting of helical edge mode through
their (pseudo)spin and valley degrees of freedom in elastic
systems is a particularly challenging task, as in the case of
elastic plates, due to the presence of multiple guided wave
modes and their tendency to hybridize at interfaces and free
boundaries [35]. We here report on an elastic plate capable
of hosting purely helical and heterogeneous helical-valley
modes. Numerical models and experimental implementations
investigate the interaction of helical edge waves at inter-
faces between configurations that are topologically distinct.
Through this platform, we demonstrate the ability to split
equal-frequency helical edge waves differing on the basis of
their polarization, i.e., the specific mode wave field distri-
bution within the unit cell when they impinge on distinct
interfaces at a common junction, in the case of continuous
elastic systems.

II. RESULTS

A. Breaking of symmetries allowing for the splitting
of topological helical waves

We consider an elastic plate patterned with a periodic array
of through-the-thickness circular and triangular holes [4], as
shown in Fig. 1(a). The plate is periodic along the directions
defined by the a1 and a2 vectors. Its band structure exhibits
an isolated double Dirac cone at the K point as illustrated by
the dispersion curves presented in Fig. 1(d). The Dirac cones
arise as a result of the D3h symmetry of the structure, i.e.,
consisting of C3 (threefold rotational) symmetry, σh symmetry
(or reflection symmetry about the midplane of the plate), and
σv symmetry (or inversion symmetry about a plane normal to
the midplane of the plate and along the lattice vectors).
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FIG. 1. Design of the unit cells leading to distinct topological phases and their dispersion properties. (a) In-plane and cross-sectional view
of the unit cell with through holes. The holes have equal diameter R = 0.0875a, where a = 20.5 mm is the magnitude of the lattice vectors
(a = a1 = a2) and H = 5.9 mm denotes the plate thickness. The inset shows the irreducible Brillouin zone and the high symmetry points �,
K , and M. (b) Perspective and cross-sectional view of the unit cells (H+ and H−) emulating spin-orbital coupling in quantum spin Hall effect
with σh broken symmetry (blind holes). (c) Perspective and cross-sectional view of the unit cells (V r and V R) emulating the quantum valley
Hall effect with σv broken symmetry (through holes of radii r �= R). (d)–(f) Calculated phononic band structure for the plate with through
holes, and for the plates composed of H+ (H−) and V r (V R) unit cells, respectively. The plate with through holes is characterized by a double
degenerate Dirac point visible in (d), while the cases of H+ (H−) (e) and V r (V R) (f) feature a complete band gap (light gray rectangle) centered
at approximately 102 kHz. The widths and center frequency of the band gaps are matched by selecting the partial depth of the blind holes h in
the H+ (H−) configuration (h = 0.91H for the band diagram shown), and the radii r and R of the through holes in the V r (V R) case (r = 0.51R
for the diagrams shown). Refer to Appendix A for details on band structure calculations.

Starting from this configuration, geometric perturbations
are introduced so to break the σh and σv symmetries, and
produce nontrivial band gaps that respectively support helical
and valley modes in a common frequency range. Specifically,
we break the σh symmetry by replacing the through holes with
blind holes of height h, as shown in Fig. 1(b). We denote the
configuration with the blind holes on the top (bottom) sur-
face as H+ (H−). This geometric perturbation causes modes
spanning the two Dirac cones to hybridize in analogy with the
spin-orbital coupling interaction in QSHE, which breaks the
degeneracy and opens a topological band gap [Fig. 1(e)]. The
interface between H+ and H−, here denoted as I (H+, H−),
separates phases that are inverted (σh-transformed) copies of
each other, and supports two helical edge modes spanning
the gap with positive (�+) and negative (�−) group velocity,
respectively [Fig. 2(a)].

Next, we break the σv while preserving C3 and σh symme-
tries, by considering holes in each unit cell of different radii,
namely r and R. This leads to two distinct phases, denoted
as V r and V R [Fig. 1(c)]. Contrary to the previous case,
an interface that separates two σv-transformed copies of the
structure supports a single valley mode, with positive or nega-
tive group velocity, depending on the type of interface, namely
I (V r,V R) or I (V R,V r ) with two adjacent holes of diameter

r or R, respectively. The existence of these edge modes is a
consequence of the bulk-boundary correspondence principle
[33] and can be predicted by computing the valley Chern
numbers. Although the total Chern number is zero in each
band, the Chern number computed around the K and K ′ points
will have nonzero values [36]. Based on these assumptions,
we can infer that an interface between structures supporting
helical and valley modes will still support a single hybrid
edge mode, named helical-valley (HV) mode hereafter, with
either positive (�+), as in the case of I (H+,V R) [Fig. 2(c)],
or negative (�−) group velocity for I (H−,V r ) [Fig. 2(e)].

The existence of the above mentioned hybrid HV edge
modes is verified through the computation of the band struc-
ture of finite strips including a total of 20 × 1 unit cells, with
periodicity conditions imposed along the a1 direction and
free boundaries along a2 (see the Appendixes for details on
computations). Results are reported in Figs. 2(a), 2(c), and
2(e), where the bulk modes are shaded in gray, while the
edge states are denoted by the black, blue, and red circles
for the I (H+, H−), I (H+,V R), and I (H−,V r ), respectively.
The additional notation of the indexes +/− for the modes
keeps track of their different group velocity with respect
to the direction of propagation. As noted above, two edge
modes �+,− are supported by the I (H+, H−) interface, while
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FIG. 2. Nontrivial interfaces: band structures and edge states. (a), (c), and (e) Dispersion diagrams for the nontrivial waveguides defined by
I(H+, H−), I(H+,V R ), and I(H−,V r ) interfaces. The band structures are computed considering a 20 × 1 a1-periodic strip (10 unit cells on
each side of the domain wall). The bulk modes are reported as gray square dots while the interface modes in black, blue, and red square dots,
respectively. The edge modes are denoted by the index + (−) according to the positive (negative) group velocity relative to the propagation
direction. (b), (d), and (f) Corresponding eigenvectors [colors represent magnitudes of the absolute normalized displacement, varying from zero
(blue) to maximum (red)] show mode localization at the interface (the deformation for only six cells is reported for the clarity of representation).
The close-ups of the mode shapes (rainbow scale) clearly illustrate the connection between the two helical edge states �+ and �− existing
at the I(H+, H−) interface and those at I(H+,V R ) and I(H−,V r ) interfaces, �+ and �− respectively, in terms of normalized out-of-plane
displacement field distribution. The different displacement distribution of the modes at the interfaces suggests the possibility of selective mode
excitation. The selective mode excitation can be achieved by assigning a displacement field into specific regions of the unit cell where one mode
(for instance �+/�+) exhibits large amplitude displacement while the other one (�−/�−) is characterized by an almost zero displacement.
For the �+ and �− modes, the distribution of phases (positive in blue and negative in red) is reported as well.
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H—

FIG. 3. Configuration of the finite structure and numerical simulations showing selective mode waveguiding. (a) Schematic representation
and experimental implementation of the nontrivial waveguide hosting H+ (in blue), H− (in green), and V (in red) phases giving rise to three
interfaces: I(H+, H−) (blue-green), I(H+,V R ) (blue-red), and I(H−,V r ) (red-green). (b) Waveguide schematics showing the locations of
the excitation and 1D and 2D scan points/regions considered in the experiments (1D scans are the black dotted lines, local 2D scans are the
red dotted areas, while large 2D scan of the y-junction region is the blue dotted area). (c) and (d) Numerical distribution of the von Mises stress
field resulting from harmonic excitation at 98 kHz, i.e., within the bulk gap. The excitation is applied at the location shown by the white dot as
an out-of-plane displacement distribution. Specific displacement distribution of the surface stress is applied according to the modal content of
the modes shown in Figs. 2(d) and 2(f) in order to selectively induce mode �+ (c) and �− (d), respectively. The calculations clearly illustrate
the possibility to preferentially excite one of the two modes and to remotely select the interface along which the wave propagates. Colors
indicate the von Mises stress magnitude, ranging from zero displacement (blue) to maximum displacement (red). Refer to the SM [37] for
additional transient dynamic simulations.

a single mode exist at the HV interfaces: �+ and �− for
I (H+,V R) and I (H−,V r ), respectively.

B. Numerical and experimental observation
of equal-frequency splitting

A domain wall formed according to each of the three
interfaces considered, i.e., I (H+, H−), I (H+,V R), and
I (H−,V r ), separates two phases in the middle of the strip.
Let us consider the two edge waves that initially propagate
along the I (H+, H−) interface and subsequently encounter
two I (H,V ) interfaces, each supporting a single HV mode
with distinct polarization. At the y-shaped junction, each
wave follows the interface that matches its polarization, thus
causing the two wave modes to split. This is possible under
the condition that the frequencies for the three edge states
match. To ensure this, the band gaps of the H and V lattices
are designed to occur in a common range of frequencies
highlighted by the gray rectangles in Figs. 1(e) and 1(f) which
is achieved by properly selecting the geometric perturbations
that produce the distinct topological phases. Specifically, the
results for the H phase [Fig. 1(e)] correspond to a blind
hole depth h = 0.91H , with H denoting the plate thick-
ness, while the V phase results [Fig. 1(f)] are obtained for
r = 0.51R.

Numerical evaluations of the mode shapes at point C
[Fig. 2(c)] and D [Fig. 2(e)], shown in Figs. 2(d) and 2(f),

respectively, for the two interfaces, confirm the localized
nature of the modes and reveal their distinct distribution of
the displacement magnitude and phase along the interface (see
the zoomed-in plots). The magnitude displacement and phase
plots suggest the possibility of selective modal excitation by
applying an input at the locations shown in the figures, which
highlight the spatial separation of the maximum amplitude
points for the two modes. For example, preferential excitation
of mode �+ (�−) could be achieved by injecting a perturba-
tion at locations where the motion of the interface unit cells is
high, and where the displacement for the other mode �− (�+)
is small [see zoomed-in views in Figs. 2(d) and 2(f)]. To con-
firm the splitting of the topologically protected helical waves,
we designed and fabricated a waveguide made of 35 (in the a1

direction) × 25 (in the a2 direction) unit cells hosting the three
different domains H+ (blue boundary), H− (green boundary),
and V (red boundary), as shown in Fig. 3(a). These domains
are separated by three interfaces: I (H+, H−), I (H+,V R), and
I (H−,V r ). Such an arrangement is chosen to illustrate the
ability of the waveguide to split the two helical waves (�+ and
�−) at the y-shaped junction. The plate is made of aluminum
and the unit cell lattice parameter is a = 20.5 mm.

First, numerical simulations are conducted to evaluate the
distinct propagation patterns followed by the edge modes
along the interfaces, depending on the selective mode excita-
tion. A finite element (FE) model for the finite plate shown
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in Fig. 3(a) is implemented in ABAQUS. Calculations are
conducted in the frequency domain. Elastic waves are excited
by imposing an out-of-plane harmonic excitation at half of
the I (H+, H−) interface [white dot in Figs. 3(c) and 3(d)]
according to the �+ and �− configurations presented in
Figs. 2(d) and 2(f). The frequency content of the excitation is
set to 98 kHz, so to prevent the excitation of bulk modes. The
connection between the two helical edge states �+ and �−
existing at the I (H+, H−) interface and those at I (H+,V R)
and I (H−,V r ) interfaces, �+ and �−, respectively, is given
by the similar displacement distribution existing between (i)
�+ and �+ and (ii) �− and �− [compare the close-ups of
Fig. 2(b) and those of Figs. 2(d) and 2(f)]. This implies that
when a specific mode, excited at the I (H+, H−) interface
(�+ or �−), reaches the y-shaped junction, it will trigger the
�+ or �− mode, respectively, according to its mode shape.
If both �+ and �− modes are excited at the I (H+, H−)
interface, both �+ and �− will be generated at the y-shaped
junction. The resulting distribution of the von Mises stress
fields, reported in Figs. 3(c) and 3(d), clearly show that when
the wave reaches the y-shaped junction it follows either the
I (H+,V R) or I (H−,V r ) interface depending on the initial
type of input. In both cases, weak penetration inside the bulk
region is observed. Refer to the Supplemental Material (SM)
[37] for additional transient dynamic simulations.

The splitting of these modes is then demonstrated experi-
mentally testing the plate [Fig. 3(a)] by means of a scanning
laser Doppler vibrometer (SLDV). The SLDV measures the
out-of-plane velocity component of the motion of the plate
surface produced by a surface bonded piezoelectric trans-
ducer, measuring 12 mm in diameter. The excitation is applied
along the I (H+, H−) interface at the location denoted by the
yellow dot in Fig. 3(b), and consists of a 51-cycle sine burst
modulated by a Hanning window. The center frequency is
98 kHz (see Appendix C) which falls inside the bulk band
gap and excites both �+ and �− waves [4]. The frequency
range has been intentionally left as much narrow as possible
with a twofold objective: (i) to prevent the excitation of bulk
waves and (ii) to avoid excitation of frequencies where the
two modes overlap, with the intent of clearly showing that
the two modes belong to �+ and �−, respectively. First,
one-dimensional (1D) line scans characterized by a 0.2 mm
spatial step are conducted along the interfaces I (H+,V R)
and I (H−,V r ) [the locations of line scan measurements are
shown as dotted black lines in Fig. 3(b)]. A temporal window
of 800 μs is applied to the recorded signals to eliminate
reflections from the plate edges. Next, the recorded signals
are represented in the frequency/wavenumber domain by per-
forming a temporal/spatial Fourier transform (2D-FT), whose
magnitude is superimposed in Fig. 4(a) to the numerical
dispersion predictions (white square dots) for the I (H+,V R)
and I (H−,V r ) finite strips. The 2D-FT magnitude color maps
clearly confirm the numerical edge state predictions along
the two interfaces, and show how the two energy spots are
associated with different modes in the dispersion diagrams,
confirming the wave splitting.

To fully unveil the distinct nature of the �+ and �−
modes, two fine scans are conducted over the two 2 × 2 unit
cell areas shown in red in Fig. 3(b). The velocity distribu-
tions at specific representative time instants t = 842 μs and

t = 975 μs are shown in Fig. 4(b), where 1 V in the color bar
corresponds to a velocity of 20 mm/s. The two modes feature
opposite spins (clockwise/anticlockwise) of the velocity field
across the interface, which is highlighted by the black arrows
drawn on the basis of the phase evolution of the measured
wave field. These representations provide further evidence of
mode splitting occurring at the y-shaped junction. A clear
visualization of the opposite spins of the two modes along
the two interfaces is available from the time animations of the
SLDV measurements provided in the SM [37].

Finally, the 2D wave field recorded over the region high-
lighted by the blue dots, and labeled as “2D scan region”
in Fig. 3(b), illustrates the I (H+, H−) interface bounded
propagation along with the splitting occurring at the y-shaped
junction [Fig. 4(f)]. Specifically, the measured out-of-plane
velocity distribution at an instant of time after the wave
splitting, i.e., for t = 1120 μs from the excitation, is re-
ported. The wave field at the considered instant of time is
then represented in the wavenumber domain by performing a
spatial/spatial 2D-FT, which effectively illustrates the modal
content of the wave field in the reciprocal space kx, ky. The
results of this analysis shown in the 2D-FT amplitude con-
tours of Fig. 4(c), illustrates the presence of two pairs of
diffraction peaks, each corresponding to two distinct modes
that coexist at the excitation frequency, and are characterized
by two distinct wavenumbers, k1 = 60 rad/m and k2 = 80
rad/m. These wavenumbers are highlighted by the red and
black circles of different radii in Fig. 4(c), and correspond to
the two wavenumber values associated with modes �+ and
�−, respectively. The contribution of the two modes to the
wave field of Fig. 4(f) can be effectively separated through
wavenumber filtering in reciprocal space [38]. To this end, the
2D-FT for the wave field is masked by 2D Gaussian windows
(see the Appendixes) centered at k1 and k2, whose application
leads to the filtered 2D-FT in Figs. 4(d) and 4(e) showing
the two separated modes. Inverse 2D-FT transformation in
physical space provides the decoupled contributions to the
wave field shown in Figs. 4(g) and 4(h). From these figures
it clearly emerges that when the two rightward-propagating
helical modes �+ and �− [Fig. 2(a)] reach the y-shaped
junction, they split and respectively follow the I (H+,V R)
and I (H−,V r ) interface as �+ and �− modes on the basis
of their polarization. The need of the post-processing derived
from the fact that an ideal selective mode excitation can only
be achieved by assigning a displacement field into specific
regions of the unit cell where one mode (for instance �+)
exhibits large amplitude displacement while the other one
(�−) is characterized by an almost zero displacement [refer
to red and blue colors, respectively, of the close-ups shown
in Figs. 2(d) and 2(f)]. However, given (i) the chosen unit
cell dimension (a = 20.5 mm) and (ii) the magnitudes of the
displacement distribution of �+ and �− [see Figs. 2(d) and
2(f)], a single mode could only be excited if the excitation
distribution is limited over an area of maximum 2 mm2.
While this can be (and indeed has been) achieved in numer-
ical models [see Figs. 3(c) and 3(d)], where displacements
can be assigned to single mesh nodes, in the experiments
the dimension of realistic piezoelectric transducers (12-mm
diameter) capable of generating elastic guided waves on an
approximately 6-mm-thick aluminum plate did not allow such
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FIG. 4. Experimental observation. (a) Spatiotemporal 2D-FT of 1D line scans along interfaces I(H+,V R) and I(H−,V r ). Color maps
show normalized 2D-FT amplitudes, superimposed to the numerically predicted band structure (white square dots) highlighting the �+ (left
panel) and �− (right panel) modes. (b) Measured wave field for the �+ and �− propagating edge modes displaying opposite spins profiles,
as highlighted by the superimposed black arrows. The measurements correspond to the area denoted as “2D local scan regions” in Fig. 2(b).
Time animations of the measured wave fields are provided in the SM [37]. (c) Spatial 2D-FT for a representative snapshot (t = 1120μ) of the
(f) wave field recorded over the area denoted as “2D scan region” in Fig. 3(b). The 2D-FT highlights the presence of a pair of diffraction peaks
defined by the concentration at contour levels in the reciprocal space kx, ky, which are associated with wavenumbers k1 = 60 rad/m (red circle)
and k2 = 80 (black circle) rad/m, corresponding to the distinct modes of propagation �+ and �−. (d) and (e) Filtered 2D-FTs with isolated
modes and (g) and (h) corresponding propagation in physical space showing the decoupled wave fields and distinction propagation paths for
the two separated modes.

a localized excitation, implying a simultaneous excitation of
both �+ and �− modes.

III. DISCUSSION

In conclusion, we proposed and experimentally tested a
platform that supports multiple classes of topological modes.
In the proposed configuration, implemented on a patterned
plate, topologically nontrivial gaps are obtained by creat-
ing interfaces between material phases that selectively break

spatial inversion symmetries. Through engineering of the
nontrivial gaps, the considered system is capable of splitting
purely topological protected helical edge waves into heteroge-
neous helical-valley modes on the basis of the initial polariza-
tion. The results presented herein, both numerical and experi-
mental, provide fundamental insights in the behavior of topo-
logically protected edge modes in elastic systems, and suggest
new avenues for topologically protected wave transmission
that may be extended to other physical domains, such as
acoustics, and photonics. The findings of this study have direct
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implications for applications where selective waveguiding, or
the isolation and control of vibrations are ultimate goals, as
in civil, mechanical, and aerospace engineering structures.
Also, the wave mode selection capabilities of the considered
interfaces and y-shaped junction may be of significance for the
transmission of information through elastic or acoustic waves
as, for example, in the case of surface acoustic wave (SAW)
devices.

The data that support the plots within this paper and other
findings of this study are available from the corresponding
author upon request.
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APPENDIX A: SIMULATIONS

Dispersion diagrams and mode shapes presented in
Figs. 1(d)–1(f) and Fig. 2 are computed using Bloch-Floquet
theory in full 3D FEM simulations carried out via the finite
element solver COMSOL Multiphysics. Full 3D models are
implemented to capture all possible wave modes supported
by the plate structure. A linear elastic constitutive law is
adopted and the following mechanical parameters used for the
plate material (aluminum): density ρ = 2700 kg/m3, Young
modulus E = 70 GPa, and Poisson ratio ν = 0.33. The elastic
domain is meshed by means of 8-node hexaedral elements
of maximum size LFE = 0.5 mm, which is found to provide
accurate eigensolutions up to the frequency of interest [39].

The band structures shown in Figs. 1(d)–1(f) are obtained
assuming periodic conditions along the lattice vectors a1

and a2. Dispersion diagrams shown in Fig. 2 are computed
instead considering a 20 × 1 a1-periodic strip. The resulting
eigenvalue problem (K − ω2M)u = 0 is solved by varying
the nondimensional wave vector k along the boundaries of the
irreducible Brillouin zone [�, M, K] for dispersion diagrams
in Figs. 1(d)–1(f) and within [−π, π ] for band structures
presented in Fig. 2.

The distribution of the von Mises stress fields reported in
Figs. 3(c) and 3(d) are conducted in the frequency domain via
the finite element solver ABAQUS. Free boundary conditions
are applied at the edges of waveguide.

APPENDIX B: EXPERIMENTAL MEASUREMENTS AND
DATA PROCESSING

The plate, consisting of 35 (in the a1 direction) × 25 (in
the a2 direction) unit cells, is fabricated through a two-step
machining process. First, the triangular holes are obtained

through water-jet cutting. Circular blind and through holes
are then obtained via a computer assisted drilling process.
The specimen is made of aluminum 6082 T6, with the fol-
lowing nominal properties: density ρ = 2700 kg/m3, Young
modulus E = 70 GPa, and Poisson ratio ν = 0.33. The plate
dimensions and key geometrical parameters are as follows:
a = 20.5 mm, H = 5.9 mm, h = 0.5 mm, R = 1.75, and r =
0.8 mm. Elastic waves are excited through a piezoelectric disk
(12 mm diameter) bonded to the top surface of the plate at
location shown in Fig. 3(b). Ultrasonic pulses consisting of
51 sine cycles modulated by a Hanning window of central
frequency of 98 kHz are used as the excitation signals.

The experimental wave fields shown in Figs. 4(b) and 4(f)
are recorded by a scanning laser Doppler vibrometer (SLDV)
that measures the out-of-plane velocity of points belonging
to a predefined grid over the structure. The spatial resolution
of the grid is approximately 0.2 mm for the 2D local scan
represented by the red dotted area in Fig. 3(b) and 0.6 mm for
the 2D local scan in the blue dotted area also in Fig. 3(b).

The frequency/wavenumber representation of the edge
modes presented in Fig. 4(a) are obtained by performing a
temporal and spatial Fourier transform (2D-FT) of the signals
detected along the 1D-scan lines reported as black dotted lines
in Fig. 3(b). The wavenumber content of the 2D scan wave
field shown in Figs. 4(f)–4(h) are obtained by performing
spatial 2D-FT of the acquired data interpolated over a regular
square grid. Filtering in the wavenumber domain [38] for
modal separation relies on the application of 2D Gaussian
windowing functions centered at wavenumber ki, which can
be expressed as follows:

Hi(kx, ky) = e
−(k−ki )2

2σ2 ,

where i = 1, 2, with k1 = 60 rad/m, k2 = 80 rad/m, k =√
k2

x + k2
y , σ 2 = 50. The wave fields corresponding to the

separated modal contributions shown in Figs. 4(g) and 4(h) are
obtained through an inverse 2D-FT of the filtered wavenumber
representations shown in Figs. 4(d) and 4(e).

APPENDIX C: THE SPECIMEN MANUFACTURING AND
FURTHER EXPERIMENTAL MEASUREMENT DETAILS

Figure 5 reports the digital models implemented in Auto-
Cad for the computer aided design supporting the two-step
machining process. A pristine aluminum plate of 6 ± 0.3 mm
of thickness is grounded to a thickness of H = 5.9 mm and
then waterjet machining according to the design reported in
Fig. 5(a). Next, circular blind and through-the-thickness holes
are drilled by means of a drilling machine according to the
color scheme of Fig. 5(b): holes in red (green) define the H+
(H−) topological phase and are blind, i.e., drilled for a height
of h = 5.4 mm from the top (bottom) to the bottom (top) of
the plate with a radius R = 1.75 mm. Holes in blue (violet)
define the V R (V r) topological phase and are drilled through
the plate thickness, with a radius of R = 1.75 (r = 0.90) mm.

Figure 6 reports the time history of the ultrasonic pulse fed
to the piezoelectric transducer (12 mm of diameter and 1 mm
of thickness) bonded to the top surface of the plate [yellow dot
in Fig. 3(b)] and used to excite the elastic waves. It consists
of 51 sine cycles modulated by a Hanning window of central
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FIG. 5. Digital models assisting the two steps machining process. (a) Digital model assisting the waterjet cutting. (b) Digital model assisting
the drilling machine. Holes in red (green) define the H+ (H−) topological phase and are blind, i.e., drilled for a height of h = 5.4 mm from the
top (bottom) to the bottom (top) of the plate with a radius R = 1.75 mm. Holes in blue (violet) define the V R (V r) topological phase and are
drilled through the plate thickness, with a radius of R = 1.75 (r = 0.90) mm.

frequency of 98 kHz. The FT of the signal (lower panel) shows
how the energy content of the signal is centered inside the bulk
band gap. Such a frequency content is chosen to prevent bulk
mode excitation.

The scanning laser Doppler vibrometer (SLDV) acquiring
the out-of-plane velocity is positioned perpendicularly to the
plate, 102 cm away from the surface to monitor. The acquired
signals are recorded using a sampling ratio of 40 000 points
and multiple (64) measurements are performed and averaged
for each acquisition point to increase the signal to noise ratio.

APPENDIX D: FURTHER INSIGHTS ON THE CONCEPT
OF POSITIVE AND NEGATIVE SPIN FOR THE HV MODES

The two heterogeneous edge modes �+,− supported by
the I (H+,V R) and I (H−,V r ) interfaces are characterized
by opposite spin while propagating the energy (rightward
or leftward). This can be seen as an opposite condition of
vorticity of the wave while propagating. Specifically, Fig. 7
shows a schematics of the two conditions (for the rightward
propagating case), where the vorticity of the velocity field of
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FIG. 6. Excitation pulse. Temporal (upper panel) and frequency
content (lower panel) of the applied pulse made of 98 kHz centered
51 sinusoidal cycles modulated by a Hanning window.

the unit cells composing the two topological phases defining
the interfaces (straight black line) is reported as circular
arrows: in the case of I (H+,V R) interface, the positive spin
reveals an anticlockwise (clockwise) vorticity of the velocity
field for the H+ (V R) unit cell. The situation is reversed for
the case of I (H−,V r ) interface.

APPENDIX E: NUMERICAL PROCEDURE AND
ADDITIONAL NUMERICAL FULL MODEL SIMULATION

The dynamic response of the plate is governed by the
elastic equilibrium equation for an isotropic material, which
has the well known form

ρü = (λ + μ)∇(∇ · u) + μ∇2u = 0,

where ρ is the density of the material, u denotes the dis-
placement vector field, while λ,μ are the Lamé constants.
The discretized form of this equation is employed within the
COMSOL finite element environment, where full a 3D finite
element model is developed in order to capture all possible
wave modes. The existence of the modes predicted in Fig. 2
is also verified by additional transient numerical simulations
of the full 3D finite element (FE) model formulated using
ABAQUS as a solver. Calculations are conducted in the
time domain, reproducing the same experimental configu-
ration (both in terms of location and input signal exciting
elastic waves). The transient animations are reported in the
SM as movies showing the distribution of the von Mises
stress field as a function of time. See Appendix F for further
details on the animation of the numerical full wave field
reconstruction.

APPENDIX F: WAVENUMBER FILTERING

In what follows, the steps to perform the 2D-FT and
the wavenumber filtering procedure are discussed in detail.
Figure 8 reports a schematic representation of the procedure
which consists of five steps [38]:

(1) The data are acquired in the direct domain by means of
a SLDV over an irregular grid (black dots).

(2)The data are interpolated over a regular grid of 121
points both in the x and y direction (red dots).
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FIG. 7. Concepts of positive and negative spin for the HV modes. Schematics of the (a) I(H+,V R ) and (b) I(H−,V r ) interfaces (black
line) along with the vorticity of the (rightward) propagating velocity field of the heterogeneous HV wave. In the case of I(H+,V R) interface,
the positive spin reveals an anticlockwise (clockwise) vorticity of the velocity field for the H+ (V R) unit cell. The situation is reversed for
the case of I(H−,V r ) interface. The black circular arrows indicate the vorticity (clockwise or anticlockwise) expected above and below the
interface and the straight arrow the rightward propagation.

FIG. 8. Wavenumber filtering. Schematic representation of the wavenumber filtering procedure.
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(3) The interpolated data are 2D-FT in order to obtain their
representation in the wavenumber domain (x → kx, y → ky).

(4) Applying ad-hoc designed filters it is possible to selec-
tively filter specific wave components, offering the opportu-
nity to further isolate the wavenumber components of the �+
and �− modes.

(5) Inverse Fourier transforming the filtered data (in the
wavenumber domain) allows us the reconstruct the wave field
in the direct space for the single modes �+ or �− (see Fig. 4)
propagating along the I (H+,V R) and I (H−,V r ) interfaces,
respectively.
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