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Lattice thermal conductivity of Bi2Te3 and SnSe using Debye-Callaway and Monte Carlo
phonon transport modeling: Application to nanofilms and nanowires
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The present work addresses the problem of thermal conductivity simulation in Bi2Te3 and SnSe thermo-
electric nanostructures. It first details phonon lifetime calculation in both thermoelectric compounds assuming
polynomial dispersion properties and the Debye-Callaway model for the relaxation-time approximation. For both
materials, distinct crystallographic directions are considered, i.e., �-Z (trigonal axis) and �-X (basal plane) for
Bi2Te3 and �-X (a axis), �-Y (b axis), and �-Z (c axis) for SnSe. On this basis, the lifetime model is parametrized
and bulk thermal conductivity is computed through the resolution of the phonon Boltzmann transport equation
with a Monte Carlo method. Grüneisen parameter and mass-disorder lifetime are adjusted to fit experimental
temperature dependence. The second part of the study addresses the calculation of thermal conductivity for
these two thermoelectric materials in the case of thin films (cross-plane case) and nanowires. The main goals
of this work are to provide a fully parametric description of heat transport in Bi2Te3 and SnSe nanofilms and
nanowires showing reliable behavior on an extended size range, from 20 nm to 2 μm, and large temperature
range (100–500 K for Bi2Te3; 200–800 K for SnSe). Comparisons to bulk thermal conductivity calculations and
measurements as well as to recent investigations on nanowires, demonstrate the effectiveness of the proposed
methodology to deal with nanostructured Bi2Te3 and SnSe.
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I. INTRODUCTION

Thermoelectric (TE) materials have attracted a significant
attention in the past decade in the development of alternative
renewable energy devices and more specifically for wasted
heat energy harvesting. Such interest was mainly due to the
enhancement of the conversion efficiency characterized by the
figure of merit ZT which is proportional to the power factor
(S2σ ) to the thermal conductivity (k) ratio. In several works
increasing ZT in TE devices was related to nanostructuration
of materials as it usually decreases the lattice thermal conduc-
tivity [1]. This was demonstrated for well-known TE materials
such as those based on Bi2Te3 [2,3] and for a broad variety of
semiconductors in which the bulk lattice thermal conductivity
was found to be drastically reduced when elaborating struc-
turelike superlattices, nanowires, nanofilms, nanoporous, etc.
[4]. Both theoretical and experimental studies were carried
out in this field with similar conclusions as detailed in review
papers on this nanoscale thermal transport topic [5,6]. In this
framework theoretical prediction of thermal conductivity of
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TE material is a critical issue to find new compounds or to
optimize their structuration. Concerning the first issue, recent
work by Seko et al. [7] had shown that a “machine learning”
approach based on a density functional theory (DFT) training
set could help in finding new TE materials. In what concerns
TE material properties improvement, numerical simulations
also provide interesting insights. For instance, in the case of
Bi2Te3 DFT was used to describe electron and phonon trans-
port [8,9]. The latter work details the contribution of phonon
modes to the thermal and electrical conductivities. Further-
more, other techniques such as molecular dynamics (MD)
were used to achieve TE atomistic description in bulk [10–12]
and nanostructures [13–15]. They show good agreement when
comparing to available experimental data. However, in both
cases, the required computing resources are large and thus
restrict calculations to bulk (where boundary conditions are
periodic) or to very small nanostructures for which the number
of atoms can be handled with MD. Thus, both DFT and MD
methods cannot easily address present nano and micro TE
structures which are of interest for applied engineering. In this
framework, modeling needs to be simplified to some extent in
order to ensure that the used physics still capture the nanoscale
interaction of energy carriers. Such approach is possible with
kinetic theory based models for phonon transport. The latter
relies on the knowledge of phonon lifetime or mean free path
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(MFP) and can be expressed as the sum k = 1/3�Civ
2
i τi with

C the heat capacity, v the velocity, and τ the lifetime of energy
carriers. This model has been extensively used to investigate
thermal transport in semiconductors and physical description
of phonon interactions are well known for basic compounds
such as silicon and germanium. Seminal studies by Callaway
[16], Holland [17], and Glassbrenner and Slack [18] had given
a simple formalism assuming isotropic dispersion properties
in materials and the relaxation-time approximation in the
solution of the Boltzmann transport equation (BTE). This kind
of modeling has proven to be accurate on an extended range of
temperatures and for several kinds of materials. Yet, it relies
on a semiempirical description of lifetime parameters for each
considered phonon scattering mechanism and thus needs to
be compared to experimental data in order to fit the unknown
parameters. This adjustment procedure must be done from low
to high temperatures as scattering mechanisms that dominate
phonon transport change with the temperature level.

Apart from well-known semiconductors (Si, Ge, etc.), the
latter method was scarcely used for usual TE compounds like
Bi2Te3. During past years, some attempts have been made to
circumvent these limitations, using kinetic models that take
into account the dispersion properties of Bi2Te3 and phonon
mean free paths [19] or lifetimes with the latter quantities
being evaluated by different techniques like time domain
normal mode analysis [20] or semianalytic formula [21,22].
For SnSe, there is even less literature on phonon transport
properties which can be directly used in kinetic modeling. Re-
cent studies dealing with SnSe transport property simulations
are based on ab initio calculations. Among them, some were
addressing the structural parameters of SnSe compounds [23]
while others had computed thermal conductivity [24–28]. In
the latter studies, there are some discrepancies between com-
puted thermal conductivity (TC) values along the three main
axes. In addition, comparison to available experimental data
is also a source of uncertainties due to the broad dispersion of
measured values [23,29–31].

This work focuses on Bi2Te3 and SnSe semiconductors,
which are both layered compounds. If Bi2Te3 is a well estab-
lished thermoelectric material, SnSe has recently generated a
great interest for its law of thermal conductivity. In the present
study, we use a lifetime-based approach (semianalytic model-
ing of phonon scattering) and acoustic dispersion property of
phonons along the main crystalline axis of Bi2Te3 and SnSe to
recover thermal conductivity of bulk compounds as a function
of temperature. Cross-plane thermal conductivity calculation
of thick TE materials (Lz = 1 μm) have been achieved solving
the BTE with a Monte Carlo (MC) technique. Comparisons
to experimental data and DFT or MD calculation allow us to
adjust unknown parameters of the model. Then, in a second
part of this work we have taken advantage of the MC method
to deal with several types of nanostructuration to investigate
size effect occurring in thin films and nanowires. The paper
is organized as follows: (i) phonon frequencies and lifetime
properties of both TE compounds of interest are described
in the frame of polynomial dispersion curve assumption; (ii)
details regarding the numerical method used to solve phonon
transport in the considered nanostructures are given; (iii)
thermal conductivity of Bi2Te3 and SnSe as a function of T

are detailed and compared to the literature; and iv) cross-plane
TC of thin films with decreasing thickness is then considered;
similar calculations are also achieved for nanowires with
several lengths. All size-dependent calculations are compared
to available existing experimental data.

II. PHONON DISPERSION PROPERTIES
OF Bi2Te3 AND SnSe

Inputs for thermal conductivity modeling using a kinetic
approach or BTE resolution in the frame of the relaxation-time
approximation implies that one knows the group velocity of
energy carriers for each phonon mode as well as the scattering
lifetimes related to these modes. In the present work, for each
main crystalline direction (of interest) in both TE compounds
we assume (i) that only acoustic modes contribute to thermal
transport and (ii) that the transverse polarization branches
are similar and can be described by a unique dispersion
relation for a given crystalline direction. The first assump-
tion is regularly done in the modeling of thermal properties
of semiconductor materials as optical modes contribution is
often weak. In the present cases, for Bi2Te3 this was pointed
out by Huang and Kaviany [8] who have shown that short-
range acoustic phonons (i.e., with a MFP lower than half
of their wavelength) and optical ones contribute less than
one order of magnitude to TC as compared to long-range
acoustic phonons; a similar conclusion was drawn by Chen
et al. [32] who claimed that heat is mostly carried by acoustic
mode with frequency below 1 THz. For the SnSe case, recent
studies by Skelton et al. [26] and Aseginolaza et al. [33] have
shown that thermal conductivity is mostly driven by acoustic
phonons (around 70% at 300 K) with frequency lower than
3 THz. Consequently, the proposed assumption to simplify
modeling is reasonable and will be demonstrated further in the
Results and Discussion section. The second hypothesis helps
in simplifying the transport model used to solve the BTE with
the MC method. For both materials, it will impact the sampled
phonon group velocities in the MC procedure, but once again
simulation results demonstrate that such assumption weakly
affects the computed values and their consistency regarding
the experimental data.

A. Bi2Te3

The crystal structure of bismuth telluride (Bi2Te3) is rhom-
bohedral (space group R3m) with five atoms per unit cell.
It is usually represented as a succession of quintuple layers
with a weak bonding of van der Waals (vdW) nature between
two Te layers. The hexagonal cell parameters [11] are a =
b = 4.386 Å and c = 30.497 Å. The vdW bonding can be
responsible for crystal cleavage and is presently assumed as
a supplementary scattering mechanism for phonons in the
�-Z direction as suggested by Park et al. [21]. A detailed
description of phonon properties of Bi2Te3 can be found in
reference studies by Jenkins et al. [34] or by Kullmann et al.
[35].

On the basis of computed or measured acoustic dispersion
branches in the �-Z and �-X directions, one can fit phonon
frequencies in the Brillouin zone and make their derivation to
evaluate the group velocity. In both directions, it is possible
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FIG. 1. Bi2Te3 acoustic dispersion relations in directions �-X
and �-Z; circles (TA) and squares (LA) are taken from [20,35];
dot-dashed lines are DFT calculations by Hellmann and Broido [9];
stars are INS measurement [35].

to achieve a polynomial regression of phonon frequencies as
a function of K and obtain the group velocity. First, acoustic
dispersion properties in the �-Z direction are plotted using
data given by Wang et al. [20]. A second-order polynomial fit
of frequencies is achieved: ωp = vpK + cpK2 where p is the
polarization index, i.e., TA or LA. Similarly, dispersion prop-
erties in the �-X direction are fitted considering one longi-
tudinal acoustic branch and two identical transverse branches.
Along the a axis (basal plane), neutron-scattering experiments
and recent DFT calculations [9] show that several branches
exist. Here, the latter are averaged on the basis of the work
of Kullmann et al. [35]. In the latter study, lattice dynamic
calculations were conducted and compared with a reasonably
good agreement to inelastic neutron-scattering measurements
(INS). Those measurements are used as a reference in many
studies evaluating phonon dispersion properties in Bi2Te3.

Both dispersion curves are presented in Fig. 1. In
Table I, the fitting coefficients are reported for each polariza-
tion branch.

Phonon group velocities for acoustic branches in the �-X
and �-Z directions are derived from the fitted values. Com-
parisons to Wang et al. [20] are plotted in Fig. 2. The group
velocity values obtained by the polynomial fitting of both
directions are in the range of reported data in the literature. In
Table I, the column vp gives the velocity at the � point; along
�-Z for the LA branch: 1811, 2283, and 1960 m s−1; and the
TA branch: 1774, 1486, and 1370 m s−1 were respectively

TABLE I. Quadratic fitting parameters for �-X (a axis) and �-Z
(c axis) dispersion curves of Bi2Te3.

Axis p vp (m s−1) cp (m2 s−1)

�-X (a axis) TA 1324.50 −6.026 × 10−8

�-X (a axis) LA 2423.25 −1.285 × 10−7

�-Z (c axis) TA 1756.39 −2.054 × 10−7

�-Z (c axis) LA 2628.38 −2.297 × 10−7

FIG. 2. Bi2Te3 group velocities in directions �-X (a axis) and
�-Z (c axis), colored lines; circles and squares are simulated data
[20].

reported in [32], [20], and in [9]. Our values somewhat overes-
timate the DFT-computed values; however, such discrepancy
was expected as several studies point out the speed of sound’s
anisotropy [32,36] in Bi2Te3 which cannot be accurately cap-
tured with the present model. The sound velocity is deduced
from the 1/vs = 1/3[2/vTA + 1/vLA] relation [17]. It reaches
1975 m s−1 which corresponds to the ultrasound measurement
[36] (1918 m s−1 ) but remain larger by 10% to the commonly
reported values. In the case of the �-X direction, there is less
available data to achieve comparisons. Hellman and Broido
[9] provides 2650 and 1630 m s−1 for the LA and TA polar-
izations, respectively; those values are comparable to those
reported in Table I.

B. SnSe

Tin selenide (SnSe) is the second TE material considered
in this work. The latter compound is a layered material with an
orthorhombic crystal structure [37]. It has two stable phases:
the α-SnSe (Pnma space group) and the β-SnSe (Cmcm
space group). The phase transition between α and β-SnSe
occurs between 750 and 800 K. In this work, only α-SnSe
is considered. It contains eight atoms per unit cell arranged
in a zigzag configuration where Sn atoms are surrounded by
Se atoms. The lattice parameters of SnSe are a = 11.49 Å,
b = 4.44 Å, and c = 4.135 Å, respectively, for the �-X , �-Y ,
and �-Z directions [38]; the thermal transport properties are
studied according to those three main axes; dispersion and
lifetime properties are modeled in these specific directions.

SnSe dispersion relations have been fitted using data re-
ported by Zhao et al. [23] and computed by DFT within the
quasiharmonic approximation. For the three main directions,
we assume, as in the previous case, that acoustic branches can
be modeled by two identical transverse branches (TA) and
a longitudinal one (LA). In practice, the distinction between
TA polarizations can be achieved especially for the b and c
axes along which phonon velocities change near the � point;
along the a axis, phonon modes are softened and TA branches
remain very similar. Other studies also achieved by DFT
[24,26,28] show that dispersion calculation is highly sensitive
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FIG. 3. SnSe acoustic dispersion relations in directions �-X ,
�-Y , and �-Z; circles and squares are taken from Zhao et al. [23]
and are used for fitting; DFT calculations by Bansal et al. [39]; stars
are neutron inelastic-scattering measurements [39].

to the supercell size and the chosen calulation methodol-
ogy (GGA, LDA, PBE) for electronic exchange correlations.
Hence the choice made here, which does not much impact
the simulation of thermal transport properties, is supposed to
be a reasonable average of phonon behavior in the frame of
the kinetic modeling of phonon transport. In addition, inelastic
neutron-scattering measurements were carried out by Li et al.
[39,40]. They partly recover the DFT simulation results along
the different axes, in particular phonon mode softening in the
�-X direction when compared to the �-Y and �-Z directions.
INS also reveals that all phonon modes are obviously softened
as the temperature increases while anharmonicity increases
[40]. Detailed diagrams of phonon dispersions in SnSe are
plotted in Fig. 3, and the quadratic fitting parameters are
detailed in Table II.

In order to achieve some comparisons about phonon ve-
locities, we calculate sound velocities in each direction using
our fitting parameters (Table II) and the data reported in the
supplementary material of the study by Zhao et al. [23]. With
the quadratic fit the results are as follows: 1233.07 m s−1

(a axis), 2062.10 m s−1 (b axis), and 1906.18 m s−1 (c axis),
in comparison, using the DFT-predicted phonon velocities at
the � point [23], we get 1272.80 m s−1 (a axis), 1796.55
m s−1 (b axis), and 1775.38 m s−1 (c axis). This agreement
is satisfactory as the maximum deviation is about 12% for
the b axis, and remain below 10% otherwise. Variation of

TABLE II. Quadratic fitting parameters for �-X (a axis), �-Y
(b axis), and �-Z (c axis) dispersion curves of SnSe.

Axis p vp (m s−1) cp (m2 s−1)

�-X (a axis) TA 1014.03 −4.950 × 10−8

�-X (a axis) LA 2170.98 −2.007 × 10−7

�-Y (b axis) TA 1757.04 −7.579 × 10−8

�-Y (b axis) LA 3159.09 −2.993 × 10−7

�-Z (c axis) TA 1711.04 −1.020 × 10−7

�-Z (c axis) LA 2469.43 −2.150 × 10−7

FIG. 4. SnSe group velocities in directions �-X (a axis), �-Y
(b axis), and �-Z (c axis).

the phonon group velocities in each direction are reported in
Fig. 4. These values will be used in the MC simulation of
phonon transport.

III. SCATTERING LIFETIMES

Analysis of semiconductor thermal conductivity in the
frame of simple analytic modeling of phonon scattering is
known from the early 1960s with seminal works by Callaway
[16] and Holland [17]. This method allows one to overcome
complex DFT calculations of lattice vibrations assuming that
phonon-scattering processes can be represented by relaxation
times depending on frequency and temperature for each scat-
tering mechanism; i.e., normal, umklapp, defect, isotope, etc.
However, the technique is constrained by the knowledge of
constant parameters associated to each scattering relaxation
time. Those parameters can be either evaluated theoretically
from the knowledge of crystal structure parameters like the
atom average mass M, the Grüneisen parameter γ , the Debye
temperature θD, and the sound velocity vs or adjusted to
fit the measured TC of bulk samples. In addition, it shall
be noticed that the method applies to bulk material even if
size effect can be considered through the boundary scattering
relaxation time used to compute very low temperature TC.
Below some tens of kelvin, the phonon mean free path is
so large that other scattering mechanisms are usually weak.
This approach was successfully applied to calculate the TC of
bulk semiconductors such as Si, Ge, GaN, BN, SiC and others
in the frame of the kinetic theory, all relaxation rates being
summed according to the Matthiessen’s rule. Those relaxation
times can be also used to solve the Boltzmann transport
equation through the handling of the collision integral term. In
the latter approach, several resolution techniques can be used
and, more importantly, the material nanostructuration effect
can be accounted for. This issue is discussed further in the
BTE modeling section.

In the present work, Bi2Te3 and SnSe scattering relaxation
times have been implemented following the detailed method-
olodgy proposed by Morelli et al. [41]. Four distinct scattering
processes were considered: the umklapp, the normal, and
the impurity/defect ones; moreover, in the case of Bi2Te3
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along the c axis, van der Waals scattering was also taken into
account as suggested by Park et al. [21] to model weak atomic
bonding and lower thermal conductivity in this direction.

A. Models for phonon-scattering processes

1. Phonon-phonon umklapp scattering

Umklapp scattering is derived from the formulation pro-
posed by Slack and Galginaitis [42] on the basis of fits
comparing theoretical thermal conductivity of several crystals
to experimental ones; it reads

τ−1
U (ω, T ) = BU ω2T exp

(−θD

3T

)
, (1)

where ω is the phonon frequency, T the temperature, θD

the Debye temperature, and BU a constant parameter for the
umklapp scattering process

BU � h̄γ 2

Mv2
s θD

(2)

with h̄ the reduced Planck constant, γ the Grüneisen pa-
rameter, M the average mass of an atom in the crystal, and
vs the sound velocity. In this work, the same formulation
[Eq. (1)] of the umklapp relaxation rate applies to both TA
and LA polarizations. However, in the specific case of TA
branches, we consider a limit frequency ωlim below which no
umklapp scattering can arise following the Han and Klemens
model [43]. This frequency is calculated from the following
condition on wave vector Klim/Kmax = 1/2.

2. Phonon-phonon normal scattering

Phonon normal scattering does not induce resistive pro-
cesses that inherently affect thermal conductivity and is not
always considered in kinetic modeling of thermal transport.
However, Callaway’s model [16] uses this relaxation lifetime
to achieve TC conductivity calculations with kinetic theory.
This lifetime is also needed to perform TC calculations with
a Monte Carlo method as normal scattering changes phonon
population and thus indirectly affects other scattering pro-
cesses. Several formulations of normal relaxation rates exist;
here we consider the model detailed by Asen-Palmer et al.
[44] that makes a distinction between LA and TA polariza-
tions. For the LA branch, it reads

τ−1
N,L(ω, T ) = BN,Lω2T 3, (3)

and for the TA one

τ−1
N,T (ω, T ) = BN,T ωT 4. (4)

Constant parameters BN,L and BN,T are often adjusted to fit
thermal properties. Nevertheless Morelli [41] recalls values
that depend on the same crystallographic parameters defined
above for BU and which are used in this study.

BN,L � k3
Bγ 2V

Mh̄2v5
L

(5)

and

BN,T � k4
Bγ 2V

Mh̄2v5
T

, (6)

where V is the volume per atom and vL and vT are the
phonon group velocities for the LA and TA branches, respec-
tively. Aswill be shown further, the Grüneisen parameter γ

is often tuned as the sole adjustment parameter to reproduce
experimental TC values. In some studies, γ can be defined
with different values for LA and TA modes [41]; we do not
make this choice in order to limit the number of adjustable
parameters of the phonon scattering model.

3. Phonon-impurity/defect scattering

Impurity (or isotopic) as well as punctual defect scattering
are often described using Rayleigh’s theory, phonon scattering
being proportional to the fourth power of frequency. Accord-
ing to several studies [17,41] for both polarizations, it states

τ−1
I/D(ω) = BI/Dω4 (7)

with

BI/D � �V

4πv3
s

+ A, (8)

where � is the mass-fluctuation phonon-scattering parameter
which depends on the isotopic composition of the material and
A is a constant parameter for point defect [45]. Details on �

calculation for both Bi2Te3 and SnSe are provided in the Ap-
pendix. These materials are binary compounds and averaging
rules shall be considered [41]. The defect-induced scattering
magnitude is more complex to evaluate analytically as it is
related to the elaboration process used to synthesize materials.
In the case of a perfect material such defect scattering shall be
null (A = 0), but this is no longer true in the more realistic
case of compounds with vacancies, antisites, cleavage, etc.
The constant A, related to this lifetime, has to be adjusted by
comparing experiments and calculations.

4. Phonon–van der Waals scattering

In the specific case of bismuth telluride, along the c axis
(�-Z) atoms are organized according to repeating quintuple
layers (Te1-Bi-Te2-Bi-Te1) for which there are weak van
der Waals atoms bounding between each Te1-Te1 layer that
separates two successive quintuples. Such bounding limits
heat transport along the c axis and partly explains the lower
thermal conductivity observed in this direction. In this study,
following the Park et al. [21] work we add a vdW scattering
rate that models resistance to heat transport due to phonon
scattering at Te1-Te1 “interfaces.” In such approximation,
lifetime formulation is similar to what can be used to model
superlattices [46], each quintuple being the basic pattern of
the multilayered structure

τ−1
vdW (ω) = 4v(ω)

3H

[1 − t (ω)]

t (ω)
, (9)

where v is the group velocity of the LA or TA modes, H
is the thickness of one quintuple, and t (ω) is the phonon
spectral transmissivity. The latter quantity needs to be defined
by a reliable interface model. For superlattices, acoustic and
diffuse mismatch models (AMM and DMM) were often used
depending on the interface roughness, the bounding materi-
als, etc. In the present case, transmittivity between Bi2Te3
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TABLE III. Input parameters for Bi2Te3 relaxation rates along
the a and c axes, taken from Refs. [21,34,36].

Parameter a axis c axis

θD (K) 145 [34]
γ 1.0–1.17 [36] 1.49 [34]
vs (m s−1) 1559.2 1973.4
ωlim (×1012 rad s−1) 2.1790 4.9030
H (Å) 10.1 [21]
� (×10−4) 60–90 60

V (Å
−3

) 34.0 [21]
ρ (g cm−3) 7.857 [36]–7.8624 [34]

quintuples is considered in the frame of AMM modeling with
a simplified formulation of Prasher transmissivity given be-
tween two distinct materials in contact by weak vdW bonding
[47]. In this framework, Park et al. [21] have simplified t (ω)
considering the same acoustic impedance Z = ρvs on both
sides of the quintuple “interface”:

t (ω) = 1

/[
1 + ω2

4Ka
(Z2 cos2 θ )

]
, (10)

where Ka is the spring constant between atoms per unit area
and θ the angle between the interface normal and the phonon
propagation direction. In Eq. (10) the parameter Ka is defined
as Ka = nK with n the number of atoms per unit area and
K the stiffness defined as the second derivative interatomic
potential φ(r) for r = r0, the equilibrium bond distance (min-
imum of the well).

Ka = K

r2
0

= 1

r2
0

d2φ(r)

dr2

∣∣∣∣
r=r0

. (11)

For bismuth telluride, interatomic potential is often a two-
body potential that associates a short-range potential and
a long-range one for Coulomb interaction [8,10,11]. Short-
range potential for Bi2Te3 is typically Morse potential, ex-
pressed as φ(r) = φ0[{1 − e[−a(r−r0 )]}2 − 1] with φ0 the depth
of the potential well and a the bond elasticity. Using this
expression of the potential in Eq. (11), the stiffness K and the
spring constant per unit area Ka can be calculated as

Ka = 2a2φ0

r2
0

. (12)

In this work, interatomic potential parameters given by Huang
and Kaviany [8] between Te1-Te1 layers were used (φ0 =
0.0691 eV and a = 2.174 Å

−1
, r0 = 3.64 Å), leading to a

stiffness K = 10.465 N/m and spring constant per unit area
of Ka = 7.8983 × 1019 N m−3.

B. Bi2Te3 and SnSe relaxation-time parameters

Relaxation rates for all the above discussed scattering
processes need constant parameters BU , BN,L, BN,T , BI/D, and
t (ω), according to Eqs. (2), (5), (6), (8), and (10) for each
considered crystalline axis. All these inputs are provided in
Table III for Bi2Te3 and Table IV for SnSe. In these two tables,
data without reference have been taken from our dispersion
modeling or adjusted to fit experimental results. This is the

TABLE IV. Input parameters for SnSe relaxation rates along the
a, b, and c axes, taken from Refs. [23,28,38,48].

Parameter a axis b axis c axis

θD (K) 215 [28] 180 [28] 189 [28]
γ 1.8 1.8–2.1[23] 1.8

vs (m s−1) 1272.8 [23] 1796.55 [23] 1775.38 [23]
ωlim (×1012 rad s−1) 1.1149 3.5661 4.3790
� (×10−4) 3.882

V (Å
−3

) 26.472 [38]–26.547 [48]
ρ (g cm−3) 6.050 [38]–6.180 [48]

case for the Grüneisen parameter γ which is one of the key
fitting parameters of SnSe, as will be shown in the Results
and Discussion section.

IV. THERMAL CONDUCTIVITY CALCULATION MODEL

Thermal transport in materials at nano- and microscales as
well as thermal properties of nanostructures can be considered
by several numerical techniques. The choice of the relevant
technique is often dictated by parameters such as size, nature,
complexity of the material, etc. The accuracy and reliability of
the methods also depend on these considerations. In the frame
of atom scale modeling, DFT calculations become more and
more popular. They are efficient for bulk material modeling
of their intrinsic properties with little input regarding the
material itself except its atomic structure and the correlation
functional. Drawbacks of DFT are the complexity of use, the
very long simulation time, and the fact that it cannot address
nanostructuration straightforwardly. A second popular numer-
ical tool for material modeling is MD. This method is now
commonly used thanks to extended simulation environments
such as LAMMPS [49] or DL-POLY [50] which propose sev-
eral computation packages. Modeling thermal transport with
MD in nanostructures is possible for various objects (film,
wire, porous medium, inclusion, etc.) but remains limited
to very small sizes as all atoms need to be considered. In
addition, physics that depict atom displacements is modeled
by interatomic potentials which are rarely available. Within
this context, describing thermal transport in nanostructures
through the resolution of the Boltzmann transport equation by
Monte Carlo simulation is of interest because it allows one to
deal with larger size systems within a reasonable computation
time. Nevertheless, as with other numerical methods, MC
solution of the BTE includes some weaknesses. Among them,
the necessity to define relaxation rates to model the collision
term of the BTE which includes “calibration stage” on bulk
material before proceeding to nanostructure calculations. De-
tails regarding the MC simulation technique implementation
can be found in previous works [51–53].

A. BTE for phonons

The Boltzmann transport equation for phonons is related to
the variations of the distribution function f (t, r, p, K) which
depends on time t , position r, polarization p, and wave vector
K. f (t, r, p, K) is the mean particle number at time t in the
d3r volume around r with K wave vector and d3K accuracy
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for a given polarization p. In the absence of external forces,
the BTE reads

∂ f

∂t
+ ∇Kω · ∇r f = ∂ f

∂t

∣∣∣∣
Coll

(13)

with the phonon group velocity v = ∇Kω and f 0(T, p, K) =
1/[exp(h̄ω/kBT ) − 1] the equilibrium thermodynamic
phonons population for polarization p and wave vector K,
which is described by the Bose-Einstein distribution function.
The collision term, in the frame of the relaxation-time
approximation, is expressed as

∂ f

∂t

∣∣∣∣
Coll

= f 0(T, p, K) − f (t, r, p, K)

τ (T, p, K)
, (14)

where τ is the phonon-scattering relaxation time, which de-
pends on the phonon-scattering mechanisms and dispersion
properties. τ is evaluated from Eqs. (1), (3), (4), (7), and (9)
according to the relevant scattering mechanism.

B. Monte Carlo modeling

The Monte Carlo procedure requires successive stages
which are reproduced for each time step of the simulation
until the convergence (steady-state temperature and heat flux)
is reached. The nanostructure geometry is defined and meshed
with rectangular cells of volume Vcell ; the nature of the
structure (film or wire) is defined through the chosen boundary
conditions that can be either specular or diffuse [51,52]. When
all BCs are specular, we access cross-plane TC; when two
BC’s are specular and the other ones diffuse we access in-
plane TC; and eventually when all BC’s are diffuse, we can
compute nanowire TC. Once the geometry is set, the tem-
perature gradient at the edges of the nanostructure (first and
last cells) is set and the energy within each cell is calculated
from the Bose-Einstein distribution and the density of states.
When the initialization of the system is achieved, phonon
packets (bundles) are randomly drawn from a cumulative
distribution function that depends on the material dispersion
properties. Each bundle has a distinct frequency, polarization,
group velocity, and initial propagation direction. At each
simulation time step, bundles are allowed to drift and scatter
according to a collision probability PColl = [1 − exp(−δt/τ )]
where δt is the simulation time step. When a steady state is
reached, phonon heat flux within the structure is calculated
with ϕz = �N

i=1(h̄ωivz ,i )/Vcell i where N is the number of
phonon bundles in each cell. Thermal conductivity k is derived
from Fourier’s formalism knowing the heat flux ϕz and the
temperature gradient. Typically, nanostructures made of 20
cells that contain �104 bundles per cell ensure statistical
accuracy. The number of time steps depends on the material
and the length of the nanostructure. An important issue is
the choice of simulation time step δt ; the latter has to be as
small as possible to avoid “excessive” scattering occurrences
which lead to an artificial increase of the computed TC. The
choice of time step is closely related to the phonon lifetime;
in practice PColl shall be lower than 10%.

In the next section, the results of TCs computed by this
MC approach for both Bi2Te3 and SnSe nanostructures are
provided.

TABLE V. Relaxation rate constants for Bi2Te3 along the a and
c axes, derived from Sec. III.

Constant a axis c axis

BU (×10−18s K−1) 1.1249 1.5801
BN,L (×10−22 s K−3) 3.6038 5.3982
BN,T (×10−10 K−4) 9.6811 5.3119
BI/D (×10−42 s3) 4.2575–6.3862 2.0999
Z (×106 kg m−2 s−1) 9.0119–9.9283

V. RESULTS AND DISCUSSION

Several kinds of nanostructures were considered in this
study. Before dealing with size effects that allow reduction
of the TE material TC we have to assess the reliability of
the proposed model to recover thermal transport properties
in bulklike materials. To meet this purpose, TE films with a
thickness of 1μm are considered.

A. Thick film cross-plane thermal conductivity
versus temperature

1. Bi2Te3

We compute the cross-plane thermal conductivity of
Bi2Te3 along the a and c axes for temperatures in the range
of 100–500 K. MC simulations were compared to the existing
literature data on both experimental [54–56] and simulation
[8,10] sides.

In Fig. 5 are plotted calculated TC values for the a axis
[Fig. 5(a)] and the c axis [Fig. 5(b)] as a function of tem-
perature. In both cases, agreement with the experimental data
detailed in former studies [54–56] is satisfactory.

Regarding the case of thermal transport in the basal plane
(�-X ), the computed k values were obtained with the lifetimes
reported in Table V.

Constants BU , BN,L, and BN,T were calculated using
Eqs. (2), (5), and (6), respectively, without any adjustment.
The constant BI/D related to impurity/defect scattering was
tuned changing � the mass-fluctuation phonon-scattering pa-
rameter in a ratio of 1 to 1.5 in order to fit experimental data
reported by Goldsmid [54] and Satterthwaite [55]. The latter
parameter can be evaluated theoretically considering isotopic
composition of Bi and Te atoms using Klemens and Slack
models for a binary compound. The computed theoretical �th

value is equal to 0.83 × 10−4 as isotopic disorder is mostly
related to Te. The latter � value is small and cannot capture
low-temperature scattering mechanisms solely. However, as
mentioned recently by Liu et al. [57], in addition to isotopic
impurity scattering other classical zero-dimensional defects
such as interstitial, vacancies, and antisites shall be consid-
ered. Furthermore, the van der Waals nature of layered growth
in Bi2Te3 can easily give rise to dislocation (one-dimensional
defects). In this regard, comparison of modeled thermal con-
ductivity to experimental values can be reconsidered by in-
creasing the impurity/defect scattering rate. In Fig. 5(a), MC
calculations labeled “case 1” and “case 2” stand for � values
of 6 × 10−3 and 9 × 10−3, respectively. The shaded area gives
the range of variation of thermal conductivity computed by
MC for � varying between those two values. Increasing �
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FIG. 5. Bi2Te3 thermal conductivity along �-X (a axis) and �-Z
(c axis). Experimental data (samples S5 and S6) by Goldsmid [54],
Satterthwaite and Ure [55], and Kaibe et al. [56]; MD data by Huang
and Kaviany [8] and Qiu and Ruan [10].

will further decrease k on the whole temperature range with a
weaker effect at high temperatures where umklapp scattering
dominates.

In Fig. 5(b), thermal conductivity perpendicular to the
basal plane (c axis) is plotted in the same temperature range.
In the �-Z direction, TC is lower than along the �-X direction;
this result is confirmed here. Constant parameters for lifetime
calculation are reported in the second column of Table V with
no adjustment. In addition to classical relaxation rates, in this
direction, we also consider van der Waals scattering between
quintuples. The latter mechanism depends on phonon trans-
missivity t (ω), Eq. (10), which includes angular dependence
through the angle θ between phonon propagation direction
and the interface normal. The latter dependence is not straight-

FIG. 6. Left: Thermal conductivity along the c axis at 300 K
for adjustment of acoustic impedance in Eq. (10). Right: Thermal
conductivity anisotropy between the �-X and �-Z directions; com-
parison of MC, MD [8,10], KT [21], and DFT [9] modeling.

forward to implement in MC calculation as we do not consider
local atomic description of the quintuples as in MD. We thus
adjust the cos2 θ value to recover the experimental data given
by Goldsmid [54] and Kaibe et al. [56], defining an adjusted
acoustic impedance Zadj = Z cos2 θ . In Fig. 6 (left) are plotted
the thermal conductivity at 300 K for the Zadj/Z ratio varying
from 0 to 1. k values of 0.645 and 0.766 W m−1 K−1 corre-
spond to the Goldsmid [54] measurements for the S5 and S6
samples at room temperature; the corresponding Zadj/Z ratios
are 0.65 and 0.59, respectively. Averaging cos2 θ between 0
and π/2 gives Zadj/Z = 0.5, which is close to the adjusted
values. Using this fitted parameter, the thermal conductivity
is then computed for both cases (S5 and S6) at different
temperatures showing good agreement above 200 K. At lower
temperatures our modeling starts to underestimate the ex-
perimental TC values. Nevertheless, MC simulation results
provide a better estimation of TC than available MD taking
into account its classical nature.

Lastly, the thermal conductivity anisotropy between the
�-X and �-Z directions is plotted in Fig. 6 (right) calcu-
lating the ka-axis/kc-axis ratio with MC simulation results for
the above-mentioned labels case 2, S5, and S6. The TC
anisotropy in bulk Bi2Te3 was measured by Goldsmid [58]
around ka-axis/kc-axis = 2.1. Our MC simulation results (case
2, S5) are in relatively good agreement with this value in
the range of 200–500 K, while MD simulations [8,10] and
kinetic theory [21] underpredict this value. Oppositely, DFT
calculations [9] overestimate the anisotropy ratio of thermal
conductivity.

2. SnSe

Monte Carlo simulations of tin selenide thermal transport
at nanoscales were conducted in a very similar way to those
achieved on bismuth telluride. All lifetime constants for the
three main axes have been computed with a reduced, as
possible, number of adjustment parameters. Before going into
detail on the simulation results, it can be recalled that the ex-
perimental measurement achieved on SnSe was controversial
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FIG. 7. Monte Carlo simulations of SnSe thermal conductivity at
300 K as a function of the Grüneisen parameter. Inset table: Thermal
conductivities at 300 K in SnSe from experiments [23,29] and DFT
calculations [24–26].

as sample preparation can substantially change the measured
thermal conductivities. In the following, we will show that the
dispersion of measured thermal conductivity can be related to
the variation of a single parameter, the Grüneisen constant.

SnSe used as a thermoelectric material has received a
renewed interest for several years as recent work by Zhao et al.
[23] shows that the figure of merit value of ZT = 2.62 could
be achieved along the b axis at high temperatures (�900 K).
Among other parameters, low lattice thermal conductivity
of SnSe was pointed out as a major reason for the high
conversion efficiency. In connection with this work, several
other studies were carried out experimentally [29,30,59] and
numerically [24–26,28] to try to understand the underlying
mechanisms that reduce TC, but also to reproduce the latter
observations. A main result of these subsequent works is
the broad range of measured and computed TCs. In Fig. 7,
the inset table reports k values obtained at 300 K in dif-
ferent studies. Discrepancies between the observations were
possibly attributed to material density [31], microstructure,
surface oxidation, and defect/vacancies occurrence. However,
no definitive reason was pointed out as an explanation for the
variety of measured TC in SnSe. In this context, the purpose of
our work is not to propose an additional model that confirms
or overturns previous studies but to provide indications about
the material intrinsic parameters used in simulation that can
explain such dispersion of TC.

Umklapp and normal scattering processes are explicitly
varying with Grüneisen parameter γ ; its choice is crucial
to carry out thermal conductivity calculations. In addition,
Debye temperature θD also affects the evaluation of the umk-
lapp relaxation rate [Eqs. (1) and (2)]. In the literature about
SnSe, both γ and θD parameters were defined with very
different values (see Table VI) according to the considered
evaluation procedure.

In the present work, we choose to set the value of the Debye
temperature for which there is a better general agreement with
experimental measurements (averaged θD = 210 K) accord-

TABLE VI. Grüneisen parameter γ and Debye temperature θD

for SnSe along the a, b, and c axes reported in the literature.

γ θD (K)
Reference �-X �-Y �-Z �-X �-Y �-Z

Guo et al. [25] 2.12 1.55 1.66
Zhao et al. [23] 4.1 2.1 2.3 24 65 58
Liu et al. [60] 1.26 1.29 0.46
Bansal et al. [39] 1.44 1.35 0.64
Xiao et al. [61] 2.83 142
González-Romero et al. [28] 215 180 189

ing to González-Romero et al. [28]. The impact of θD variation
on the SnSe TC at 300 K can be observed in Fig. 7 along
the b axis for which three cases were considered (θD = 65 K,
θD = 155 K, and θD = 180 K). For θD ranging between 155
and 180 K, k varies by �10% whatever is the choice of γ .

For our modeling, the only free parameter thus became the
Grüneisen one. In Fig. 7, we plot for the three axes the TC
versus γ at 300 K. In the inset table is given the range of γ

variation (gray rows) to recover thermal conductivity obtained
through experiments and DFT simulations. An average value
of γ = 1.8 gives reasonable agreement with the previously
published data on SnSe TC at room temperature. However,
other methods derived from elasticity theory or from DFT
calculation averaging also allow one to evaluate γ (see
Appendix A 1); they provide consistent results with our find-
ings. In this frame, parameters used for lifetime calculation
are reported in Table VII using Table IV inputs.

In the following, the thermal conductivity of SnSe thick
film is discussed. We will show that the existing dispersion
of k values can be partly understood through the variation of
the Grüneisen parameter. In Fig. 8 are plotted the calculated
TCs along the three above considered axes with a comparison
of our MC results to experimental data [23,29] and DFT
simulations [24,26]. First, it can be noticed that the thermal
conductivity anisotropy pointed out in former studies is also
observed with MC simulation. Thermal conductivity along the
a axis [Fig. 8(a)] is clearly below that along the b and c axes.

In each subfigure, the gray shaded area corresponds to
MC simulations with varying Grüneisen parameter γ and
the blue dotted lines relate to MC calculation with γ = 1.8.
In Fig. 8(a), it can be seen that a light variation of 1.7 �
γ � 1.9 allows one to recover TC values predicted by DFT
[24,26] and Zhao measurements [23]. Along this direction,
comparison to Ibrahim et al. [29] data is more delicate as
only low-temperature regime was measured. However, an

TABLE VII. Relaxation rate constants for SnSe along the a, b,
and c axes, derived from Sec. III. Constants were computed for γ =
1.8.

Constant a axis b axis c axis

BU (×10−18 s K−1) 5.9774 3.5836 3.4948
BN,L (×10−21 s K−3) 2.7265 0.4181 1.4330
BN,T (×10−8 K−4) 1.5817 0.1174 0.1174
BI/D (×10−43 s3) 4.2151 1.4984 1.5532
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(a) Γ-X (a-axis)

(b) Γ-Y (b-axis)

(c) Γ-Z (c-axis)

FIG. 8. SnSe thermal conductivity along �-X (a axis), �-Y (b
axis), and �-Z (c axis). Experimental data [23,29]; DFT data [24,26].

FIG. 9. SnSe cumulative thermal conductivity along �-X (a
axis), �-Y (b axis), and �-Z (c axis) for T = 300 K as a function
of the phonon mean free path. Shaded area: Isotropically averaged
value of accumulated thermal conductivity.

expected lowering of γ until 1.1 seems to be necessary to
approach the latter TCs. In the case of the �-Y direction,
the experimentally and numerically obtained thermal con-
ductivities roughly differ by a factor of 3 [see Fig. 8(b)].
Such variations can be captured by tuning the Grüneisen
parameter in the range 1.2 � γ � 2.1 with the lower TC
obtained for the larger γ value. This behavior is coherent
with the reported literature results and the possible mismatch
attributed to non-fully dense SnSe samples. In our calculation,
as well as in the study by Zhao et al. [23], γ = 2.1 along
the b axis is necessary to recover the very low thermal
conductivity. Considering the thermodynamic definition of
the Grüneisen parameter [Eq. (A1)], γ is inversely related to
density ρ; for temperatures larger than 300 K we can assume
that the volume thermal expansion coefficient, bulk modulus,
and specific heat capacity ratio αK/Cp are almost constant.
Thus, as a rough approximation, larger γ is consistent with
lower ρ. Oppositely, if we consider smaller γ values in the
�-Y direction (1.29 � γ � 1.55) as suggested by several
groups (see Table VI), thermal conductivity notably increases
in the whole temperature range. Similar comments apply to
the calculated TC in the �-Z direction [see Fig. 8(c)]. For the
latter case, thermal conductivity varies within the same range
as in the �-Y direction. With the MC simulation approach
we take a Grüneisen parameter in the range 1.4 � γ � 2.3,
which allows one to recover most of the literature results. A
deeper investigation regarding acoustic phonon transport in
SnSe can be achieved by computing the cumulative thermal
conductivity as a function of the phonon mean free path (see
Fig. 9). The accumulated TC is derived from MC simulation
results at 300 K. In order to achieve such calculations we
have split the acoustic frequency domain into 100 uniform
bins, and recorded the phonon heat flux in each bin during
all the simulation processes. Cumulative TC thus results from
spectral heat flux contribution with respect to the applied tem-
perature gradient. In order to achieve a comparison between

115304-10



LATTICE THERMAL CONDUCTIVITY OF Bi2Te3 … PHYSICAL REVIEW B 100, 115304 (2019)

FIG. 10. SnSe thermal conductivity along �-Y (b axis) at low
temperatures. Comparison to experimental data [29,30].

the three main axes, cumulative TC is normalized. The phonon
MFP is directly given by the phonon lifetime and group
velocity knowledge assuming Matthiessen’s rule. In addition,
in order to achieve a comparison with the literature we also
plot isotropically averaged cumulative thermal conductivity
(shaded gray region) for both plots. It can be noticed that
only phonons with 0.1 � MFP � 100 nm contribute to the
thermal transport, but their distribution changes according to
the crystalline direction. Along the a axis, as observed by
Carrete et al. [24] and Guo et al. [25], the contribution of a
longer MFP to the total TC is noticeable. In addition, similarly
to these two previous studies, cumulative TC with the smallest
MFP is observed along the c axis. Making isotropic average
of cumulative TC (shaded area) also prove the reliability
of MC modeling as median k accumulation is achieved
for MFP ∼ 4.5 nm at 300 K, while Guo et al. [25] found
4.9 nm and Skelton et al. [26] found 3 nm. Such variations
of thermal conductivity as a function of energy carriers MFP
will be considered in the following sections devoted to the
nanostructuration of SnSe samples. In addition, it also val-
idates our modeling choices regarding the thickness of the
thin film simulated by the MC method (presently Lz = 1 μm),
which is much larger than the longest observed phonon MFP.

Eventually, we test our modeling approach to available
experimental data about low-temperature thermal conductiv-
ity in SnSe. The latter investigations are not numerous. Two
recent studies were focused on this issue in the particular
case of the �-Y axis [29,30]. In Fig. 10 are plotted the TC
experimentally obtained by Ibrahim et al. [29] and Wang
et al. [30]. For both experimentations, thick SnSe samples
were characterized with a similar device (PPMS, Quantum
Design) for temperatures in the range 2–300 K. On the
experimental side, it can be noticed that small differences
exist between the two studies, even if the maximal TC,
∼50 W m−1 K−1 is reached for a temperature close to
10 K. This shift might be due to sample preparation or thermal
conductivity recording during the experiments. However, the
purpose of our modeling is not to confirm or dispute the

FIG. 11. Bi2Te3 cross-plane thermal conductivity along �-X
(black lines) and �-Z (red line for the S5 case and blue line for the
S6 case) at T = 300 K; solid lines stand for TC and dotted lines for
dimensionless TC.

experimentally evaluated TCs but rather to observe the ability
of MC modeling to reproduce low temperatures evolution of
k. Comparisons with the MC modeling were done assuming
two distinct Grüneisen parameters: γ = 1.8 and γ = 2.1.
It can be observed that the thermal conductivity computed
for larger γ underpredicts experimental values from 10 to
300 K; better achievement is obtained with γ = 1.8. To im-
prove our calculations isotope/defect scattering lifetime could
be tuned to fit the experimental TC in the low-temperature
regime where such mechanisms predominate.

B. Film cross-plane thermal conductivity versus thickness

On the basis of previously discussed models, the cross-
plane thermal conductivity of thin films with various thickness
was computed for both compounds. In Figs. 11 and 12,
Bi2Te3 and SnSe TCs are respectively given for thicknesses

FIG. 12. SnSe cross-plane thermal conductivity along �-X (a
axis), �-Y (b axis), and �-Z (c axis) at T = 300 K; solid lines stand
for TC and dotted lines for dimensionless TC.
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in the range of 20 � Lz � 10 000 nm. In addition, each fig-
ure displays the thermal conductivity reduction with phonon
confinement given through the ratio k/kBulk (dotted lines).

For both materials, as expected, for thicknesses above
1 μm thermal conductivities are constant and supposed
to be equal to the bulk ones. This is consistent with
previous studies showing that average phonon mean free
path is usually well below 100 nm in these thermo-
electric materials. For Bi2Te3, thermal conductivity low-
ering is more efficient along the c axis and can reach
up to 60% for very thin films of thickness Lz =
20 nm. Along the a axis, the maximum achieved TC reduction
is about 40% for the thinner simulated films. For such lengths
transport is mainly ballistic and is ruled by the thickness of
the modeled sample. For very long samples (5 and 10 μm in
Bi2Te3) it takes long to reach steady state. Typically, more
than 500 000 iterations of 1 ps were needed to start to stabilize
heat flux within the structure; this explains the biggest uncer-
tainties recorded for these points. Literature results about TC
in thin Bi2Te3 films are not numerous. Here we can compare
our results to those of nanocrystalline bismuth telluride–based
thin films elaborated by flash evaporation [62] or pulsed laser
deposition [63]. In the latter works fine crystalline Bi2Te3

grains with diameters in the range of 10–60 nm were used
to produce the micron-size films. In their studies they found k
values along the c axis of 0.2, 0.28, 0.34, and 0.4 W m−1 K−1

for grain diameters of 10, 27, 33, and 60 nm, respectively. The
latter results match our findings.

For SnSe literature concerning nanostructures thermal
properties measurement is much less abundant, especially in
what concerns nanofilms. In the next section we will show that
some measurements were recently done on nanowires [64].
However, in the frame of the current modeling it is interesting
to address this issue and try to be predictive in what concerns
thermal conductivity reduction when SnSe film thickness is
decreased. In Fig. 12 are plotted TCs and dimensionless
TCs for the considered axis in films with thicknesses in the
range of 20 � Lz � 2000 nm for T = 300 K. Here and in the
following we consider constant Grüneisen parameters: γ =
1.8. As expected, the decrease of Lz comes with a decrease of
k for the same reasons as discussed above in Bi2Te3. Yet, these
tendencies are not the same in the three directions. The k/kBulk

ratio clearly shows that TC decrease is much more important
for the �-X direction for which phonons with large mean free
paths exist (up to more than 100 nm; see Fig. 9) that contribute
significantly to the TC. Thus in this direction up to 50% of
TC lowering is reached. In the other directions, variations are
in the same range and ultrathin layers (Lz = 20 nm) have k
values close to 0.5 W m−1 K−1 .

C. Nanowire thermal conductivity versus side length

Finally, nanowires are considered. Such nanostructures
appear to be more efficient for thermoelectric purposes as
they induce more phonon confinement than nanofilms and
thus larger TC reduction. In addition, nanowire elaboration
can be easier to achieve using processes that rely on elec-
trochemical growth in porous matrices (alumina or polymer)
[22] or direct catalyst-assisted growth [64]. In Fig. 13 are
plotted the bismuth telluride nanowires thermal conductivity

FIG. 13. Bi2Te3 nanowire thermal conductivity along �-X (black
lines) and �-Z (red line for the S5 case and blue lines for the S6 case)
at T = 300 K. Comparison to experimental data by Munoz Rojo
et al. [22]. The gray shaded area corresponds to the lower and upper
bounds of the Wiener’s model of effective thermal conductivity.

along the a and c axes; in addition, experimental data re-
ported by Munoz Rojo et al. [22] are also added. The latter
values correspond to nanowires with a crystalline orientation
measured as [110] (perpendicular to the c axis). For our MC
simulation, nanowires with square sections (Lx × Ly) are con-
sidered. We set diffuse phonon scattering at the lateral nanos-
tructure boundaries [52]; their length is Lz = 1 μm for both
materials. Once again strong TC reduction can be achieved,
i.e., up to 80% for the thinnest wire (square section of 20 ×
20 nm). This trend is also experimentally recovered with even
lower k for wire with a diameter of d � 25 nm (k = 0.18 ±
0.38 W m−1 K−1). However, measurement uncertainty for
such small sizes is quite large and modeling gives quite
reasonable agreement of the TC. In addition, in order to
take into account possible polycrystalline orientation of the
material we have plotted the limiting bounds of the sample
TC in the frame of Wiener’s model. The lower bound (or
harmonic mean) is given as 1

kHM
= 1

3 ( 1
kX

+ 1
kY

+ 1
kZ

), and the

upper bound (arithmetic mean) is kAM = 1
3 (kX + kY + kZ ).

In the case of Bi2Te3, the a-axis contribution is counted
twice. For such polycrystalline nanowires, literature results
[22] are between 1.1 and 1.47 W m−1 K−1 for nanowires with
diameters of 250 and 360 nm, respectively. This is consistent
with the bounding limits of the Wiener’s model.

In Fig. 14 the TC values for SnSe nanowires are reported.
As in the case of cross-plane TC calculation, a strongest
lowering of k is observed along the a axis. Here it reaches 80%
for the thinnest wire. Along the b and c axes, the evolution of
k is similar. When compared to the recent experimental results
provided by Hernandez et al. [64] for nanowires oriented
along the [111] direction we can notice a good agreement of
the effective thermal conductivity computed with the Wiener’s
lower and upper bounds in a large diameter range. In the
latter comparison, effective thermal conductivities are ob-
tained combining MC results along the a, b, and c axes.
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FIG. 14. SnSe nanowire thermal conductivity along �-X (a
axis), �-Y (b axis), and �-Z (c axis) at T = 300 K. Comparison to
experimental data by Hernandez et al. [64] in the [111] direction. The
gray shaded area corresponds to the lower and upper bounds of the
Wiener’s model of effective thermal conductivity.

Further comparisons with experimental measurements will be
interesting to confirm the model’s ability to predict TC in such
nanostructures.

VI. CONCLUSIONS

Through this study we propose a modeling approach for
thermal conductivity calculation of thermoelectric nanostruc-
tures based on the phonon lifetimes formalism and the reso-
lution of the Boltzmann transport equation by Monte Carlo
simulations. This methodology lies on the knowledge of
material intrinsic parameters, i.e., dispersion properties and
atomistic structural parameters, following the general frame
of the Debye-Callaway theory. The proposed models were
successfully used for bismuth telluride and tin selenide TE
compounds, fitting phonon dispersions along main crystalline
axes. As adjustment terms, only the Grüneisen parameter γ

for SnSe and the mass fluctuation scattering parameter �

for Bi2Te3 allow one to recover the thermal conductivity of
bulk compounds in an extended temperature range with good
concordance. Furthermore, we point out that the choice of
Grüneisen parameter γ can be seen as a tuning quantity that
impacts phonon anharmonicity and thus thermal conductivity
in connection with material density. In a second part of this
work, the ability of the Monte Carlo method to solve the
Boltzmann transport equation for phonons allows us to tackle
the problem of heat transport in thermoelectric nanofilms and
nanowires. For the latter, an obvious reduction of thermal
conductivity due to phonon confinement is observed, and
cumulative thermal conductivity in SnSe is directly evaluated
from the MC resolution process. Moreover for both materials,
the modeling allows one to recover experimental measure-
ments achieved on crystalline nanowires. Improvement of
the method will be to deal with three distinct polarization
branches for each considered crystalline axis and to take into
account grain boundary scattering to model polycrystalline
samples. Further development of the method will address

other materials nanostructuration; among them nanoporous
thermoelectric materials are of paramount interest.
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APPENDIX

1. Grüneisen parameter calculation

The Grüneisen parameter is related to the vibrational fre-
quencies of atoms that change with varying the volume of a
solid; it can be evaluated by different methods. A thermody-
namic definition of γ is

γ = V
∂P

∂E

∣∣∣∣
V

= 1

ρ

αK

Cp
, (A1)

where V is the volume, P the pressure, E the energy, α the
volume thermal expansion coefficient, K the bulk modulus,
and Cp the heat capacity at constant pressure. In the frame-
work of the elasticity theory, the Grüneisen parameter [65]
for bulk crystalline solids can be derived from the Poisson
ratio ν which depends on longitudinal and transverse acoustic
velocities according to

γ = 3

2

(
1 + ν

2 − 3ν

)
(A2)

and (
vLA

vTA

)2

=
(

2 − 2ν

1 − 2ν

)
. (A3)

According to recent literature about the mechanical properties
of bulk SnSe [66], its Poisson ratio ν is about 0.22–0.23,
meaning that the average Grüneisen parameter according to
Eq. (A2) is about γ = 1.4. Eventually, it is also possible to
assess γ directly from DFT calculations. It can be averaged
on all the phonon modes with respect to volumetric specific
heat. This was achieved by Guo et al. [25]; corresponding γ

values are given in Table VI in the range 1.55–2.12.

2. Mass fluctuation phonon-scattering parameter calculation

The mass fluctuation phonon-scattering parameter � con-
tributes to the point defect scattering and can be calculated
using the following equation:

� = �ici

[
mi − m

m

]2

(A4)
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with m = �icimi and where mi is the atomic mass of the ith
isotope, and ci is the fractional atomic natural abundance.
SnSe material is composed of two atoms; in this case the
above equation can be written as

�(SnSe) = 2

[(
MSn

MSn + MSe

)2

�(Sn)

+
(

MSe

MSn + MSe

)2

�(Se)

]
, (A5)

where M is the average atomic mass of each atom. Using the
above equation, the mass fluctuation parameter was estimated
to �(SnSe) = 3.882 × 10−4. This value was considered in the
phonon spectral properties calculation. Similar calculations
were done for Bi2Te3, with �(Bi2Te3) = 8.3 × 10−5.

All these parameters are used in the calculation of phonon
lifetimes and thus for Monte Carlo simulations in order
to estimate the thermal conductivity of both compounds. It
shall be noted that these � values only describe isotopic
scattering.
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