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Injection of nanoparticles (NP) into the bloodstream leads to the formation of a so-called

“nano–bio” interface where dynamic interactions between nanoparticle surfaces and

blood components take place. A common consequence is the formation of the protein

corona, that is, a network of adsorbed proteins that can strongly alter the surface

properties of the nanoparticle. The protein corona and the resulting structural changes

experienced by adsorbed proteins can lead to substantial deviations from the expected

cellular uptake as well as biological responses such as NP aggregation and NP-induced

protein fibrillation, NP interference with enzymatic activity, or the exposure of new

antigenic epitopes. Achieving a detailed understanding of the nano–bio interface is

still challenging due to the synergistic effects of several influencing factors like pH,

ionic strength, and hydrophobic effects, to name just a few. Because of the multiscale

complexity of the system, modeling approaches at a molecular level represent the ideal

choice for a detailed understanding of the driving forces and, in particular, the early events

at the nano–bio interface. This review aims at exploring and discussing the opportunities

and perspectives offered by molecular modeling in this field through selected examples

from literature.

Keywords: molecular dynamics, metadynamics, molecular modeling, protein corona, coarse grain, lipid bilayer,

cellular membrane

INTRODUCTION

Nanomedicine is an emerging discipline that is providing novel impulses to the biomedical
field thanks to the use of nanotechnologies and the continuous development of engineered
nanomaterials such as polymer-, metal- or metal oxide-based nanoparticles. Nanomaterials, by
virtue of their small size (1–1000 nm, comparable to many biological molecules like proteins and
viruses) open up a wide range of new opportunities and applications, for example as devices for
targeted drug delivery and diagnostic purposes and as image contrast agents. However, as with every
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novel technology, the potential negative side effects have to be
assessed early in the development process to avoid adverse social
and economic effects.

Indeed, the injection of nanomaterials into an organism
leads to complex interactions between the surface of the
device and the components of the medium, such as proteins,
carbohydrates, fatty acids, et cetera. These interactions play a
key role in determining not only the fate of the nanomaterial
(in terms of clearance and in vivo biodistribution) but also
the attainment of undesired side effects. The fundamental
driving forces governing the formation of this nano-bio
interface have already been identified and discussed (Nel
et al., 2009) and include van der Waals and electrostatic
interactions and hydrophobic and depletion effects. The
challenge lies in the rationalization of the synergistic effects of
intrinsic nanomaterial properties (chemical composition, size,
surface functionalization, et cetera), the characteristics of the
surrounding medium (pH, ionic strength, et cetera), and the
phenomena occurring at the interface and their impact on
nanomaterial behavior.

One of the most relevant consequences is the formation of
the protein corona, i.e., a layer of adsorbed proteins on the
NP surface (Cedervall et al., 2007a,b; Lundqvist et al., 2008;
Dell’orco et al., 2010). The attainment of such a network alters
the surface properties of the nanomaterial, which may cause
substantial deviations from the expected behavior concerning
colloidal stability, cellular uptake, clearance, distribution within
the organs, and immune response.

On top of that, the formation of the protein corona can
lead to changes in the protein structure and thus to undesired
consequences (not easily predictable a priori), such as (Nel et al.,
2009):

• Enhanced or hampered cellular uptake with specific kinds
of cells due to the interactions of adsorbed proteins with
particular receptors;

• Protein aggregation and fibrillation at the nanocarrier surface;
• Interference with enzymatic activity;
• Exposure of new antigenic epitopes.

Experimental protocols for the investigation of the protein
corona are currently well-established (Walkey and Chan, 2012;
Wei et al., 2014; Pederzoli et al., 2017), although they have some
intrinsic limitations concerning spatial and temporal resolution;
indeed, they do not allow the characterization of the early events
leading to protein corona formation and do not provide a
clear overview of specific nanomaterial/protein interactions or
changes in protein structure.

Computational approaches at the molecular scale, such
as molecular dynamics (MD) simulations, constitute the
natural complement to experimental techniques. This is due
to several factors, such as the accessible time and length
scales (microsecond and nanometer, respectively), the full
atomistic description of the system (which allows the specific
protein/nanomaterial interactions to be identified) and its
dynamic behavior (thus identifying conformational changes after
binding), and the inclusion of environmental effects.

This review aims at exploring and discussing the opportunities
and limitations of nano-bio as well as giving some perspectives
on the use of molecular modeling techniques for characterizing
these interactions. After giving a brief theoretical background,
relevant applications of simulations at the molecular
scale are discussed through selected examples from the
scientific literature.

MOLECULAR MODELING—A BRIEF
OVERVIEW

Molecular modeling can be seen as the sum of two components:
a molecular model and a computational technique to properly
characterize the behavior of the molecules.

Building a suitable molecular model, that is, how the
system under investigation is rationalized and represented
in the framework of a meaningful simulation, is the first
fundamental step. In this framework, molecular models can
be essentially divided into two categories; on the one side,
full atomistic models provide the highest level of detail since
all atoms (considered as the smallest constitutive units of
the model) are explicitly accounted for. On the other side,
coarse-grained models summarize the atomic detail by enclosing
groups of atoms into beads that lump the main peculiarities
(in terms of charge, polarity, et cetera) of the atoms that
they embed. This simplification is unavoidable for complex
systems whose atomistic representation would be prohibitive
from a computational point of view, in terms of the system
size and/or time and length scales needed to investigate the
phenomena of interest. Despite the loss of detail, a coarse-
grained model that retains the main features of the system is able
to provide meaningful insights at a reasonable computational
cost (vide infra). For the sake of completeness, there exist
more detailed representations where electrons are the smallest
constitutive units and are explicitly included. Such models
are treated with quantum chemistry methods, which are not
considered or discussed here since their application in the field
of nanomedicine is hindered by their computational inefficiency.

In a broader sense, a molecular model also includes
unavoidable simplifications that allow for the simulation of
complex systems, either at a full atomistic or coarse-grained level
of detail, which could not be treated otherwise. The simulation
of protein adsorption on a microparticle surface, for example, is
unfeasible because of the system size. Such a system is usually
simplified by adopting a molecular model that involves the
adsorption of a protein on a flat surface with a suitable thickness.
This approach is reasonable since the phenomena of interest
are restricted to the solvent/particle interface; in addition, since
protein size is much smaller than microparticle radius, curvature
effects can be reasonably neglected.

The second component of molecular modeling is
constituted by suitable computational methods that allow the
characterization of the dynamics, energetics, and conformational
sampling of the system of interest. Full atomistic models
are usually treated with molecular dynamics, while other
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techniques such as coarse-grained molecular dynamics
and dissipative particle dynamics are employed along with
coarse-grained models.

Each method has its own strengths and limitations, as well as
characteristic accessible time and length scales, as discussed in the
following paragraphs.

Full Atomistic Models—Molecular
Dynamics
In molecular dynamics simulations, atoms are represented as
spheres that interact with each other by virtue of a potential
energy function, usually called the force field (FF). Molecular
coordinates and velocities as a function of simulation time can be
evaluated by solving Newton’s equation of motion with a suitable
numerical integration scheme, as shown in Equation (1) (Frenkel
and Smit, 2002):

mi
d2ri

dt2
= Fi = −∇U(r) (1)

wheremi is themass of the i-th atom, ri are the spatial coordinates
of the i-th atom, t is time, Fi is the force acting on the i-th
atom, and U(r) is the potential energy (that is, the force field),
which is a function of the coordinates of all atoms present
in system r. Such an approach essentially implies a couple of
assumptions, as follows. First, the motion of electrons can be
reasonably described by the dynamics of the corresponding
nuclei (Born–Oppenheimer approximation). Second, the motion
of the atomic nuclei (which are heavier than electrons) can be
described as point particles that follow classical mechanics; this
is an acceptable approximation when quantum effects are not
important (Frenkel and Smit, 2002). Generally speaking, a force
field takes into account both intramolecular and intermolecular
interactions, in terms of bonds, angles, dihedrals, and long-range
interactions, namely van der Waals and electrostatic.

FFs contain several parameters that are computed in
order to reproduce the conformational energies and minimum
energy structures obtained from high-level quantum mechanics
calculations and/or experimental data, such as hydration
enthalpies or structural parameters from NMR experiments
(Riniker, 2018). There are “general purpose” force fields, usually
employed to describe small ligands, as well as FFs specifically
tailored for given categories of molecules, like proteins, nucleic
acids, carbohydrates, and lipids (Riniker, 2018). The choice and
the quality of the force field cannot be underestimated, since they
strongly affect the reliability of the simulation outcome.

MD simulations do not explicitly consider electrons, so
chemical reactions and excited states cannot be investigated;
however, they constitute the ideal tool for those systems that are
mainly governed by non-covalent interactions, like electrostatic
and Van der Waals forces. MD also allows environmental
conditions to be included through the addition of explicit
solvent molecules, ions, and other solute molecules into the
system. The main outputs from an MD simulation are molecular
trajectories, the post-processing of which can provide structural
information (binding poses, protein conformation) as well as
energetic information such as interaction energies.

Enhanced Sampling Methods
The characteristic time and length scales of MD simulations
are in the tens to hundreds of nanoseconds (up to 1000 ns)
and tens of nanometers (up to 20 nm), respectively. However,
many phenomena of interest (e.g., molecular binding, protein
unfolding) need large time scales to occur (up to minutes), and
their investigation through MD would be in principle unfeasible;
this is due to the presence of metastable states separated by
high free energy barriers. A way to overcome this issue is to
use enhanced sampling methods, which allow enhancement of
the transitions between different metastable states separated by
energy barriers higher than the thermal energy kBT, which
would not be crossed in a standard simulation at temperature
T (where kB is the Boltzmann constant and T is absolute
temperature). As recently reviewed (Camilloni and Pietrucci,
2018), there are three different suitable approaches: i) increasing
the temperature T; ii) changing the potential U(r), and iii)
adding an external bias potential V(r). Each approach has its own
methods, the discussion of which (along with their theoretical
basis) is well beyond the purpose of this review; the interested
reader is referred to ad hoc reviews (Miao and Mccammon,
2016; Camilloni and Pietrucci, 2018). Some of the popular
enhanced sampling techniques are Replica Exchange (RE, first
approach) (Miao and Mccammon, 2016) and Well-Tempered
Metadynamics (WTM) (Valsson et al., 2016), which belongs to
the third group. In particular, WTM and its variant forms allow
the free energy of the system under investigation to be recovered
by adding an external bias on a selected number of degrees of
freedom, commonly referred to as collective variables (CVs).
CVs are generally functions of atomic coordinates and can range
from simple quantities, such as distances and dihedral angles,
to more complicated variables, like the number of hydrogen
bonds/hydrophobic contacts, alpha helix-content in a protein, or
Debye–Hückel interaction energy. Collective variables must be
chosen so that they can discriminate between metastable states
and can be representative of the transition mechanism. Typical
applications of WTM and WTM-based methods are the study
of protein conformations (also in the presence of denaturants)
(Owczarz et al., 2015), the binding poses of small ligands to
target proteins (Tiwary et al., 2015), and the conformation
and self-assembly of polymeric and supramolecular systems
(Bochicchio and Pavan, 2018). Some phenomena, such as
protein folding, require a relevant number of collective variables
to perform meaningful simulations. Although conceptually
feasible, running a WTM simulation with many CVs introduces
some issues such as a drop in computational efficiency and
a non–trivial analysis of the results obtained. In order to
overcome this issue, some WTM variants have been proposed,
discussed, and validated in literature (mainly for protein folding),
namely Parallel Tempering Metadynamics (PTMD) (Bussi et al.,
2006), Parallel Tempering Metadynamics in the Well-Tempered
Ensemble (PTMD-WTE) (Deighan et al., 2012), and Bias
Exchange Metadynamics (BEMD) (Piana and Laio, 2007). The
discussion of the theoretical basis of these methods is beyond
the purpose of this review; the interested reader is referred to the
corresponding papers.
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Coarse-Grained Models—Molecular
Dynamics, Dissipative Particle Dynamics
The aim of coarse-grained (CG)models is to performmeaningful
simulations of systems whose analysis would be challenging or
unfeasible with full atomistic MDmethods by building simplified
representations that allow the main physical/chemical features
(like the interplay between hydrophobic and hydrophilic effects)
to be retained.

In the coarse-graining procedure, groups of atoms
are enclosed into “beads” or “interaction sites” that are
representative of the embedded atoms in terms of charge,
size, hydrophobicity/hydrophilicity, et cetera. Beads interact
with each other by virtue of a potential energy function,
which takes into account both bonded interactions (that is,
bond, angles, and dihedrals) and non-bonded interactions and
which is parameterized in order to optimally reproduce some
experimental properties (like water/octanol partition) or the
behavior of more detailed full atomistic simulations.

Trajectories can be computed by integrating Newton’s
equation of motion and also adding other components to the
force such as friction due to the solvent (if implicit solvent
methods are used) (vide infra).

It is worth mentioning that the coarse-graining procedure
can be performed to different extents, since a bead can enclose
a group of atoms (3–4 heavy atoms), a group of monomers
(or amino acids), an entire protein or an entire microparticle,
according to the aim of the simulation. In this review, the term
“coarse-grained models” is employed for all those approaches
where there is a loss of degrees of freedom with respect to a full
atomistic description.

A common drawback of CG models is that parameterization
is strictly tailored for the system under investigation and in
principle should be repeated for every new system; in other
words, parameters are not transferable. In this regard, the
MARTINI force field (Marrink et al., 2007) attracted a lot of
interest due to its reliability and straightforward coarse-graining
procedure. Beads (which include groups of 3–4 heavy atoms)
still interact with each other through a simple potential energy
function, as described for MD (vide supra). MARTINI offers
a library of parameterized beads, mainly divided into four
categories: polar, non-polar, apolar, and charged; in addition,
each group includes subgroups representative of polarity and
hydrogen bond capability. Parameters for bonded interactions
(bonds, angle, dihedrals) must be determined from detailed
MD simulations, while non-bonded interactions are tuned in
order to reproduce thermodynamic properties like free energy of
hydration, free energy of vaporization, and partitioning between
water and different solvents. Explicit water and ions can also
be added (a MARTINI water bead is representative of four
water molecules). An example of MARTINI mapping from a full
atomistic to a coarse-grained system is shown in Figure 1.

Bead parameterization can be further refined by the user
in order to improve agreement with full atomistic simulations.
Even with simulations based on the MARTINI force field, some
phenomena of interest can be still characterized at a time scale
that is not accessible. In this framework, enhanced sampling

methods like Metadynamics can be employed to alleviate this
issue, as already shown in the literature (Lelimousin et al., 2016).

Another widely employed method with CG models is
Dissipative Particle Dynamics (DPD). Bead trajectories are still
obtained by means of Newton’s equation of motion, assuming
that each i-th particle is subjected to three pair-additive forces
that arise from the interactions with the other j-th particles: a
conservative force, a dissipative force, and a random force (Liu
et al., 2015):

mi
d2ri

dt2
= fi =

∑
j 6=i

Fcij + Fdij + Frij (2)

The conservative force Fc is due to the interaction potential
of particles and accounts for both bonded and long-range
interactions through an elastic force and a soft repulsion force,
respectively. Fd is a dissipative force that damps the relative
motion between particles, and Fr is a random force directed along
the line that connects beads centers. Dissipative and random
forces are momentum-conserving and represent the minimal
model that takes into account viscous forces and thermal noise
between particles.

Full Atomistic vs. Coarse-Grained Models:
Strengths and Weaknesses for
Nanomaterial–Biology Interactions
In this framework, full atomistic models provide the highest level
of detail, since all atoms are explicitly included. On the one
side, they account for all those fundamental interactions that
are essential for a suitable description of the nano–bio interface,
such as van der Waals, electrostatic, hydrogen bonding, π-π
stacking, and π – cation interactions (provided the intrinsic
limits and the accuracy of the FF). On the other side, the
inclusion of explicit solvent molecules, ions, and other solute
molecules allows environmental effects to be taken into account;
the impact of pH is accounted for by appropriately changing
protonation states. Focusing on proteins, by means of molecular
dynamics simulations and their resolution at atomic scale it
is possible to highlight the most relevant amino acids that
drive the interactions at the nano–bio interface and protein
structural changes at the single amino acid level, achieving a
level of detail that is usually out of reach from an experimental
point of view. On top of this, the reliability of the simulation
results can be assessed by comparing theoretical quantities
such as circular dichroism spectra with the corresponding
experimental outcomes. The importance of this aspect cannot
be underestimated since it strengthens the connection between
experiments and simulations. Molecular dynamics simulations
are still limited by the characteristic time and length scales
accessible by the method: microseconds and nanometers,
respectively. The direct use of enhanced sampling methods is
still prohibitive for complex and/or large systems. In this regard,
switching to coarse-grained models is a forced but attractive
choice due to the longer accessible time and length scales (tens
of microseconds and tens of nanometers, respectively). The
drawback is the loss of the atomic detail, which implies that some
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FIGURE 1 | Examples of MARTINI mapping. Standard water bead embedding four water molecules (A). Polarizable water bead with embedded charges (B). DMPC

lipid (C). Polysaccharide fragment (D). Peptide (E). DNA fragment (F). Polystyrene fragment (G). Fullerene (H). Reproduced from Marrink and Tieleman (2013) under a

CC-BY 3.0 license. Published by the Royal Society of Chemistry.

interactions (strong electrostatic interactions, hydrogen bonds,
solvation effects) are accounted for only in a roughly qualitative
way. Anyway, if the fundamental physical/chemical peculiarities
of the system (such as the balance between hydrophobic and
hydrophilic groups) are well reproduced in the CG model and
if the interaction potentials (that govern the interactions between
beads) are accurately parameterized against experimental data or
validated simulations at atomic scale, simulations at CG scale are
a powerful tool to complement the insights obtained with MD
simulations. CG simulations can also provide some input guess
structures for, e.g., protein–protein interactions (that would be
challenging to obtain withMD simulations), which can be further
employed for a more accurate analysis at atomic scale. On top of
that, enhanced sampling methods (in particular, Well-Tempered
Metadynamics) have proved to be useful for simulations at CG
scale when the time scale is still not accessible.

All these aspects are discussed in detail, along with selected
examples, in the following paragraphs.

APPLICATIONS FOR
NANOMATERIAL–BIOLOGY
INTERACTIONS

Molecular modeling is essentially employed for two purposes
in the framework of nanomaterial–biology interactions. On
the one side, it can shed light on the early events leading to
the protein corona, highlighting the main mechanisms behind

protein adsorption on the nanomaterial surface (hydrophobic
effects, hydrogen bonds, electrostatic interactions, et cetera),
the most important amino acids involved in the binding and
the attainment of conformational changes. On the other side,
simulations at the molecular scale allow the evaluation (in a
trend-wise manner) of the impact of environmental effects,
nanoparticle material, and surface functionalization on cellular
uptake; some preliminary theoretical insights can also be
obtained concerning the effect of protein corona formation.

Protein Corona
Molecular modeling, thanks to its resolution at the atomic
scale, represents the natural choice for the study of early
events that lead to protein corona formation. Knowledge of the
structural changes experienced by the protein after adsorption
is essential for understanding system behavior, as discussed in
the introduction (vide supra). Molecular modeling can offer
an exhaustive overview of the structural transitions thanks to
the resolution at a molecular level, highlighting the portion of
proteins subjected to structural changes (along with the most
important amino acids that cause this) and the main driving
forces (electrostatic interactions, hydrophobic effects, et cetera).
This allows information to be obtained that is challenging or
impossible to achieve experimentally, and this is why molecular
modeling has emerged as the natural and ideal complement to
experiments. A typical application is constituted by detailed MD
simulations of the interactions between a protein and a particle
and the resulting changes in protein structure. The particle is
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usually modeled as a flat surface. On the one hand, there is
no need to account for the entire sphere, since the interactions
occur only at the interface. On the other hand, if the size of the
protein is much smaller than the particle size, surface curvature
effects can be safely neglected; this approximation is not valid
for nanoparticles, whose size is comparable to those of proteins,
and particle curvature must be accounted for by building the
molecular model of the NP surface properly.

In this framework, full atomistic simulations can provide a
detailed picture of the structural changes experienced by the
protein after adsorption at the surface in terms of modifications
of its secondary and tertiary structure (increase/decrease of
alpha-helix and beta-sheet motifs and their arrangement). The
specific structural changes of the protein can be directly
correlated with experimental data, circular dichroism results, or
NMR spectra. In addition, since protein adsorption modifies
the properties of the particle surface (in terms of charge,
hydrophobicity, et cetera), the insights obtained can be
correlated, e.g., to differences in the colloidal stability of the
particle suspension or other phenomena related to the protein
corona such as protein aggregation and fibrillation.

Environmental effects can be taken into account thanks to
the addition of explicit solvent molecules and ions, so that given
salt concentrations (i.e., ionic strength) can be included in the
simulation. The effect of pH can be included by changing the
protonation state of the protein and the NP surface accordingly;
anyway, protonation states in MD simulations are fixed and not
dynamic since proton exchanges are not simulated. In other
words, a positively charged amino acid remains protonated
during the entire simulation, although the proton may be
exchanged with surrounding water molecules according to the
environmental pH. On top of that, the acid dissociation constant
can be heavily influenced by local environmental effects such
as the neighboring units and exposure to the solvent. This
issue can be overcome by means of constant pH methods,
which are currently available and validated only for proteins
(Swails et al., 2014).

Simulations can also account for surface functionalization
and its impact on the interactions with the protein. Through
trajectory post-processing, it is possible to identify the main
driving forces behind adsorption (hydrophobic effects, hydrogen
bonds, et cetera) and to compute interaction energies in order to
obtain a quantitative estimation of the strength of the binding.

Although the results of such simulations can surely contribute
to increasing understanding and rationalizing experimental data,
this approach also has some limitations and drawbacks.

The accuracy and reliability of the simulated protein structural
changes are strongly related to the robustness of the force field;
if FF parameterization leads to, e.g., an overestimation of alpha-
helix content, this will unavoidably affect the simulation results.
Several articles where force field performances are systematically
analyzed, as well as reference FF papers, address such limitations
in detail, which are therefore known a priori. It is also worth
mentioning that force field improvements are continuously
carried out, and updated FF versions are periodically released.
In principle, changes in protein secondary and tertiary structure
can occur on time scales beyond those accessible to standard MD

simulations (ns–µs), so the use of enhanced sampling methods
often becomes an inescapable necessity to achieve meaningful
results. Standard MD simulations provide an ensemble of
conformations according to the given conditions (temperature,
solvent, ionic strength, et cetera), but if two metastable states
are separated by an energy barrier much higher than the
thermal energy, kBT, some relevant protein conformations are
not accounted for because this barrier would not be crossed and
simulation outcomes can provide only a partial description of
the event under investigation. The use of enhanced sampling
methods alleviates this issue.

Simulations are usually focused on the adsorption of a
single protein on a surface, which is essentially representative
of particles in a very dilute protein solution; in other words,
the overall protein–protein interactions are neglected since they
can occur on long time scales and their description is usually
challenging, even with enhanced sampling methods. Although
simulations provide interesting insights, systematic and rational
validation of the molecular models is still lacking. This currently
hinders the extensive use of molecular simulations for practical
applications, such as the engineering of nanoparticles in order to
promote or discourage the adsorption of given proteins.

In this regard, the use of coarse-grained models, along with
suitable techniques to study system dynamics, represents an
inescapable choice, although the atomic detail is lost. CG models
allow longer time and length scales to be explored than do full
atomistic models coupled with MD simulations and can thus be
used to investigate the impact of protein–protein interactions,
overcoming the infinite dilution condition. Small nanoparticles
can be explicitly included, and the surface curvature effect can
be taken into account. However, the coarse-graining procedure
is not painless due to its intrinsic limits: strong electrostatic
interactions, solvation effects, and anisotropic interactions like
hydrogen bonding are poorly described. Focusing on proteins, it
is still challenging to account for changes in secondary structures.
Therefore, an accurate parameterization of interaction potentials
is an essential step in obtaining reliable results. Simulations at
CG scale, despite the mentioned drawbacks, can still provide
useful insights and can also be employed to obtain input guess
structures for protein–protein interactions that can subsequently
be investigated at an atomic level. The interaction potentials are
usually parameterized against more accurate simulations with
full atomistic models, whose validity, in turn, must be evaluated
through comparison with experimental data. This further
reinforces the need for systematic experimental validation.

The advantages and disadvantages (related to both MD and
CG approaches) are summarized in Table 1.

As mentioned above, molecular models still need to be
validated against comparison with experimental data. Indeed, for
every property of interest, it is possible to highlight reference
experimental techniques as well as computational techniques, as
summarized in Table 2.

The literature offers several examples of MD simulations of
protein adsorption on differentmaterials, such as graphene sheets
(Chong et al., 2015), carbon nanotubes (Ge et al., 2011; Gu et al.,
2015), gold nanoparticles/surfaces (Wang et al., 2013; Brancolini
et al., 2014; Tavanti et al., 2015; Bellucci et al., 2016; Yang et al.,
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TABLE 1 | Advantages and disadvantages in protein–surface simulation.

Advantages Disadvantages

Detailed overview of protein structural

changes after adsorption at single

amino acid level

Intrinsic limits due to the accuracy of

the employed force field

Explicit solvent molecules and ions

allow environmental effects to be

accounted for

Standard simulation may not be

sufficient to account for protein

structural changes due to time scale

limitations; results from enhanced

sampling methods still heavily depend

on FF accuracy, which must be

assessed with experiments

pH effects through protonation state

of protein and surface

Protein–protein interactions are

usually neglected; they can be

accounted for with CG models, but

systematic model validation is still

lacking

Impact of particle material and

surface functionalization on protein

structure and adsorption

Lack of systematic validation through

comparison with experimental data

TABLE 2 | Reference experimental and computational techniques for properties

of interest of the protein corona.

Property of interest Experimental technique Computational technique

Particle stability Dynamic light scattering,

zeta potential

Assessment of surface

hydrophilicity/hydrophobicity

changes upon protein

adsorption

Protein conformational

changes

Circular dichroism, nuclear

magnetic resonance

Standard molecular

dynamics simulations and

enhanced sampling

methods provide insights

into conformational changes

at single amino acid level

Theoretical circular

dichroism spectra can be

obtained from simulations

Adsorption

thermodynamics

Isothermal titration

calorimetry

Protein–surface interaction

energy or binding free

energy from

post-processing of

molecular trajectory; binding

free energy from enhanced

sampling methods

2017; Ma et al., 2018), hydroxyapatite surfaces (Dong et al., 2007,
2011), fullerenes (Leonis et al., 2015), titanium oxide surfaces
(Utesch et al., 2011; Mudunkotuwa and Grassian, 2014), and
molybdenum disulfide (Gu et al., 2018), highlighting the specific
interactions behind the binding and the attainment of structural
changes. Interestingly, there are no relevant computational
studies of protein adsorption on polymer surfaces. To our best
knowledge, this may be due to the limited availability of validated
FF parameters for polymers and to intrinsic issues with the
design of molecular models. Whereas inorganic nanoparticles
are characterized by an ordered atomic arrangement, a model

of a disordered polymer random coil can be more challenging
to build.

Among many theoretical works, only a few papers combine
experimental and computational components in order to achieve
an all-round understanding of the mechanisms that lead to
hard corona formation. Chong et al. (2015) adopted MD
simulations to study the affinity of four abundant plasma proteins
(bovine fibrinogen, immunoglobulin, transferrin, and bovine
serum albumin) on graphene oxide and reduced graphene oxide
surfaces. The affinity trend predicted by MD is in agreement with
the experimental trend for all investigated proteins. Simulations
also allowed determination of the most relevant residues for
the binding. Gu et al. (2018) studied the interactions of
MoS2 nanoflakes with potassium channels proteins highlighting
potential toxic effects of the binding, which can alter the
biological function. The results were further corroborated by
experimental data.

As mentioned, enhanced sampling methods are currently
also applied for the study of protein–surface interactions with
both MD simulations (where the system is described at full
atomistic level) and CG simulations (where the atomic detail
is lost for the sake of computational efficiency). Indeed, the
accessible time scale may not be adequate for the phenomena
under investigation, and the use of enhanced sampling methods
is a good solution for both MD and CG simulations.

Even if standard simulations are sufficient for small peptides,
the application of enhanced sampling methods improves the
efficiency of the sampling and provides additional information
about the system thanks to the possibility of reconstructing the
free energy as a function of the degrees of freedom of interest.
In this regard, Metadynamics-based methods have proved to be a
promising choice. Prakash et al. (2018) systematically analyzed
the use of Metadynamics-based methods for the adsorption
of GGKGG peptide on a silica surface, explicitly including
the influence of ionic strength and ion charge; the authors
discussed the performances of each method and suggested the
best collective variables to account for, thus providing useful
guidelines for meaningful simulations. Deighan and Pfaendtner
(2013) employed Metadynamics to study the influence of surface
functionalization on the adsorption of Lkα14 and Lkβ15 peptides
on self-assembled monolayers; the model outcomes were in
good agreement with experimental findings. Bellucci et al.
(2016) investigated the adsorption of Aβ16−22 peptide on a gold
surface in order to investigate the impact of the binding on
fibrillation. Their simulations revealed that binding poses are
mainly influenced by the affinity between gold and phenylalanine,
as shown in Figure 2A. The model was also validated through
a comparison between experimental and calculated spectra
obtained through sum generation frequency (SFG) spectroscopy
(Figure 2B).

Hildebrand et al. (2018) employed Metadynamics-
based methods to examine the conformational changes of
Chymotrypsin after adsorption on silica. Simulations highlighted
that the enzyme loses part of its helical content with minor
perturbation of the tertiary structure; the model results were
used to compute a theoretical circular dichroism spectrum that
was in good agreement with the experimental spectrum.
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FIGURE 2 | (A) Distribution fraction of peptide end-to-end distance (computed considering terminal Cα atoms) as a function of peptide–surface distance. The

rectangle identifies the free energy minimum as a function of the peptide–surface distance. The inset represents the distribution of the end-to-end distance in the bulk

region (COM distance from the surface larger than 1.25 nm). (a–d) show representative conformations. (B) Comparison between calculated and experimental SFG

spectra (a) and simulated structure used for spectral calculation (b). Reproduced from Bellucci et al. (2016) under a CC-BY 3.0 license. Published by the Royal Society

of Chemistry.

CG models are also extensively used (Bellion et al., 2008;
Vilaseca et al., 2013; Ding and Ma, 2014; Lopez and Lobaskin,
2015; Tavanti et al., 2015; Yu and Zhou, 2016; Hu et al., 2017;Wei
et al., 2017), since they allow the characteristic accessible time
and length scales of full atomistic simulations to be extended and
the computational cost to be reduced. It thus becomes possible
to simulate entire nanoparticles whose size is equal to or less
than about 20 nm (at least when MARTINI is employed), fully
covered by one or more kinds of proteins. The investigation of
larger particles is still also challenging for CG methods because
of the required computational effort.

Adopting CG models implies the loss of the atomic
detail at the single amino acid level and a less accurate
description of the system. While hydrophobic effects are
reasonably accounted for, it is challenging to take into account
properly, e.g., water structuring, cation–π interactions, strong
electrostatic interactions, and hydrogen bonds, which lose their
directionality because of the coarse-graining procedure (Marrink
and Tieleman, 2013). Focusing on proteins, changes in tertiary
structure can be reasonably described, while it is still non-trivial
to account for changes in secondary structure due to the intrinsic
limitations of the method (Marrink and Tieleman, 2013).

Despite such limitations, CG models can be employed for
qualitative insights or to obtain guess structures for subsequent
more detailed full atomistic simulations, as is commonly done,
e.g., for the non-covalent protein–protein interaction and
oligomerization of membrane proteins (Lelimousin et al.,
2016). Anyway, a systematic use for more quantitative
results must first be corroborated through comparison
with more accurate and, above all, validated atomistic
MD simulations.

Yu and Zhou (2016) used CG simulations with the MARTINI
force field to understand the influence of nanoparticle curvature
on lysozyme adsorption on silica at different values of ionic
strength. They found that while salt concentration had a modest
effect, surface curvature greatly influenced structural changes.

Ding and Ma (2014) used dissipative particle dynamics to
characterize the adsorption of human serum albumin (HSA) on
generic hydrophobic, hydrophilic, and charged nanoparticles for
different size and pH values. By computing binding free energy as
a function of the distance between the protein and particle centers
of mass (COM), they showed that HSA could be bound only to
hydrophobic and positively charged nanoparticles. They further
studied the attainment of the protein corona by computing the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 October 2019 | Volume 7 | Article 268

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Casalini et al. Molecular Modeling for Nanomaterials—Biology Interactions

number of adsorbed proteins as a function of particle size at
neutral pH for hydrophobic and positively charged particles.

The reported studies are summarized in Table 3.
Although the reported examples of simulations at the CG scale

provide interesting findings, they are not coupled with validation
against experimental data; therefore, the results should be taken
as qualitative theoretical considerations. Notably, the literature
offers many examples concerning inorganic nanoparticles (gold,
silica) or carbon-based materials (graphene, carbon nanotubes).
To our best knowledge, polymeric systems are not widely
investigated. This is due to a lack of validated parameters as well
as intrinsic issues related to system modeling since, by virtue
of their ordered atomic arrangement, inorganic surfaces can be

more easily described than a polymer surface composed of a
disordered random coil.

To summarize, at this stage, molecular modeling of the
protein corona cannot replace experimental activity, and its
use as a purely predictive tool is currently premature. This
is due, on the one side, to the intrinsic complexity of the
system under investigation and, on the other side, to the lack of
systematic validation against experimental data. Many examples
discussed in the literature are purely theoretical, and only a
few recent studies have critically validated simulation outcomes
with experiments. In addition, comparison with experimental
data is only performed in vitro; the complexity of the in vivo
environment still constitutes an arduous challenge because of

TABLE 3 | Detailed summary of computational protein corona studies.

Device material Protein Method Experimental data Outcomes References

Graphene Bovine fibrinogen

Immunoglobulin

Transferrin Bovine

serum albumin

MD Protein adsorption

(fluorescence spectroscopy)

Atomic Force Microscopy

Circular dichroism

Protein affinity with the surface

Structural changes

Chong et al., 2015; Gu

et al., 2015

Carbon nanotubes Bovine fibrinogen

Immunoglobulin Transferrin

Bovine serum albumin

MD Atomic Force Microscopy

Circular dichroism

Protein affinity with the surface

Structural changes

Ge et al., 2011; Gu

et al., 2015

Gold particles/rods/slabs β2-microglobulin

Bovine serum albumin

Bovine beta-lactoglobulin

Glutathione S-transferase

MD Circular dichroism

X-ray spectroscopy

UV spectroscopy

Surface plasmon resonance

Structural changes Wang et al., 2013;

Brancolini et al., 2014;

Yang et al., 2017; Ma

et al., 2018

Gold slab Aβ16−22 peptide MD + Metadynamics Sum generation frequency

spectroscopy

Structural changes

Affinity with the surface

Bellucci et al., 2016

Hydroxyapatite Bone morphogenetic

protein 2

MD No Affinity with the surface

Structural changes

Dong et al., 2007, 2011

Fullerene Human serum albumin MD Comparison with data from

the literature

Binding energies

Structural changes

Leonis et al., 2015

Titanium oxide L–histidine

Bone morphogenetic

protein 2

MD Attenuated total reflectance

fourier transform infrared

spectroscopy

Binding energies

Structural changes

Utesch et al., 2011;

Mudunkotuwa and

Grassian, 2014

Graphite Bone morphogenetic

protein 2

MD No Binding energies

Structural changes

Utesch et al., 2011

Molybdenum disulfide

nanoflakes

K+ channels MD Electrophysiology Binding affinity

Consequences on protein

functionality as K+ channel

Gu et al., 2018

Functionalized

self-assembled monolayers

LKα14

LKβ15

MD + Metadynamics Comparison with literature Binding free energies

Structural changes

Deighan and

Pfaendtner, 2013

Silica surface GGKGG peptide

Chymotrypsin

MD + Metadynamics Circular dichroism spectra Binding free energies at different

environmental conditions

Structural changes

Hildebrand et al., 2018;

Prakash et al., 2018

Generic hydrophobic

nanoparticle

α1-antitrypsin human serum

albumin transferrin

immunoglobulin G

Fibrinogen

α2-macroglobulin

CG No Binding energies

Structural changes

Lopez and Lobaskin,

2015

Gold nanoparticles Insulin

Fibrinogen

CG No Competitive binding

Structural changes

Tavanti et al., 2015;

Quan et al., 2017

Silica nanoparticles Lysozyme CG

(MARTINI)

No Curvature effects on lysozyme

adsorption

Yu and Zhou, 2016

Generic

hydrophobic/hydrophilic

nanoparticle

Bovine serum albumin CG

(DPD)

No Binding energy as a function of

size and surface characteristics

Ding and Ma, 2014
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the wide range of proteins present in the blood flow and their
mutual interactions.

It is important to take into account another limitation of the
method: usually, the investigation is focused only on the proteins
directly adsorbed on the nanoparticle, usually modeled as a flat
surface if the particle size is much larger than that of the protein.
Small nanoparticles can be entirely included in the simulations,
while in intermediate cases the molecular model of the surface
must account for curvature effects.

Molecular simulations must be intended as the ideal
complement to experimental activity in vitro. As shown
in Table 2, simulation outcomes can be compared with
the corresponding experimental information, providing a
deeper understanding thanks to the detail provided at the
molecular level.

The road toward purely predictive simulations is still long
and arduous, but the main points to be addressed are clear.
On the one side is the development of more reliable force
fields that can accurately capture the structural transitions of
proteins (in terms of both secondary and tertiary structure)
after adsorption. On the other side is a systematic validation of
simulations with experimental data, which can clearly highlight
the strong and weak points of the molecular model and the
computational technique and thus where and how to improve
them. The link between experiments and simulations is becoming
stronger and tighter, since it is possible to compute theoretical
quantities (such as circular dichroism spectra) that can be directly
compared with the corresponding experimental outcomes. The
validation of full atomistic models is an unavoidable condition
for exploiting the main advantages of coarse-grained models,
which must be properly parameterized against more accurate
simulations at the molecular level in order to obtain robust and
reliable results.

Nanoparticle–Cellular Membrane
Interactions
Molecular modeling can also be employed to investigate the
interactions of drug molecules and nanocarriers with lipid
bilayers that act as a simplified description of the complex
and heterogeneous cellular membrane. Full atomistic MD
simulations are the method of choice when small drug molecules
are involved, while CG models are the only opportunity if the
interest lies in bigger entities like polymer nanoparticles. A
detailed molecular model of a cellular membrane, which includes
several kinds of lipid molecules as well as transmembrane
proteins, is still out of reach, although progress has recently
been made in this direction (Ingolfsson et al., 2014), as recently
reviewed (Ingolfsson et al., 2016; Marrink et al., 2019). This is due
not only to the long time scales needed for achieving converged
results but also to the lack of the experimental data for complex
membranes (that is, composed of different lipid molecules)
needed to parameterize and validate molecular models. For
this reason, the cellular membrane is usually represented as a
homogeneous bilayer (i.e., which contains only one kind of lipid
molecule such as dipalmitoylphosphatidylcholine) or a simple
heterogeneousmembrane (with two different lipidmolecules and
sometimes cholesterol). In this framework, molecular modeling
can be used to qualitatively understand the impact of nanocarrier

formulation and the presence of adsorbed proteins on non-
specific cellular uptake (that is, not mediated by a receptor).

A typical application of MD simulations is the study of the
permeation of drug molecules through lipid bilayers, which
mimic cellular membranes. Because of the energy barrier related
to membrane crossing, the application of enhanced sampling
methods becomes unavoidable. Further post-processing by
means of an inhomogeneous solubility–diffusion model allows
the evaluation of a position-dependent diffusion coefficient
through the lipid bilayer as well as the overall permeation
coefficient (Dickson et al., 2017). In another study, Bruno
et al. (2015) elucidated the binding mechanism of the multiple
sclerosis biomarker CSF-114 peptide to membrane using an
unbiased atomistic MD approach inspired by the binding free-
energy method, funnel metadynamics (Limongelli et al., 2013).

This approach provides very useful insights, since it allows
the relation of the observed permeation of different drug
molecules to the specific interactions at the atomic level, such
as hydrogen bonds. On the other hand, the use of full atomistic
simulations limits the applicability of this analysis to small
drug/peptide molecules (up to a few hundreds of Da). The study
of nanoparticle permeation with atomic detail would lead to
unfeasible or extremely challenging simulations due to the size of
the system and the long time scales needed to reach converged
results. Because of this, coarse-grained simulations are the
method of choice for the study of nanoparticle–cell membrane
interactions, as widely discussed in the literature (Rossi and
Monticelli, 2014, 2016; Ding and Ma, 2015; Ge and Wang, 2016).
For the same reasons, there has been an increase of interest in the
use of CG simulations for the study of transmembrane proteins
(Lelimousin et al., 2016). In a recent study (Molinaro et al., 2018),
a MARTINI model was employed to study the introduction of a
membrane protein in biomimetic vesicles (leukosomes) obtained
through a microfluidic-based setup. CG simulations allowed
the impact of glycosylation, steric hindrance of the protein
extracellular domain versus the intracellular domain, and relative
to vesicle curvature on protein orientation to be highlighted.

Another limitation is shared by both full atomistic and
coarse-grained methods: as has been mentioned, cellular
membranes are very heterogeneous environments because
of the wide range of lipids involved and the presence
of several transmembrane proteins and receptors, and
simplified models are needed for affordable simulations.
Lipid bilayers made of dioleoylphosphatidylcholine (DOPC)
and dipalmitoylphosphatidylcholine (DPPC) are commonly
used as cell membrane models thanks to the availability of
validated parameters for the force fields. Simulations of bilayers
with heterogeneous compositions (that is, composed by many
different lipid molecules), which would constitute a more
realistic cellular membrane model, are hindered by the lack
of experimental data for force field validation (Poger et al.,
2016). Transmembrane proteins are not included unless the
investigation is focused on the interactions with a specific
receptor or on the behavior of such proteins.

In summary, simulations at the molecular level of
nanoparticle–cellular membrane interactions are usually
performed by means of CG methods and are focused on
simplified systems made up of a mimicking lipid bilayer and a
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small nanoparticle (up to 10–20 nm). The investigation of larger
particles, although of potential interest, is still limited by the
computational effort required and the difficulty of achieving
converged results.

The advantages and disadvantages, for both MD and CG, are
summarized in Table 4.

In general, the comparison with experimental data is more
challenging. Simulation of naked and decorated particles (i.e.,
with surface functionalization and/or a hard protein corona) can
highlight the different interactions with the cellular membrane
and can be compared with the expected and the experimental
cellular uptake. In this framework, simulations are expected
to give those insights at molecular resolution, which cannot
be obtained experimentally; this reinforces the need to have
previously validated models of protein–particle interactions and
model lipid bilayers. Computational efforts are currently focused
on parametric simulations, where the influence of particle
hydrophilicity/hydrophobicity (including charge), coating (e.g.,
PEGylation), shape, and size on membrane permeation and
induced stresses are qualitatively evaluated.

The examples offered by the literature involve generic
nanoparticles with different shapes or functionalization (Yang
and Ma, 2010; Ding and Ma, 2012, 2014; Li and Hu, 2014;
Li et al., 2014), gold nanoparticles (Lin et al., 2010; Rossi and
Monticelli, 2016; Salassi et al., 2017; Lunnoo et al., 2019), and
polymer systems (Schulz et al., 2012) such as dendrimers (Rossi
and Monticelli, 2014, 2016), polystyrene (Rossi and Monticelli,
2016), and polyelectrolytes (Rossi and Monticelli, 2016).

Ding andMa (2014) employed dissipative particle dynamics to
study the influence of human serum albumin corona (vide supra)
around hydrophobic or positively charged nanoparticles on
membrane permeation. They found that at physiological pH, the
HSA corona promotes particle adhesion on a DPPC lipid bilayer
model of a cell membrane thanks to the specific interactions with
the protein coating of a 3-nm hydrophobic particle. They also
investigated the impact of pH and membrane charge.

Li et al. (2014) studied through a coarse-grained model
and dissipative particle dynamics the effect of PEG grafting
density (0.2–1.6 chains nm−2) and molecular weight (550–
5000 Da) on the internalization of an 8-nm particle, proposing

TABLE 4 | Advantages and disadvantages for nanoparticle–cellular membrane

interactions.

Advantages Disadvantages

Availability of validated parameters for

the simulation of lipid bilayers

Only homogeneous bilayers can be reliably

simulated

Particle–membrane interactions at

molecular level

Only CG models can be fruitfully used,

because of the size of the system, which is

still limited to 10–20 nm nanoparticles

Simulation of membrane-crossing by

the naked or functionalized particle

Simulation of the non-specific permeation

across a simplified model system The

influence of receptors is not taken

into account

Protein corona and/or nanoparticle

surface modification can be

accounted for

Hard corona description is very qualitative

and must be validated in a previous step

a optimal choice of parameters for maximizing cellular
uptake. They also characterized the uptake process in detail,
identifying three stages: membrane bending (0 < t < 122 ns),
membrane monolayer protruding (122 < t < 750 ns), and
equilibrium (t > 750 ns).

Recently, Lunnoo et al. (2019) employed the MARTINI CG
model to simulate the cellular uptake of gold nanoparticles.
Notably, they employed a more complex mammalian cell
model previously proposed by Ingolfsson et al. (2014), which
includes 63 different lipid species asymmetrically distributed in
the bilayer. This allowed the limitations of simple models to
be overcome and the complexity of a more realistic cellular
membrane to be accounted for; indeed, they found that neutral
10-nm nanoparticles experienced an endocytic pathway with
a DSPC/DSPG model membrane, while they exhibited direct
translocation across the more complex model of a mammalian
membrane. They also characterized the energy barrier related to
membrane crossing by changing the shape and charge density,
also taking particle aggregation into account.

Similarly to protein corona simulations, in this framework,
molecular modeling must still be considered as a complementary
tool to experimental activity and not as an alternative. Although it
provides interesting insights, the lack of systematic experimental
validation hinders the application of molecular simulations as
a predictive tool. It is also necessary to take into account the
inherent approximations of coarse-grained models, where some
kinds of interactions are poorly accounted for. In addition,
there are still some limitations concerning the size of the
device; according to examples in the literature, the maximum
investigated nanoparticle size is about 20 nm. Simulations of
larger devices not only increase the number of beads but also
require very long calculations to achieve converged results:
the required computational effort is not always feasible. This
issue could in principle be overcome by employing, e.g.,
implicit solvent methods, which further improve computational
efficiency by representing the solvent as a continuum (and
thus reducing the number of explicit beads in the system)
at the price of an additional approximation. The implicit
solvent parameterization of the MARTINI force field, called Dry
MARTINI, is currently validated only for lipid bilayers, although
it has been shown that it can also be used for polymeric systems
after a proper re-parameterization (Bochicchio and Pavan, 2017).
In general, the use of implicit solvent methods requires an
accurate parameterization and validation with experimental data
or more detailed simulations at an atomic scale. Currently, only
qualitative insights concerning more realistic systems (in terms
of particle size) can be obtained through the simulation of
smaller devices.

CONCLUSIONS AND PERSPECTIVES

Simulations at the molecular level, despite the discussed
limitations and drawbacks, constitute a powerful tool for
improving understanding of the governing phenomena at the
nano–bio interface. The intrinsic peculiarities of molecular
modeling, which account for the synergistic effects of several
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factors (particle material, protein adsorption, environmental
effects, interactions with cellular membranes, et cetera), can
provide some insights that are challenging or impossible
obtain experimentally, thanks to the molecular resolution.
The increasing availability of computational resources, the
development of improved force fields (that are more accurate),
algorithm optimization, and theoretical advancements are
constantly pushing molecular simulations beyond their limits,
slowly overcoming the current issues.

Focusing on the protein corona, the conditio sine qua non for
a meaningful simulation is a validated force field, which allows
a reasonable description of secondary and tertiary structures
to be obtained and a robust sampling of the most relevant
conformation. Indeed, discrepancies in the description of protein
structural transitions inevitably affect result reliability and the
subsequent steps (e.g., the study of the interaction of a protein-
decorated particle with a cellular membrane). Descriptive
capabilities are known a priori, since they are addressed in detail
in several papers and FF reference papers. The development
and the improvement of force fields (not only for proteins)
are always ongoing, and updates are periodically released and
discussed in the scientific literature. This refinement process is
currently taking advantage of new state-of-the-art techniques
such as machine learning (Debiec et al., 2016).

Molecular dynamics simulations provide detail at an atomic
level, but they are limited by the time scale of many
phenomena of interest (such as protein folding/unfolding, slow
binding/unbinding kinetics), which is beyond that accessible
through standard simulations. The development of enhanced
sampling methods allows this issue to be alleviated and allows a
more comprehensive ensemble of conformations to be obtained.
Currently, the extensive application of such methods is still
hindered by the size of the molecules under investigation,
which cannot exceed, in the case of proteins, a few tens of
amino acids in order to obtain reliable and converged results.
Further improvements of the method itself and optimization
of computational protocols and algorithms could allow the
investigation to be focused on larger and more complex proteins.

Coarse-grained models, along with suitable methods to
study system dynamics, have emerged as an attractive choice
when molecular dynamics simulations are unfeasible because
of the time and length scales involved. Indeed, despite the
loss of atomic detail, CG models have proved that the
fundamental physical/chemical peculiarities lie at the molecular
model. However, in order to obtain reliable results, careful
parameterization and validation against experimental data still
represent essential steps that are not always addressed.

Simulations are mainly focused on inorganic particles (gold,
silica) or carbon-based devices (graphene, carbon nanotubes),
while there are no relevant examples concerning polymer
nanoparticles. This can be attributed to the fact that molecular
models of inorganic particles are easier to build given the
availability of reliable force field parameters together with their
known and well-parametrized structural properties.

Many efforts are also being devoted to the development
of more realistic models of cellular membranes, as recently
reviewed (Ingolfsson et al., 2016;Marrink et al., 2019). This aspect

cannot be underestimated, because the reliability of the results
concerning drug or nanocarrier–cell membrane interactions of
course requires a robust description of a cell membrane with a
suitable level of approximation.

The available force fields provide validated parameters for
small sets of lipid molecules (although the number of available
compounds increases in every FF update), and it is difficult
to validate simulations of heterogeneous membranes (that
is, made up of several kinds of different lipid molecules)
because of the lack of suitable experimental data. In this
regard, a first attempt has been performed by Ingolfsson et al.
(2014), who employed a CG MARTINI model to simulate
an idealized mammalian plasma membrane, including more
than 63 lipid species asymmetrically distributed in the bilayer.
Marrink et al. (2019) recently published a comprehensive review
that summarizes all the advancements in the field and clearly
describes the ultimate goal for comprehensive modeling: the
simulation of a membrane with hundreds of different lipids, with
a large variety of transmembrane as well as peripherally bound
proteins and realistic gradients of metabolites, ions, and pH.
Although this “definitive” simulation is still far off, there are in the
literature some interesting attempts to model complex systems,
such as viral envelopes and mesoscale simulations remodeling
eukaryotic cell membranes (Marrink et al., 2019).

In conclusion, simulations at the molecular scale have
emerged as a fruitful tool to complement the insights provided
by experimental activity and obtain a deeper understanding of
themain phenomena behind the observed behavior. Despite their
use becoming more and more widespread, there are still some
points that need to be addressed in the near future to overcome
the current limitations:

• Extensive application of plain and enhanced sampling
simulativemethods to study the conformational changes of the
most abundant plasma proteins;

• Availability of force fields of increased accuracy;
• Extension of the study of protein–particle interactions to

polymeric systems prone to bind to the NP surface;
• Systematic and rational validation of molecular models with

ad hoc experimental data;
• Extensive validation of CG models for nanoparticle–cellular

membrane interactions;
• More realistic models of cellular membranes.
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