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Technical energy regulations are an important measure to reach climate targets. However, with 10 

recent developments in new technologies (such as decentralized energy systems, urban energy systems, 11 

energy storage systems etc.) many different options and combination of measures exist to decarbonize 12 

the building stock, which requires an update of current versions of technical energy regulations.  13 

 The aim of this work is to investigate the optimal transformation strategies for buildings and 14 

districts to reach CO2 emission reduction targets for the Swiss building stock, to support policies and 15 

decision makers in developing new energy regulations for the future.   16 

A simulation approach is developed, which combines clustering methods, to define representative 17 

buildings and districts, with multi-objective optimization to investigate the optimal set of building and 18 

district measures to minimize costs and CO2 emissions. Results at building level show that the most 19 

economical measures for reaching emission targets for the future include roof retrofitting and window 20 

replacement together with PV installation. In terms of heating systems, biomass or heat pumps seem to 21 

be the most favourable option. The analysis of district archetypes shows that district level solutions are 22 

mainly applicable to urban communities, whereas building level solutions are clearly the optimal solution 23 

for rural areas.  24 
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1. Introduction  26 

The conditioning of buildings is one of the main contributors to CO2 emissions in Switzerland and 27 

many other developed countries. In order to comply with climate targets of the Swiss Energy Strategy 28 

2050 [1], buildings must become more energy efficient and fossil fuel based energy systems should be 29 

replaced with efficient or renewable energy based solutions. To effectively implement these strategies, 30 

governments are responsible for identifying and implementing suitable refurbishment measures for the 31 

existing building stock, which are economically feasible, yet allow us to reach environmental targets for 32 

reduction of greenhouse gas emissions. Typical identified solutions are building level measures such as 33 

the insulation of the building envelopes, replacing windows, and installing renewable based systems 34 

such as, biomass boilers, photovoltaics, and solar thermal collectors, or efficient technologies such as 35 

heat pumps.  36 

More recently, district or community level solutions are recommended [2] , which include district 37 

heating networks, urban energy systems [3] microgrids, energy hubs [4], virtual power plants and other 38 

prosumer community groups etc. An important tool, which should guarantee the implementation of 39 

necessary changes to the building stock, are policy instruments such as technical energy regulations 40 

(TER). With more stringent requirements established by the Paris agreement, many countries have 41 

started to implement TERs in their climate mitigation actions [5]. However, with recent improvements in 42 

new technologies and increasingly stringent CO2 targets, the existing regulations have to be revised to 43 

account for measures from the building to the district scale. Moreover effective measures, in terms of 44 

both climate reducing potential and cost effectiveness, need to be assessed for the overall heterogenic 45 

building stock. Bottom-up modelling techniques allow us to evaluate optimal refurbishment solutions 46 

for buildings individually, and are often based on building simulation and optimization techniques [6]–47 

[8]. Multi-criteria decision making techniques are considered where optimization objectives, based on 48 

code-based requirements such as specific energy demand requirements, CO2 emission targets, or the 49 

share of renewable energy, are considered together with the cost-optimality [9] since one of the biggest 50 

drawbacks of efficient or renewable solutions are their relatively high investment costs.  51 

Considering district level solutions in optimization techniques allows for assessment of whether 52 

or not a building should be connected to a district heating network and selection of the optimal energy 53 

sources, considering both decentralized and regional available energy potentials such as waste heat 54 

from combined heat and power plants (CHPs) and ambient heat from lakes and rivers. Morvaj et al. 55 

(2016) [10], for example, assessed the optimal operation and sizing of urban energy systems, in which 56 

each building is considered individually in the optimization. Wouters et al. [11] considered an optimiza-57 

tion for a small residential neighbourhood that addressed decentralized generation, storage options, 58 

conversion technologies, and network options on the building level in order to identify key components 59 

for neighbourhood energy systems. Sensitivity analysis is also considered. Similarly, Mehleri et al. [12] 60 

used mixed integer linear programming to consider the optimization district networks including instal-61 

lation of technologies on the building level for a group of 10 buildings.  Lastly, Omu et al. [13] optimized 62 

the installation of technologies in several interconnected district systems, including the sizes of the tech-63 

nologies in each node and the locations of the technologies.  64 
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With the previously mentioned methods, specific solutions for individual buildings and districts 65 

can be assessed. However, for large scale assessment of whole regions or the entire country (which 66 

accounts for thousands of buildings), a trade-off between computational costs and fidelity of the solu-67 

tions needs to be accounted due to the vast number of buildings [14]. An effective method to address 68 

this issue is the use of archetypes, which group samples, such as buildings or districts, with similar char-69 

acteristics into clusters [15]. Typical approaches for defining building archetypes are segmentation, clas-70 

sification, or statistical clustering analysis methods. The most common method that is used for buildings 71 

is a segmentation approach which categorizes buildings according to building characteristics such as 72 

age, type of building, occupancy, number of dwellings, and number of floors, and other available statis-73 

tics as is done in Mata et al (2014) [16] and Montiero et al. (2015) [17]. Statistical clustering methods, 74 

such as k-means or k-medoids, can be used to select the characteristics of archetypes that most accu-75 

rately represent the entire building stock. These clustering methods are used in data mining to partition 76 

the data observances, into k clusters, with each building belonging to the cluster with the nearest statis-77 

tical mean. Unsupervised clustering allows the optimal number of clusters to be chosen in order to best 78 

represent the entire building stock within the archetypes. Simple classes of algorithms are distance 79 

based, i.e. they use the Euclidian distance between data points to determine which ones shall be clus-80 

tered together. Another clustering method used in this work is the nearest neighbour approach. This is 81 

a hierarchical clustering method, in which each data point starts out as its own cluster and the two 82 

nearest clusters in the entire data set are then successively and iteratively united until a desired number 83 

of clusters is reached [18]. Unlike other clustering methods, this method is a deterministic method and 84 

thus will always achieve the clustering results on the same data set. 85 

District archetypes, which take community borders as boundaries into account, are less frequently 86 

addressed in literature (e.g., [19]-[21]). However they can be used to evaluate optimal energy sources 87 

for larger areas and are useful for identifying guidelines, recommendations, or energy master plans for 88 

certain areas.  89 

In this paper a bottom-up simulation and optimization method to evaluate optimal building and 90 

district level retrofitting and energy system selection is presented. The method allows for evaluation of 91 

typical solutions for the overall building stock of Switzerland. To address this, clustering techniques have 92 

been applied to various building characteristics of the Swiss building stock and archetypical buildings 93 

and districts have been identified. Energy consumption and renewable energy potentials have been 94 

identified for archetypical buildings and districts, and a multi-criteria optimization method has been 95 

developed to assess most optimal retrofitting and energy systems solutions for the overall building 96 

stock. These solutions can be used for identifying appropriate recommendations for TER of regions or 97 

countries, which should help in reaching future climate targets.  98 

 99 

 100 
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2. Method 101 

The approach presented in this paper allows for the identification of typical optimal building and 102 

district level retrofitting and energy system solutions for a large building stock. The approach consists 103 

of several steps, starting from a clustering analysis. This is followed by building simulation and optimi-104 

zation techniques which identify optimal solutions (Figure 1). In this process, the following steps are 105 

considered. Firstly, representative archetype buildings of the overall building stock are generated 106 

through clustering methods using different data sources for building characteristics, energy demand 107 

and 3D building data. The approach is applied to residential buildings and also other building types, 108 

such as offices, hospitals, restaurants, shops, and schools.  109 

Once the archetype buildings are identified, an urban energy simulation tool is used to identify 110 

the current energy consumption profiles from all archetypes including future scenarios, which take dif-111 

ferent envelope retrofitting interventions into account. In a third step, archetypical districts are identified 112 

which build on the archetypical buildings including their energy consumption and the current and po-113 

tential future energy resource potentials. Next, an optimization model is generated which assesses the 114 

optimal retrofit solution and building or district energy system, based on a multi-objective linear opti-115 

mization. The method is applied to the archetype buildings and districts of Switzerland and the optimal 116 

set of measures and systems are identified based on a multi-criteria analysis where costs and life-cycle 117 

CO2 emissions (including grey energy of retrofit materials and installed technologies) are taken into 118 

account.  119 

In order to consider the retrofits in districts, annual retrofit rates that are based on building con-120 

struction age from the Swiss Energy Strategy 2050 [1]are taken into account. In addition, the applied 121 

retrofits for districts are based on the optimal retrofit solutions chosen in the building level cases. In a 122 

last step, a robustness analysis is performed which takes uncertainties of input parameters into account 123 

(such as changes in energy prices, system and retrofitting costs, efficiencies and changes in CO2 values). 124 

Robust solutions for the building stock are identified, and compared to the deterministic solutions.  125 
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Figure 1 Overview figure on approach 

2.1. Archetype buildings 126 

The Swiss building stock consists of more than 1.8 Million buildings [22]. Performing building 127 

simulation and optimization for the entire building stock would be too time consuming and computa-128 

tionally intensive. Consequently, a reasonably small subsample of buildings can be selected that repre-129 

sents the whole building stock in a sufficient manner.  130 

2.1.1.  Residential buildings 131 

Switzerland’s residential building stock is composed of approximately 1.8 Million buildings, 32% 132 

of which are single family homes (SFH) and 16% of which are multi-family homes (MFH)[22]. To define 133 

representative archetype buildings, clustering techniques on various building characteristics are de-134 

ployed. In order to effectively cluster, information such as building area, age of the building, energy 135 

demand, climatic region or renewable energy potential is collected. In this analysis the Swiss building 136 

stock has been condensed to 50 multi-family buildings (MFH) and 50 single-family buildings (SFH) using 137 

the nearest neighbours clustering algorithm, which selects buildings based on dissimilarity. 138 
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More explicitly, this selection algorithm operates according to the following 4 steps, which are 139 

shown in Figure 2 and Figure 3: 140 

1. A subset of properties describing the individual buildings in the initial building 141 

stock is selected. This selection is based on the potential for identifying dissimilarities and the 142 

availability of data.  143 

2. The n selected properties allow for a representation of the buildings in an n-144 

dimensional feature space, in which each selected property defines one dimension. The location 145 

of each building in the feature space therefore depends on the value of its properties.  146 

3. The feature space is then standardized based on the following equation:  147 

𝑓𝑗,𝑠𝑡𝑑
𝑖 =

𝑓𝑗
𝑖−𝑓𝑖̅̅ ̅

𝜎
𝑓𝑖

 ,   ∀𝑖 ∈ {1, … , 𝑛} 𝑎𝑛𝑑 ∀𝑗 ∈ {1, … , 𝑚}      (1) 148 

where 𝑓𝑗
𝑖is the ith feature of the jth building. n and m are the total number of features 149 

and buildings used in the selection algorithm, respectively. 𝑓 �̅� refers to the mean of the i th 150 

feature across all buildings and 𝜎𝑓𝑖 is the corresponding standard deviation. Standardising the 151 

feature space is necessary in order to treat dissimilarities equally across all features in the next 152 

step. 153 

4. In this last step, buildings are removed from the initial building stock based on 154 

their similarity to other buildings. Mathematically, the similarity of two buildings can be repre-155 

sented by their proximity in the standardised feature space. Therefore, the nearest neighbour of 156 

each building in the feature space can be viewed as the building it is most similar to. The building 157 

with the closest nearest neighbour is therefore iteratively removed from the initial building stock 158 

since it presents the highest similarity to another building. This iterative process is repeated until 159 

the remaining building stock reaches the desired size.  160 
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 161 

 162 

Figure 2 Selection and standardization of building properties (features in the feature space) as performed in steps one 163 

to three of the selection algorithm. The black dots represent the values of the respective properties of all buildings in 164 
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the initial building stock.165 

 166 

Figure 3 Iterative determination of nearest neighbours in the feature space and removal of the building with the clos-167 

est nearest neighbour from the remaining building stock. (Step 4 of the selection algorithm) 168 

 169 

In this analysis, data from the Building and Apartment Registry (Gebäude und Wohnungsregister 170 

or GWS) from the Swiss Federal Office for Statistics (BFS) [22], the Swiss Federal Office for Topography 171 

(swisstopo) [23] and the Swiss Competence Centre for Energy Research (SCCER) [24] are consolidated to 172 

form the initial building stock used by the above mentioned algorithm. The combined database provides 173 

detailed information on approximately 230’000 MFH and 400’000 SFH, i.e. approximately 35% of the 174 

Swiss building stock. The exact building properties selected from these data sources are shown in Table 175 

1.  176 

The subset of properties, which were deemed to be most relevant to the selection of archetype 177 

SFH, are the district’s location, floor area, building height, construction period, energy carrier for heating, 178 

energy carrier for hot water, and number of residents. In addition to these properties, the number of 179 

dwellings in each building is used in the selection of archetype MFH. 180 

Due to the very large data set used for clustering in this approach, this method is particularly effective 181 

since it is deterministic and will result in the same set of clustering solutions every time it is run. Other 182 

clustering methods, such as k-means or medoids, take very long times to run for large data sets and 183 

due to the number of residential buildings, the nearest neighbour clustering method was preferred. 184 

 185 
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Table 1: Features available at a building-level and their corresponding sources 186 

Features 
Databases by: 

BFS SCCER swisstopo 

GIS building code   ✕ 

Identifier of municipality ✕ ✕ ✕ 

Identifier of canton ✕ ✕ ✕ 

Postal code ✕   

Building coordinates ✕ ✕ ✕ 

Classification of construction zone   ✕ 

Building category BFS ✕   

Building category SCCER  ✕  

Number of dwellings in building ✕   

Number of residents ✕   

Number of main residents ✕   

Construction period ✕   

Number of floors ✕   

Building height   ✕ 

Ground floor area   ✕ 

Total floor area  ✕ ✕ 

Estimated total heated surface  ✕  

Heating system ✕   

Energy carrier for heating ✕ ✕  

Availability of hot water ✕   

Energy carrier for hot water  ✕  

Heating demand  ✕  

Domestic hot water demand  ✕  

Final energy demand for heating& 

domestic hot water 
 ✕  

 187 

This clustering approach is applied on the selected SFH and MFH buildings, and the resulting 188 

archetypes are used for identifying relevant measures. The building categories and the reference heating 189 

energy systems for all archetypes are shown in Figure A1. In Figure A1, it is shown that the majority of 190 

buildings are from the period of 1949-1994 and 77% of the archetype buildings still use either an electric, 191 

oil, or gas boiler which leaves significant room for improvement of the building stock. The locations of 192 

the representative buildings in Switzerland are shown in Figure 4. 193 

2.1.2.  Non-residential 194 

Non-residential buildings in Switzerland are registered in the General Classification of Economic 195 

Activities (NOGA) database, which assigns to each building a business category [25]. The most prevalent 196 

business categories that utilize both heating and electricity demand are selected, and assigned to the 197 

archetype categories shops, offices, restaurants and hotels, schools and hospitals [26]. In a next step, the 198 
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non-residential building stock was assigned to these categories and the floor area, building height and 199 

building age of all buildings, based on the GWS database [22] was used for the k-medoids clustering 200 

analysis. K-medoids is a clustering method, which clusters based on minimization of the distance be-201 

tween points in a cluster and the determined centre of that cluster. This method was chosen over the 202 

nearest neighbour clustering method that was used for the residential buildings, as the there are fewer 203 

data observances with the non-residential buildings and thus a more computationally intensive method 204 

could be used. The clustering resulted in 45 archetype buildings for the non-residential building stock, 205 

which are summarized in Table 2.   206 

Table 2 Identified non-residential archetypes 207 

Building category Nr of Archetypes Total number of buildings represented 

Restaurants 9 6380 

Schools 9 2115 

Hospitals 9 4453 

Offices 9 11202 

Shops 9 7512 

Total 45 31662 
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Figure 4 Residential building archetypes, 50 single-family houses (SFH), and 50 multi-family houses (MFH) 

2.2. Building energy demand, solar potential and retrofitting solutions 208 

2.2.1. Building energy demand 209 

Energy demand calculations for archetypical buildings are performed using the tool CESAR "Com-210 

bined Energy Simulation and Retrofitting" [27]. This tool utilizes the building simulation engine Ener-211 

gyPlus [28] to calculate hourly electricity and heat demand profiles of buildings within a district over a 212 

period of one year. Geo-spatial information (GIS data) pertaining to building floorplans and their height 213 

(2.5D shape information) is used to represent the geometry of buildings. Neighbouring buildings are 214 

considered as shading objects in the model. Additional input information for the simulations pertains to 215 

age, type, and the primarily used energy carriers for space heating and domestic hot water. Internal 216 

conditions pertaining to occupancy, appliances, domestic hot water (DHW), heating set-point tempera-217 

ture, cooling set-point temperature, activity levels, and lighting patterns are taken from SIA 2024 (2015) 218 

[29]. Energy carriers for heating and DHW are required for the conversion of energy demand into energy 219 

consumption. Furthermore, information on energy carriers used by individual buildings is used to deter-220 

mine its energy related emissions. Hourly energy demand calculations are performed for all archetype 221 

buildings for a full year (8760 hours), and weather conditions of the different climatic regions are repre-222 

sented by 54 weather files (taken from Meteonorm [30]) based on SIA 2028 climate regions [31]. This 223 

data is stored in a database and is later used for the analysis of building and district level solutions. 224 

The initial constructions for building age (without retrofit), for both original constructions and 225 

retrofitted constructions are shown in Table 3. The constructions preceding 1994 are based on the Insti-226 
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tut für Bauforschung [32]. Constructions from 1994-2007 are taken from the Bauteilkatalog [33] com-227 

bined with typical insulation thickness values from Jakob (2008) [34]. For new buildings (>2010) and 228 

retrofit constructions, the minimum (Grenzwerte) insulation thicknesses according to SIA380/1 are used 229 

[34]. 230 

Table 3  U-value (W/m-K) of age dependent constructions used in the CESAR tool (non-retrofitted or original con-231 

structions and the constructions with insulation added during a retrofit) 232 

Construc-
tion period 

Walls Roof Floors Windows 

Original Retrofit Original Retrofit Original Retrofit Original Retrofit 

≤1918 1.645 0.243 0.752 0.236 0.765 0.243 5.778 1.06 

1919-1948 1.509 0.244 0.745 0.249 0.971 0.239 5.778 1.06 

1949-1978 1.259 0.233 0.856 0.248 0.778 0.254 3.126 1.06 

1979-1994 0.46 0.239 0.392 0.24 0.706 0.246 1.668 1.06 

1995-2001 0.268 0.215 0.289 0.22 0.336 0.248 1.652 1.06 

2002-2006 0.222 0.161 0.245 0.161 0.91 0.291 1.407 1.06 

2007-2009 0.211 0.155 0.206 0.161 0.252 0.18 1.3 1.06 

2010-2014 0.2 0.14 0.186 0.14 0.232 0.2 1.06 0.927 

>2014 0.17 0.14 0.17 0.14 0.211 0.2 0.927 0.927 

2.2.2. Solar potential 233 

The solar potential of roof surfaces of all archetype buildings were computed using EnergyPlus. 234 

The simulation engine EnergyPlus calculates radiation on a sloped surface based on solar radiation in-235 

formation from the weather files of the location, and roof geometry derived from Swisstopo [23] such 236 

as the roof orientation and inclination. Subsequently, the solar incident on the sloped roof surfaces is 237 

computed for every hour of the year. North facing roof surfaces are excluded from the analysis. The total 238 

south oriented roof surface available for PV installation is further reduced to 60% to account for addi-239 

tional non-useable areas such as chimneys or other roof obstructions [36]. The solar potential of indi-240 

vidual building archetypes are stored in the database to be further used for the analysis. 241 

2.2.3. Retrofitting solutions 242 

An additional module of CESAR allows for evaluation of different partial envelope retrofits and 243 

other energy efficiency measures in addition to the current energy demand of the buildings. Using this 244 

module, envelope measures, such as insulating different surfaces or replacing windows, can be evalu-245 

ated. In case of retrofitting existing construction elements, the original archetypical constructions per 246 

building age are modified with insulation added in order to meet the minimum insulation thickness set 247 

by current energy efficiency standards (SIA 380/1) [34]. For the analysis a set of retrofitting interventions 248 

(as per Table 4) are considered.  249 

 250 

 251 

 252 

 253 
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Table 4 List of investigated measures 254 

 Considered measures at building level 

Envelope  

interventions 

Roof insulation 

Wall insulation 

Replacement of windows 

Ground floor insulation 

Window replacement and wall insulation 

Full retrofitting 

2.3. Archetype districts 255 

To evaluate potentials for district level solutions, the k-medoids clustering method was used to 256 

classify existing communities of different sizes, with different building densities, and with different re-257 

newable potentials for renewable energy into urban, suburban and rural categories. In order to cluster 258 

the buildings, the following methodology is used: 259 

1.  The location of each building in the commune registry of Switzerland (from the GWS data 260 

set) is identified [22].  261 

2. Next, the overall map of Switzerland is structured into cells of 1 km by 1 km (see Figure 5). 262 

Raster cells where no buildings are located are ignored. For every raster cell, the total 263 

floor area of buildings within this raster cell is aggregated for every cell using ArcGIS.  264 

3. The resulting density values are then clustered into high, medium and low-density raster 265 

cells based on the percentage of the communes (Gemeindes) in Switzerland that are clas-266 

sified as rural, suburban, and urban by the Swiss Federal Buro for Statistics data analysis 267 

on Spatial Divisions [37]. Using these percentages, the raster cells are sorted by density 268 

and are classified into three clusters that reflect rural, suburban, and urban by raster cell 269 

rather than Gemeinde. Please refer to Figure A2 in the appendix for the histogram of 270 

raster cell density and the corresponding cluster divisions. Switzerland consists of 2222 271 

communities of  different sizes [22], in which each community is made up of these raster 272 

cells.  273 

4. District archetypes are then extracted. Following the classification approach, a k-medoids 274 

clustering algorithm divides the three groups of districts into four respective clusters 275 

based on a matrix. This matrix includes different characteristics obtained at building level. 276 

The clustering algorithm takes into account building types (SFH, MFH, offices, etc.), age 277 

of the buildings, as well as the community based renewable potential. Information on 278 
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renewable potential, pertaining to solar potential on roof surfaces is taken from the build-279 

ing data base (as described in section 2.2.2). Biomass (wood chips and pellets) and waste 280 

potential (including manure and waste)  were taken from Yazdanie (2017) [38].  281 

The clustering analysis resulted into the three categories (urban, suburban and rural) in which each cat-282 

egory contains 4 archetypes (summarized in Table 5 and displayed in Figure 6). Resulting assumption on 283 

renewable potential and building information is summarized in Figure 7.  284 

 285 

 

Figure 5 Raster cells of high, medium or low-density 

 

Table 5 District level archetypes 286 

   Nr of raster cells 

Communities represented by ar-

chetype 

  

Inhabit-

ants. high med low % Nr % Nr 

U
rb

a
n

 Rheinfelden 11290 897 13 11 51 45 

4 89 
Frauenfeld 25297 836 1892 257 25 22 

Basel 171017 3677 53 0 19 17 

Grenchen 16728 1393 715 18 5 4 

S
u

b
u

r-

b
a
n

 

Täuffelen 2537 0 548 9 45 320 

32 711 
Beringen 3374 266 276 42 25 178 

Meiringen 4489 0 681 182 18 128 

Gossau (ZH) 9397 39 630 176 12 85 

R
u

ra
l 

Thörigen 1016 0 189 11 37 526 

64 1422 
Grandval 333 0 59 34 31 441 

Tobel-Tägerschen 1378 0 285 24 20 284 

Endingen 1957 0 213 61 12 171 

      300 2222 100 2222 
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 287 

 288 

Figure 6 Representation of communities belonging to each cluster. Green represents rural districts, yellow represents 289 

suburban districts, and red represents urban districts. 290 

 291 
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 292 

Figure 7 Renewable potential and building type and age of archetype districts. 293 

 294 
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The energy demand profiles (electricity and heating) for residential and non-residential buildings 295 

of the above-mentioned archetype districts are calculated using the archetype building energy simula-296 

tion database and fitted to the actual building’s square area encountered in each typical district. The 297 

energy demand is then calculated for two different scenarios, in which it is assumed that building enve-298 

lopes are retrofitted at different rates. For the two future scenarios, the optimal building retrofit selec-299 

tions from the building optimizations (which will be described in section 2.4) are used. This allows for 300 

assignment of optimal retrofitting solutions (e.g. replacement of windows, façade retrofitting, etc.) for 301 

every building within the district. In order to apply the appropriate partial retrofit, building level optimal 302 

Pareto front solutions for the targets between 10±2 kg CO2/m2 are used. Since our average target for 303 

the buildings is set to be in the range of 10 kg CO2/m2, as specified by SIA 2040 [39], we chose to use 304 

uncertainty bounds of plus or minus 20% to provide a greater range of solutions with an average of 305 

approximately 10 kg CO2/m2.  In order to account for retrofitting rates per year, two different scenarios 306 

are considered which include the business as usual scenario (BAU) with an average retrofitting rate of 307 

1% and the new energy policy scenario (NEP) with average retrofitting rate of 2.5% according to the 308 

Swiss energy strategy 2050 [1]. The actual retrofit rates are set by the age of the building and the year 309 

of consideration that are found in the energy strategy itself are shown in Table A5. The applied partial 310 

retrofit rates are shown in Table A6. Future scenarios are calculated for the years 2035 and 2050 (so BAU 311 

2035, BAU 2050, NEP 2035 and NEP 2050).  Figure 8 shows the energy demand for the district archetypes 312 

under the different scenarios. The retrofitting rates and solutions classified based on the scenarios, build-313 

ing ages and types are illustrated in Table A5 and the recommended partial retrofit rates are shown in 314 

Table A6.  315 

 316 

 317 

 318 

 319 
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 320 

Figure 8 Comparison of aggregated loads for Reference scenarios - BAU and NEP scenarios for years 2035 321 

and 2050. 322 

2.4. Building and district system optimization  323 

In order to identify most promising retrofitting strategies (for both the building envelope and 324 

energy supply systems) an optimization tool based on the energy hub approach is utilized. The approach 325 

is based on mixed-integer linear programming optimization [40]. To identify multi-objective (cost and 326 

life cycle CO2 emissions) optimum solutions the epsilon constraint method is deployed [41] to generate 327 

10 Pareto solutions which minimize the two objective functions: cost and life-cycle CO2 emissions. The 328 

generated energy demand profiles, together with existing energy supply options (grid electricity, natural 329 

gas, oil, heat pump or district heating), renewable energy potentials (such as solar, biomass or ground 330 

source heat) of individual buildings are taken as input to the model. Demand profiles are further pro-331 

cessed to identify typical days and peak days, which are then used in order to reduce the horizons for 332 

the optimizations. This process is called the typical days method and is described in Marquant et al. 333 

(2015) [42]. Six typical days were assumed using this methodology and three peak days (one for elec-334 

tricity, one for heating, and one for solar radiation) were assumed. Additionally, system options, which 335 

are mentioned in Table 2, are implemented into the optimization framework, which pertain to biomass 336 

boilers, micro combined heat and power plants (CHP), air source heat pumps (ASHP), ground source 337 
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heat pumps (GSHP), photovoltaic panels (PV), solar thermal collectors (ST), oil, and gas boilers as con-338 

version technologies. Hot water thermal storage tanks and batteries are also included as storage tech-339 

nologies. The building envelope retrofitting scenario and energy efficiency measures are implemented 340 

as additional decision variables within the optimization framework. The resulting energy hub configura-341 

tion is depicted in Figure 9.  342 

 

Figure 9: Layout of the energy hub optimization with included technologies for building and district energy 

systems as well as building envelope-retrofitting options. 

2.4.1. Building level system assumptions 343 

For the building level optimization, the typical buildings were simulated considering the selected 344 

measures for implementation. This optimization focused on the optimal combination of heating system 345 

selection and retrofit update. For the retrofit, the buildings were simulated with seven different retrofit 346 

choices: no retrofit (the reference case), roof retrofit, ground retrofit, façade retrofit, window retrofit, 347 

combined façade and window retrofit, and a full retrofit including all partial retrofit options. The costs 348 

and embodied emissions (EE) of all retrofit types are calculated with the CESAR tool for each building 349 

depending on the building specific roof, window, façade, or floor area and are imported into the opti-350 

mization. A binary value is allocated for each retrofit option with the requirement that either only one 351 

retrofit option can be selected. The buildings can choose to keep their current heating system (typically 352 

oil boilers, gas boilers, electric boilers, heat pumps, or biomass boilers) or they can update their heating 353 

system to a new gas boiler, a micro combined heat and power system, a ground source heat pump 354 

(GSHP), and air source heat pump (ASHP), or a new biomass boiler. Although any type of heating system 355 

can be installed, there is a requirement in the model that a heat pump can only be installed in old 356 

buildings (<1994) with an upgrade of the facade or with underfloor heating. Since heat pumps deliver 357 

water to buildings at lower temperatures than boiler systems, it is recommended that heat losses 358 

through the facade are reduced before the installation of a heat pump [40]. In addition, depending on 359 

the commune of the building, a restriction on the biomass potential (based on the available wood re-360 

sources on the community level) is implemented [43]. This restriction is calculated in terms of kWh of 361 
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wood chips or pellets/year/m2 and is based on the available wood resources in the community [38] and 362 

the total heated floor area in the commune [22]. 363 

The rooftop area available for installation of solar technologies is also assessed and either photo-364 

voltaic panels or solar thermal panels can be installed. The combined area of the PV panels and the ST 365 

panels must be less than or equal to the maximum area allowed on the roof, which was defined in Section 366 

2.2.2. Finally, storage technologies, such as thermal storage and battery storage are also considered. 367 

The location dependant and retrofit dependent building loads are then imported into the optimi-368 

zation with the solar profiles, the technology cost and performance data, and the embodied emissions 369 

of the technologies, and optimal combination of measures are determined. Details on the energy carrier 370 

prices and carbon factors (including grey emissions) can be found in Table A1 and details on the tech-371 

nology capital costs (fixed and linear), the embodied emissions (fixed and linear) the technology perfor-372 

mance data, the lifetimes of the technologies can be found in Table A2. The different partial retrofit costs 373 

and embodied emissions are calculated based on the assumptions in Table A2. 374 

2.4.2. District level system assumptions 375 

The district scale energy hub model considers the possibility of installing building and district 376 

scale systems, taking into account the economies of scale and differences in systems efficiencies based 377 

on the installed system scale. A constraint is added that ensures that district heating networks are only 378 

allowed in high density raster cells and within half of the medium raster cells. The deployment of the 379 

district heating network is a decision variable within those boundaries. The capacity and the losses of 380 

the district heating network depend on the total number of buildings connected to the network and on 381 

the average distance between buildings interconnected in the district heating network. The average 382 

distance between buildings connected is computed by solving the minimum spanning tree problem for 383 

each district; thus predicting the total length of potential network if fully deployed and the average 384 

distances between neighbourhood buildings. In order to solve the optimization problem, the model 385 

includes a formulation for linearizing quadratic equations. 386 

The following assumptions are formulated at the district scale level for the optimization model: 387 

 The technologies such as boilers (wood, waste, biomass, and gas), heat pumps (GSHP, ASHP) 388 

and CHP (wood, waste, gas) can supply both the low temperature district heating network 389 

(LTDH) and the high temperature heating network (HTDH). Therefore, they are specified twice 390 

in the technology list.  391 

 The boiler and CHP technologies which supply to the LTDH and HTDH network have the same 392 

costs and efficiencies in both cases.  393 

 Waste as a fuel is assumed to have an emission factor of 3 g CO2/kWh [44] 394 

 Fixed and linear costs and embodied emissions have been accounted for in the model for each 395 

technology at the building and district scale (please refer to Table A2 for more details) 396 

 Only buildings in dense and medium rasters can be supplied through both district scale and 397 

building scale energy systems.  398 
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 Constraints are added for the availability of biomass and waste for building level and district 399 

level systems; biomass potential being wood potential and waste including both manure and 400 

other types of waste. 401 

2.5. Robustness analysis 402 

The preceding methodology seeks to identify optimal building and district retrofitting solutions 403 

in a deterministic manner by assuming perfect knowledge of all relevant model input parameters. How-404 

ever, in reality, this is very rarely the case and most model parameters should be treated as uncertain. 405 

This can be either because some model parameters are inherently stochastic (e.g. energy demand pat-406 

terns, which are in turn affected by stochastic occupant behaviours, weather patterns, climate change 407 

etc.) or because it is extremely difficult to acquire perfect knowledge about them (e.g. regarding future 408 

energy carrier and technology prices). 409 

Neglecting these uncertainties entails the risk of suboptimal solutions in cases when the actual 410 

values of the model parameters are different from the ones assumed during the design stage. As a result, 411 

this section aims to, firstly, categorize the most important uncertain parameters of the energy hub model 412 

and, secondly, to identify optimal building retrofit solutions that are robust against uncertainty.  413 

The methodology for this is summarized in Figure 10. Instead of single values for the model input 414 

parameters, probability distributions are used in the stochastic analysis to describe the model’s uncertain 415 

input parameters. Then we draw multiple samples for the probability distributions and we perform 416 

Monte Carlo simulations by executing the energy hub model for each sampled set of values. The out-417 

come of this analysis is a set of Pareto optimal solutions for different possible realisations of uncertainty. 418 

Then by examining and analysing the variations of the model output, we can identify the most robust 419 

solutions i.e. the solutions that emerge most often in the resulting Pareto fronts.  420 

 421 

Figure 10 Methodology for stochastic Monte Carlo analysis. 422 

Model parameters, which are treated as uncertain in this analysis, are summarized in Table 6. Various 423 

sources are used to assign probability distributions to the model’s uncertain parameters including a PhD 424 

thesis  by Mavromatidis (2018) [45] and the Swiss Energy Strategy 2050 [1], while in some cases, due to 425 

the lack of reliable sources, we rely on our own estimates to assign probability distributions to the un-426 

certain model parameters.  427 

During this process, special attention was paid to ensure that the chosen probability distributions 428 

capture the uncertain characteristics of each parameter. For instance, the probability distributions of the 429 

energy demands reflect the fact that besides the uncertainties caused by the building occupants, heating 430 

demands are projected to most likely decrease because of climate change impacts, while the reverse is 431 
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true for cooling demands. Similarly, regarding the investment costs of energy technologies, the proba-432 

bility distributions capture both the uncertainty due to inaccurate estimates of technology costs and due 433 

to the possibility of technology developments changing the costs of energy technology in the future. 434 

Moreover, the distributions reflect the fact that the costs of mature technologies, like gas or oil boilers, 435 

will most likely not reduce in the future, while for others, such as PV panels and batteries, aggressive 436 

cost reductions are a considerable possibility. As a result, the probability distributions of less mature 437 

technologies are more skewed towards lower future costs, while for mature technologies the probability 438 

distributions indicate equal probabilities of higher and lower costs than today. The list of the uncertain 439 

parameters along with the probability distributions used for them are given in Table A4 of the Appendix. 440 

The stochastic analysis is performed for 50 SFH, 25 MFH considered and for each building 50 441 

Monte Carlo simulations with different values for the input parameters are performed.  442 

Table 6. List of uncertain model parameters 443 

Uncertain model parameters 

Building energy demands (heating, cooling, electricity demands) 

Solar radiation patterns 

Energy carrier prices (electricity, natural gas, oil, biomass) – CHF/kWh 

Energy carrier emission factors (electricity, natural gas, oil, biomass) – 

gCO2/kWh 

Investment costs for generation & storage technologies 

Embodied emissions for generation & storage technologies 

Investment costs for retrofit interventions 

Embodied emissions for retrofit interventions 

Technical characteristics of energy generation and storage technologies   

 444 

  445 
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3. Results and discussion 446 

3.1. Building interventions 447 

Building envelope interventions 448 

For the 50 archetypes, the current energy demand for space heating, domestic hot water, and 449 

electricity is calculated using the CESAR tool. Additionally, different retrofitting building envelope sce-450 

narios are examined which pertain to roof, ground, or wall insulation or a change in windows or a com-451 

bination of those measures. The distribution of resulting heating loads of the different age categories of 452 

buildings in all 54 weather stations, according to SIA 2028 [31] in Switzerland are shown in Figure 11. 453 

This Figure shows that in the non-retrofitted state of the buildings, the distribution of energy demand is 454 

much more pronounced compared to buildings, which are already retrofitted. This effect is demon-455 

strated significantly in older buildings versus newer buildings. The most effective individual envelope 456 

interventions are the insulation of roofs or change of windows, which shows that end energy demand, 457 

can be reduced within a range of 20 to 30%. The resulting energy demand of building envelope-retro-458 

fitting interventions can be examined in this way, however the optimal selection of each measure to 459 

reach CO2 targets, when combined with a heating system change, is difficult to extract. In a next step, 460 

the demand reduction, retrofit costs, and retrofit embodied emissions are used as input information in 461 

the optimization.  462 

 

Figure 11 Violin plots of the distribution in energy consumption for different retrofitting scenarios per age class of 

SFH and for 54 weather station profiles in Switzerland (over 18,200 individual runs) 

Optimal retrofitting measures 463 

To evaluate optimal building retrofitting measures, the optimization framework for building en-464 

velope and system interventions as described in section 2.4 is deployed. In the optimization, the optimal 465 

retrofit and systems selections are chosen according to the multi-objective function: one retrofit option, 466 

one heating system, an optional PV or ST solar system, and options for thermal and battery storage are 467 
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chosen. Due to the long computational time of the model for the robust solutions, the analysis is con-468 

ducted for a subset of 50 SFH and 50 MFH archetypes, which represent 75% of all buildings in the resi-469 

dential building sector and additionally for the non-residential archetype buildings. The multi-criteria 470 

analysis for costs and CO2 emissions results in 10 Pareto optimal solutions. Figure 12 shows the average 471 

Pareto fronts for SFH, MFH and non-residential buildings.  472 

Each point in these curves represents the average of the Pareto points for the resulting solutions. 473 

It is interesting to see that solutions for MFH are significantly cheaper in terms of costs and CO2 emis-474 

sions, followed by schools and office buildings. This is due to economies of scale for larger buildings 475 

which reducing the relative costs for retrofits and system installations per m2 and kW respectfully... Figure 476 

13 shows the distribution of the optimal building envelope interventions (top graphs) and building sys-477 

tems (bottom graphs) based on of the resulting CO2 values. The resulting optimal heating systems show 478 

a shift from fossil fuel based heating systems (such as oil or gas boilers) in solutions favouring a cost 479 

minimization to renewable based systems such as biomass boilers and photovoltaic panels, and highly 480 

efficient technologies like air-source heat pumps for solutions favouring CO2 emission minimizations. 481 

ASHPs are generally favourable to GSHPs due to their lower costs, even though GSHPs have higher 482 

efficiencies. It can be seen that in the case of SFHs, the most prevailing heating system selection pertains 483 

to biomass boilers, whereas for MFHs mainly ASHP are selected. This is due to a restriction of availability 484 

in the biomass potential for individual buildings.  485 

Switzerland would like to reduce its CO2 emissions until 2050 to one fourth compared to current 486 

emissions, which shall act as a basis to reach the goals of the 2000-Watt society in the building sector 487 

[46]. The targets under this regulation include grey energy and grey emissions, as is done in this work. 488 

In order to achieve this, overall CO2 emissions should be reduced to an average of 10 kg CO2-eq/m2 for 489 

construction and operation of retrofitted buildings [39]. This goal would be achieved with the first two 490 

solutions shown in Figure 13.  In this Figure, it is seen that many buildings require significant measures 491 

to meet the targets set for buildings as the cost optimal solutions in all cases will miss the targets. The 492 

cost for offsetting CO2 emissions to meet the targets (< 10 kg CO2-eq/m2) is in the range of CHF 200/kg 493 

CO2-eq for MFH and CHF 420/kg CO2-eq for SFH.  Shops and restaurants were the most difficult building 494 

to decarbonize in this case study due to high energy demands. 495 

Figure 14 shows additionally, for all Pareto points and archetypes, the system and envelope ret-496 

rofitting selection and the CO2 emissions that result from the selected combination. As can be seen from 497 

this Figure, system solutions that reach the target are mainly ASHP and biomass boilers, only few build-498 

ings, which have an oil or gas boiler installed, are able to reach the 10 kg CO2-eq/m2 threshold. However, 499 

in terms of envelope retrofitting optimal, the solutions differ quite significantly and range from no ret-500 

rofitting to full retrofitting of the building envelope. These results show clearly that the optimal solution 501 

depends significantly on the initial state of the building and its boundary conditions.  502 
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 503 

Figure 12 Average Pareto front for single family, multi-family and non-residential buildings, representing the Swiss 504 

building stock. The life-cycle emissions represent annualized CO2 emissions over the lifetime of the components used 505 

and their operation. 506 

 507 

 508 

Figure 13: For the top 50 single-family homes and multi-family homes, the optimal retrofit and technology selection 509 

is determined. The solutions are grouped by their CO2 emissions. Similar figures including non-residential buildings 510 

can be found in Figure A4 and A5 in the Appendix 511 
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 512 

Figure 14 Distribution of Pareto optimal solutions for 50 SFH and 50 MFH archetype buildings depending on their 513 

CO2 emissions. 514 

From all results which reach the emissions level between 8-12 kg CO2 eq/m2 , the combination of opti-515 

mal measures are selected which have the highest frequency within the 500 results for all buildings (50 516 

buildings and 10 optimal solutions per building result in 500 optimal points). These are shown in   517 
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Table 7 for SFH and MFH. The set of six identified solutions are applicable to 68% of all solutions 518 

that fall inside the recommended CO2 target range. Identified measures pertain to roof retrofitting or 519 

window replacement and façade insulation together with PV installation. A battery is selected for about 520 

8% of solutions in MFH and 7.7% of solutions in SFH. In terms of heating systems, biomass seems to be 521 

the most favourable option for SFH, while ASHPs can also be attractive, particularly for MFH. 522 

  523 
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Table 7 the identified most significant measures for SFH and MFH for the deterministic solutions 524 

Deterministic Solutions 

MFH 

Envelope retrofit 

type 
Heating system 

Solar 

system 
Battery Share 

Window-wall ASHP PV  41.3% 

Roof Biomass PV  8.15% 

No retrofit ASHP PV  6.27% 

Window ASHP PV  5.01% 

No retrofit Biomass PV  4.07% 

No retrofit ASHP PV  4.07% 

    69% 

 

SFH 

Envelope retrofit 

type 
Heating system 

Solar 

system 
Battery Share 

Roof ASHP PV  25.5% 

No retrofit ASHP PV  19.3% 

Window-wall GSHP PV  7.72% 

No retrofit Biomass PV  5.02% 

Roof Biomass PV  4.25% 

Window-wall ASHP PV  4.25% 

    66% 

Robustness results 525 

To illustrate the effects that uncertainty can have on our analysis, Figure 15 contrasts the Pareto 526 

front of optimal solutions resulting from the deterministic model to the Pareto fronts resulting from the 527 

Monte Carlo analysis for a sample building. It can be observed that while the trends in the deterministic 528 

and the stochastic case are similar, the stochastic analysis results reveal that the actual economic and 529 

carbon performance of the optimal solutions can vary widely and might be significantly different than 530 

the one predicted by the deterministic analysis. Hence, it is crucial that such a stochastic analysis is 531 

performed. 532 
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 533 

Figure 15 Comparison of deterministic Pareto front with multiple stochastic Pareto fronts resulting from the Robust-534 

ness analysis. 535 

Following the economic and the environmental performance of the optimal solutions, it is worth-536 

while to investigate the variations in terms of the optimal retrofit interventions and energy system 537 

changes resulting from the Monte Carlo simulations. Starting from the first aspect, Figure 16 presents 538 

and contrasts the optimal retrofit measures from the deterministic and the stochastic analysis1.  539 

At a first glance, the plots in the deterministic and the stochastic case might appear similar for 540 

both the SFH and the MFH building categories, which is a testament to the quality of the deterministic 541 

model, which is able to capture the same trends as the more robust, stochastic model. However, there 542 

are some important differences to note. Starting from the SFH category across all of the CO2 emission 543 

brackets, the stochastic result show a more balanced allocation for retrofit interventions. For instance, in 544 

the stochastic results, window retrofits are present with an important share in all emission brackets, while 545 

in the deterministic results the percentage of window retrofits vary more for the different brackets. Re-546 

garding the specific solutions that are below the CO2 target of 10 kgCO2/m2, the share of the “No retrofit” 547 

solutions are higher in the deterministic case compared to the stochastic case, with the latter also show-548 

ing an increased importance of “Full” and “Window-wall” retrofits in order to achieve the targets. 549 

The results for the MFH category exhibit similar patterns. For instance, in the deterministic case 550 

and for emissions above 20 kgCO2/m2 the “Roof” and “Window” retrofit options are dominant. On the 551 

other hand, in the stochastic case, a more balanced allocation of solutions is observed with “Wall” and 552 

“Window-wall” retrofit solutions also appearing in the optimal solution mix. For solutions below the CO2 553 

target of 10 kgCO2/m2, the stochastic results exhibit an increased importance of “Full” retrofits and a 554 

decreased importance of “Roof” retrofits compared to the deterministic case. Thus, it can be concluded 555 

that considering all possible realizations of the uncertain parameters, such as building energy demands, 556 

retrofit and technology costs and embodied emissions, and energy carrier prices and emission factors, 557 

deeper building envelope retrofits might be necessary in order to achieve the desired CO2 emission 558 

targets. 559 

                                                      
1 Note that the plots for the deterministic and the stochastic cases summarize the outputs for the same 

set of buildings; nevertheless, fewer buildings were used in the stochastic case (due to the computa-

tional requirements of the robust model), thus the deterministic plots are not identical to the ones pre-

sented earlier 
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 560 

Figure 16 Comparison of optimal building envelope retrofit solutions of the deterministic and the stochastic models 561 

for SFH and MFH building categories. The retrofit solutions are grouped in emission brackets according to the CO2 562 

emissions that they achieve and they are reported in terms of the share of each retrofit intervention out of all solu-563 

tions in each emission bracket.  564 

Similarly, Figure 17 presents the corresponding results of the deterministic and the stochastic 565 

analysis results regarding the optimal energy system selections for the SFH and MFH building categories. 566 

Two main patterns that can be observed for both building categories. The first is that at high emission 567 

levels (above 15 kgCO2/m2) result from a dominance of oil and gas boilers. This can be observed in both 568 

the deterministic and the stochastic results, while only a small part of the total capacity is attributed to 569 

photovoltaic and solar thermal technologies. This is to be expected, since at high emission levels, these 570 

two boiler technologies with their relatively lower costs, offer an affordable energy system solution for 571 

both building types. 572 

The second pattern is observed for solutions that are below the target CO2 value of 10 kgCO2/m2. 573 

In the deterministic results, a single technology dominates each emission bracket. For the SFH case, 574 

ASHPs dominate the 5-10 kgCO2/m2 and biomass boilers the <5 kgCO2/m2 bracket. For the MFH case, 575 

ASHPs dominate both brackets. This single-technology-dominance aspect is not observed in the sto-576 

chastic results. The stochastic results for both the SFH and the MFH case exhibit a more balanced allo-577 

cation of system capacities and all low-carbon technologies are shown to have an important share of 578 

the total system capacity. As a result, in both building categories, biomass boilers, ASHPs and even 579 

GSHPs are installed with the latter technology being almost absent in the low CO2 brackets of the de-580 

terministic results. 581 
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 582 

Figure 17. Comparison of optimal energy system solutions of the deterministic and the stochastic models for SFH and 583 

MFH building categories. The energy system solutions are grouped in emission brackets according to the CO2 emis-584 

sions that they achieve and they are reported in terms of the share of each technology’s capacity out of the total ca-585 

pacity of energy system for all solutions in each emission bracket. 586 

Thus, the main conclusion that can be drawn regarding the energy system side of the building 587 

retrofits for the SFH and MFH categories is that a diversification of the energy technologies for the 588 

buildings is necessary rather than the reliance on a single technology in order to achieve the desired 589 

CO2 levels for the Swiss buildings. 590 

As a final set of results, Table 8 presents the most typical solutions of the stochastic analysis that 591 

lie within the 10±2 kgCO2/m2 target range for both the SFH and MFH building categories. A wide range 592 

of solutions regarding the envelope retrofit is observed ranging from No retrofit to Full retrofit. Regard-593 

ing the energy systems, a dominance of ASHP and GSHP technologies is observed in this case, while 594 

biomass-based solutions are less frequent. Finally, given the possible cost reductions assumed in the 595 

robust model for both PV and battery technologies, all solutions include PV panels, while the majority 596 

also includes battery storage systems. 597 

 598 

 599 

 600 

Table 8 Most typical building retrofit solutions that achieve emission levels lower than 10 kgCO2/m2 as an output of 601 

the stochastic analysis. 602 
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Stochastic Solutions 

MFH 

Envelope retrofit 

type 
Heating system 

Solar 

system 
Battery Share 

Window-Wall ASHP PV  12.8% 

Window-Wall GSHP PV  9.5% 

Window-Wall ASHP PV  6.8% 

No retrofit GSHP PV  6.3% 

Full retrofit ASHP PV  5.4% 

Window-Wall GSHP PV  5.3% 

Full retrofit GSHP PV  5.2% 

Window Biomass PV  4.0% 

    55.3% 

 

SFH 

Envelope retrofit 

type 
Heating system 

Solar 

system 
Battery Share 

Window-Wall GSHP PV  14.6% 

Window-Wall ASHP PV  8.4% 

Full retrofit GSHP PV  6.9% 

Window-Wall ASHP PV  5.6% 

Roof ASHP PV  5.5% 

Roof GSHP PV  5.2% 

No retrofit ASHP PV  5.0% 

Window Biomass PV  4.0% 

No retrofit GSHP PV  4.0% 

    59.2% 

 603 

3.2. District level solutions 604 

For the 12 typical archetype districts, the multi-criteria optimization for costs and emissions of the 605 

energy system is performed. The goal is to identify the kind of district for which building level or district 606 

level solutions are optimal. Results are computed again in form of 10 Pareto optimal solutions, calculated 607 

using the epsilon-constraint method, from cost to CO2 emissions optimal. This is done for both different 608 

retrofitting scenarios, BAU and NEP as described in Section 2.3. Figure 18 shows the resulting Pareto 609 

fronts for the 3 different categories: rural, sub-urban and urban for the BAU 2035 and NEP 2050 scenar-610 

ios. Figure 19 shows the installed system capacities for the 10 Pareto optimal solutions depending on 611 

the CO2 emission value for the NEP 2050 scenario (BAU 2035 is found in the Figure A8 in the Appendix). 612 

As expected, results show that district heating systems are mainly selected for urban and some suburban 613 
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clusters, whereas in rural areas individual building systems are preferred due to the district heating re-614 

strictions in these cases. Cost optimal solutions often rely on oil-based heating systems, which are grad-615 

ually replaced by heat pumps (both ASHP and GSHP), waste heat or biomass boilers or combined heat 616 

and power plants (CHP) due more stringent CO2 targets. CO2 optimized cases require a mix of different 617 

energy sources including waste heat, heat pumps or biomass. Results further suggest that, from the 618 

overall system capacities installed, around 50 to 80% pertain to a district level system in urban case 619 

studies, up to 50% for some denser or industrialized suburban case studies, and building level solutions 620 

for rural case studies. PV is deployed to the maximum available capacity for all solutions. Results also 621 

show that district level solutions applied in urban neighbourhoods have, in general lower, CO2 emissions 622 

compared to single building solutions in rural neighbourhoods. This is partially due to the higher renew-623 

able potential at the district level (waste, manure, and wood), but also due to the lower embodied emis-624 

sions associated with district level systems. 625 

While the relative selection of district level or building level energy systems remains the same for 626 

the different energy scenarios, the actual installed capacities are reduced for BAU 2035 and 2050 sce-627 

narios, and further down for NEP 2035 and 2050 scenarios according to the rate presented in Table A5 628 

and A6. This is due to the predicted lower total energy demand due to retrofits in the future. Overall CO2 629 

emissions can be reduced from BAU 2035 to NEP 2050 retrofitting scenarios by around 10% per Pareto 630 

front globally, when mostly building level systems are installed (generally for rural and some of the 631 

suburban cases) and only 5% when network solutions are selected (mostly for urban and some of sub-632 

urban cases where district heating network solutions are retained).  633 

Those results can be explained due to the benefits enabled by district level solutions at urban 634 

scale. These district solutions allow for maximization of energy efficiency and minimization of emissions 635 

globally compared with building level solutions.  636 

Figure 20 shows the distribution of costs for the NEP 2050 scenario. Resulting embodied CO2 637 

emissions are shown in Figure 21, respectively. This Figure shows that the overall costs are, in general, 638 

increased by 20 to 30% when applying the NEP 2050 scenario retrofitting measures due to their high 639 

costs in comparison to the installation of district level solutions, while allowing only a small further de-640 

crease of the CO2 emissions.  641 

When district scale solutions are partially or fully deployed, and retrofitting measures are costly. 642 

This is observed in the urban district Grenchen and suburban district Beringen in the NEP 2050 scenario, 643 

where costs nearly increased by 50%, while emissions are only reduced by around 10%. For rural cases, 644 

the high share of relatively old buildings (<1980) and a high potential for renewable energy (biomass), 645 

retrofitting measures present both an economical (costs reduced by 10%) and environmental benefit 646 

(emissions reduced by 20%). This is the case for the rural archetype Endingen.  647 

In Figure 20 and Figure 21, it is observed that the retrofit costs and embodied emissions for the 648 

districts with a high percentage of new buildings (i.e., Basel), are much lower. Older buildings require 649 

more extreme and costly retrofits (e.g., window-wall and full retrofits) in order to achieve targets (<10 650 

kg CO2/m2), whereas newer buildings could manage to meet the targets with a less expensive roof or 651 

window retrofit. It then follows that the retrofit costs for districts with a very old building stocks will be 652 

more expensive than retrofits for a new building stock and vice versa. While retrofitting of the building 653 
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envelope can cause often significant cost increase, it also enables the reduction of the overall energy 654 

consumption and CO2 emissions. The largest share of life cycle emissions, in all scenarios, currently re-655 

sults from system operation, which is gradually reduced with a shift away from fossil fuels due to more 656 

stringent CO2 emission targets. Embodied emissions for systems and retrofitting show only a small share 657 

of overall emissions. Even for the NEP 2050 scenario it contributes only up to 20% of the total emissions. 658 

 659 

 660 

Figure 18 Pareto front solutions for archetypical districts with BAU 2035 retrofitting (rural, sub-urban and urban ar-661 

chetypes) represented by a dot in light colour scheme; and for district with NEP 2050 retrofitting included, repre-662 

sented by triangles in dark colour scheme. 663 
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 664 

Figure 19 Optimal energy system selections for archetypical districts for the new energy policy scenario in 2050 (ru-665 

ral, sub-urban and urban archetypes).[1] 666 

 667 

Figure 20 Costs distribution for optimal Pareto front solutions for archetypical districts for the NEP 2050 scenario (ru-668 

ral, sub-urban and urban archetypes). 669 
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 670 

Figure 21 Embodied emissions (EE) for optimal Pareto front solutions for archetypical districts for the NEP 2050 sce-671 

nario (rural, suburban and urban archetypes). 672 
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4. Conclusions 673 

In this work, a framework is presented which can be used to identify an optimal set of building 674 

and district measures for a large building data set. The approach is based on a simulation and optimi-675 

zation framework, which uses a multi-criteria decision analysis based on total costs and total life-cycle 676 

CO2 emissions to identify the optimal solutions for the building stock. Furthermore, clustering analyses 677 

of Swiss buildings and districts are presented which allows for representation of the heterogeneity of 678 

the building stock based on a set of building characteristics, renewable potentials, and regional differ-679 

ences. The developed methodology can be used to assess the effectiveness of energy efficiency 680 

measures to reach emission reduction targets, but also allows for the upscaling solutions to the overall 681 

building stock of regions or countries to identify their potential impact.  682 

The clustering analysis is applied to the residential and non-residential building stock of Switzer-683 

land, which resulted in 50 archetypes for SFH and MFH, and 45 non-residential archetypes pertaining to 684 

restaurants, schools, hospitals, offices and shops. Additionally 12 different typical districts could be iden-685 

tified for the categories of urban, sub-urban and rural communities. The archetype buildings and districts 686 

are used to identify the cost and CO2 optimum retrofitting solutions for the Swiss building stock. Addi-687 

tionally, a sensitivity analysis is performed which shows how optimal solutions can change if assumptions 688 

pertaining to costs, efficiencies, etc. are changing over time or are not accurately predicted.  689 

Results at building level show that measures which reach emission targets pertain to roof retrofitting, 690 

window replacement, and combined window-façade insulation (for older buildings) together with PV 691 

installation for nearly all buildings considered. In terms of heating systems, biomass or heat pumps (ei-692 

ther GSHP or ASHP) seems to be the most favourable option for single-family houses while ASHPs can 693 

also be attractive, particularly for multi-family houses. Results further suggest that a change from a 694 

fossil fuel based heating system is required for almost all buildings in order to reach climate targets of 695 

Switzerland. These typical solutions (Table 7) cover 68% of all solutions that meet the energy strategy 696 

targets in the building level analysis.  697 

The same model and assumptions were used for the robustness analysis of identified solutions. 698 

However, in this analysis model parameters including building energy demands, solar radiation patterns, 699 

energy carrier prices, emission factors, investment costs, embodied emissions and technical characteris-700 

tics were treated as uncertain. Results of this analysis show similar patterns, however, in the stochastic 701 

case a more balanced allocation of solutions is observed. This includes envelope interventions, as well 702 

as system selections. In terms of building envelope interventions, the analysis shows that full retrofitting 703 

becomes increasingly important, together with window replacement and façade insulation.  On the sys-704 

tem side, results show that the high deployment of biomass boilers is reduced and optimal solutions are 705 

more evenly distributed between biomass boilers, ASHP and GSHP. Thus, the main conclusion that can 706 

be drawn is that diversification of the energy technologies for the buildings is necessary in order to 707 

achieve the desired CO2 levels for Swiss buildings.  708 

The analysis of district archetypes shows that district system solutions are mainly applicable to 709 

urban communities and for some suburban areas, whereas building level solutions are clearly the optimal 710 

solution for rural areas. In addition, many of the resulting CO2 emissions were able to reach much lower 711 
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values in the urban and suburban case studies than on the building level due to economies of scale. 712 

Results for the different urban archetype districts show further that optimal energy system solutions 713 

pertain up to share of 50-80% of district energy systems. While the relative selection of district level or 714 

building level energy systems remains the same for the different energy scenarios, the actual installed 715 

capacities are reduced for BAU 2035 and 2050 scenarios, and further for NEP 2035 and 2050 scenarios.  716 

By applying the typical solutions to the overall building stock of Switzerland, emissions could 717 

potentially be reduced by up to approximately 60-80% depending on building type. These results show 718 

that the Swiss residential building sector has enormous potential for improvement in terms of sustaina-719 

bility.  720 

 721 

 722 

 723 
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6. Appendix 734 

6.1. Building level assumptions 735 

 736 

 737 

Figure A1  Building age and heating energy carrier of the 50 SFH and 50 MFH building archetypes  738 

Table A1: Deterministic optimization energy carrier costs and emissions factor assumptions with sources 739 

Energy Carrier Energy Cost (CHF/kWh) Life-cycle emission fac-

tor (kg CO2-eq) 

Source 

Electricity 0.237 0.121 [47]; [48] 

Feed-in tariff 0.12 0 [49] 

Natural gas 0.120 0.228 [50]; [44] 

Heating oil 0.101 0.301 [51]; [44] 

Wood chips 0.125 0.027 [52]; [44] 

Waste 0.125 0.027 [38]; [44] 

 740 

 741 

 742 

 743 

 744 

 745 

Table A2: Deterministic optimization’s technology capital costs, embodied emissions, efficiencies, and lifetimes with 746 

sources  747 

Capital Costs Embodied emissions Efficiency Source 
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Technologies 

per Function 

Unit (FU) 

Fixed 

(CHF) 

Linear 

(CHF/FU) 

Fixed (kg 

CO2 - eq) 

Linear (kg 

CO2 - eq) 

Life-

time 

(years) 

Building level  

Oil boiler (kW) 26,600 570 0 51 Old: 0.8 

New: 0.85 

25 [53] ;[44] 

Gas boiler (kW) 27,600 620 0 51 Old: 0.8 

New: 0.85 

25 [53] ;[44] 

Biomass boiler 

(kW) 

27,800 860 0 51 Old: 0.75 

New: 0.8 

25 [53] ;[44] 

Electric boiler 

(kW) 

- - - - Old: 0.95 - [53] ;[44] 

ASHP (kW) 18,300 1,020 2,329 75 Old: 2 

New: 3 

15 [53] ;[44] 

GSHP (kW) 20,000 2,380 1,806 72 Old: 2 

New: 4 

20 [53] ;[44] 

Gas CHP (kW) 5,000 900 3,750 100 Heat: 0.65 

Elec: 0.2 

11 [53] ;[44] 

PV (m2) 900 400 0 254 15% 25 [53] ;[44] 

ST (m2) 4,000 1,000 0 184 45% 20 [53] ;[44] 

Battery (kWh) 2,000 600 0 157 0.92 

(0.1%/hr) 

11 [53] ;[44] 

Thermal storage 

(kWh) 

1,685 12.5 31 4.7 0.81 

(1%/hr) 

20 [53] ;[44] 

District Level  

Oil boiler (kW) 68,420 130 0 51 0.9 25 [53] ;[44] 

Gas boiler (kW) 66,100 200 0 51 0.9 25 [53] ;[44] 

Biomass boiler 

(kW) 

146,60

7 

407 0 51 0.85 25 [53] ;[44] 

Waste boiler 

(kW) 

66,097 167 0 51 0.85 25 [53] ;[44] 

ASHP (kW) 87,840 770 2,329 75 3 15 [53] ;[44] 

GSHP (kW) 94,120 1,670 1,806 72 4 20 [53] ;[44] 
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Biomass CHP 

(kW) 

299 785 0 51 Heat: 0.55 

Elec: 0.35 

20 [53] ;[44] 

Waste CHP (kW) 299 785 0 51 Heat: 0.55 

Elec: 0.33 

20 [53] ;[44] 

 748 

Table A3: Costs and embodied emissions of different retrofits by component and by age with sources 749 

Construction 

age 

Retrofitted 

component 

Retrofit Costs 

(CHF/m2) 

Retrofit Embodied Emissions 

(kg CO2 – eq/m2) 

Source 

≤1918 Façade 290 15.5 [53]; [44] 

Roof 150 13.6 [53]; [44] 

Ground 100 8.80 [53]; [44] 

1919-1948 Façade 270 15.5 [53]; [44] 

Roof 150 14.6 [53]; [44] 

Ground 100 8.80 [53]; [44] 

1949-1978 Façade 270 15.5 [53]; [44] 

Roof 150 39.9 [53]; [44] 

Ground 100 8.80 [53]; [44] 

1979-1994 Façade 240 13.3 [53]; [44] 

Roof 134 35.5 [53]; [44] 

Ground 90 7.91 [53]; [44] 

1995-2001 Façade 220 7.92 [53]; [44] 

Roof 123 31.2 [53]; [44] 

Ground 27 2.26 [53]; [44] 

2002-2006 Façade 226 9.05 [53]; [44] 

Roof 134 35.6 [53]; [44] 

Ground 53 9.04 [53]; [44] 

2007-2009 Façade 223 26.4 [53]; [44] 

Roof 150 32.4 [53]; [44] 

Ground 53 6.78 [53]; [44] 

All ages Windows 850 32.2 [53]; [44] 
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 750 

6.2. Robustness Assumptions 751 

Table A4: Uncertain model parameters and their probability distributions considered for the robustness analysis 752 

Uncertain parameters Probability distribution Source 

Building energy demands  

SFH heat demands Normal distribution, N(0.923, 

0.120) x Nominal heat demand 

[54] 

SFH electricity de-

mands 

Normal distribution, N(0.937, 

0.077) x Nominal electricity de-

mand 

[54] 

MFH heat demands Normal distribution, N(0.935, 

0.097) x Nominal heat demand 

[54] 

MFH electricity de-

mands 

Normal distribution, N(0.925, 

0.047) x Nominal electricity de-

mand 

[54] 

Renewable energy availability  

Solar radiation patterns Normal distribution, N(1.072, 

0.0674) x Nominal solar radia-

tion profile 

[54] 

Energy carrier prices   

Electricity price Uniform distribution, U(0.189, 

0.275) CHF/kWh 

[1]; [54] 

Biomass price Uniform distribution, U(0.087, 

0.149) CHF/kWh 

[1]; [54] 

Gas price Uniform distribution, U(0.075, 

0.159) CHF/kWh 

[1]; [54] 

Oil price Uniform distribution, U(0.062, 

0.134) CHF/kWh 

[1]; [54] 

District heating price Uniform distribution, U(0.099, 

0.145) CHF/kWh 

[1]; [54] 

Feed-in tariff Uniform distribution, U(0.084, 

0.156) CHF/kWh 

[1]; [54] 

Energy carrier emission factors  
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Electricity emission fac-

tor 

Uniform distribution, U(110.30, 

251.84) gCO2/kWh 

[1]; [54] 

Biomass emission fac-

tor 

Uniform distribution, U(-20%, 

20%) x Nominal value 

Own estimates 

District heating emis-

sion factor 

Uniform distribution, U(-20%, 

20%) x Nominal value 

Own estimates 

Gas emission factor Uniform distribution, U(-5%, 

5%) x Nominal value 

Own estimates 

Oil emission factor Uniform distribution, U(-5%, 

5%) x Nominal value 

Own estimates 

Investment costs  

Investment cost for PV, 

batteries 

Beta distribution, B(8, 2.2, 0.1, 

1.1) x Nominal cost 

Own estimates 

Investment cost for 

ASHP, GSHP, CHP, ST 

panels 

Beta distribution, B(18, 4, 0.12, 

1.12) x Nominal cost 

Own estimates 

Investment cost for 

Gas, Oil and Biomass 

boilers, Thermal stor-

age tanks 

Normal distribution N(1, 0.03) x 

Nominal cost 

Own estimates 

Investment cost for ret-

rofit interventions 

Beta distribution, B(18, 4, 0.18, 

1.18) x Nominal cost 

Own estimates 

Embodied emissions  

Embodied emissions 

for PV, batteries 

Beta distribution, B(8, 2.2, 0.1, 

1.1) x Nominal embodied emis-

sions 

Own estimates 

Embodied emissions 

for ASHP, GSHP, CHP, 

ST panels 

Beta distribution, B(18, 4, 0.12, 

1.12) x Nominal embodied 

emissions 

Own estimates 

Embodied emissions 

for Gas, Oil and Bio-

mass boilers, Thermal 

storage tanks 

Normal distribution N(1, 0.03) x 

Nominal embodied emissions 

Own estimates 
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Embodied emissions 

for retrofit interven-

tions 

Beta distribution, B(18, 4, 0.18, 

1.18) x Nominal embodied 

emissions 

Own estimates 

Technical characteristics of 

technologies 

 

Efficiency of PV Beta distribution, B(2.2, 8, 0.8, 

1.8) x Nominal efficiency 

Own estimates 

Efficiency of ASHP, 

GSHP, CHP, ST  panels 

Beta distribution, B(4, 18, 0.82, 

1.82) x Nominal efficiency 

Own estimates 

Efficiency of Gas, Oil 

and Biomass boilers 

Normal distribution N(1, 0.03) x 

Nominal efficiency 

Own estimates 

6.3. District level assumptions 753 

Table A5: Retrofitting rates per building age category for BAU and NEP scenarios (according to Prognos 2012). 754 

Construc-
tion period 

SFH 
2035 

SFH 
2050 

MFH 
2035 

MFH 
2050 

BAU NEP BAU NEP BAU NEP BAU NEP 

≤1918 0.19 0.36 0.265 0.57 0.285 0.385 0.445 0.59 

1919-1948 0.184 0.354 0.299 0.558 0.245 0.389 0.385 0.598 

1949-1978 0.184 0.354 0.299 0.558 0.245 0.389 0.385 0.598 

1979-1994 0.09 0.223 0.176 0.506 0.162 0.299 0.32 0.613 

1995-2001 0.09 0.223 0.176 0.506 0.162 0.299 0.32 0.613 

2002-2006 0.09 0.223 0.176 0.506 0.162 0.299 0.32 0.613 

2007-2009 0.09 0.223 0.176 0.506 0.162 0.299 0.32 0.613 

2010-2014 0.09 0.223 0.176 0.506 0.162 0.299 0.32 0.613 

>2014 0.09 0.223 0.176 0.506 0.162 0.299 0.32 0.613 

 755 

Table A6 Share of selected optimal retrofitting interventions per age category 756 

Construc-

tion pe-

riod 

Roof Ground Wall Window Window-

Wall 

Full 

SFH MFH SFH MFH SFH MFH SFH MFH SFH MFH SFH MFH 

≤1918 0.75 0.56 0 0 0 0 0 0.25 0 0.13 0.25 0.063 

1919-1980 0.589 0.20 0 0 0.012 0 0.092 0.37 0.214 0.41 0.093 0.014 

>1980 0.442 0.61 0 0 0.12 0 0.299 0.26 0.14 0.13 0 0 
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 757 

Figure A2 Histogram showing the distribution of raster cell density in Figure 4. Cells below 2,800 m2/km2 were classi-758 

fied as rural, cells between 2,800 m2/km2 and 16,000 m2/km2 were suburban, and cells above 16,000 m2/km2 were 759 

urban 760 

District level system assumptions 761 

 762 

Figure A3 Energy demand after aggregation is calculated per typical district (e.g. Basel) 763 

 764 

 765 

 766 

6.4. Building level results 767 

Non-Residential Building Solutions 768 

InError! Reference source not found., the residential building level decisions are shown. Figure 769 

A.1 and A.2 show the corresponding solutions including non-residential buildings for retrofits and sys-770 

tems respectively. 771 

Year 2018 (hourly) 
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 772 

Figure A4 Distribution of the non-residential building solutions for retrofits. Solutions are groups by CO2 emissions 773 
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 774 

Figure A5 Distribution of the non-residential building solutions for the system selection. Results are categorized by 775 

CO2 emissions 776 

 777 

  778 
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Figure A shows the breakdown of the objectives (both cost and emissions) 779 

 780 

Figure A6 Breakdown of emissions and cost by type (i.e., conversion technologies, storage technologies, retrofits, op-781 

eration, etc.) 782 

 783 
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6.5. District level results 784 

District level Pareto front per scenario – BAU, NEP 785 

786 

 787 

Figure A7 Pareto front (Urban – Suburban – Rural) for the BAU 2035 scenario 788 

 789 

 790 

 791 
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 792 

Figure A8 Optimal energy system selections for archetypical districts without retrofitting (rural, suburban and urban 793 

archetypes). 794 

 795 

Figure A9. Embodied emissions for optimal Pareto front solutions for archetypical districts for the BAU 2035 scenario 796 

(rural, sub-urban and urban archetypes). 797 

 798 

 799 

 800 
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 801 
Figure A2 Costs distribution for optimal Pareto front solutions for archetypical districts for the BAU 2035 scenario 802 

(rural, sub-urban and urban archetypes).  803 

 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 
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