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Abstract

Novel control strategies to reduce the heating and cooling energy consumption of buildings and districts are constantly
being developed. Control on higher system levels, for example demand side management, usually requires forecasts
for the future energy demand of buildings or entire districts. Such forecasts can be done with Artificial Neural
Networks. However, the prediction performance of Artificial Neural Networks suffers from high variance. This means
that two parameter-wise identical networks fitted to the same training data set perform differently well in forecasting
the testing set. Here, we use two correction methods, one based on the forecasting error autocorrelation, and one based
on online learning, to obtain reliable forecasting models. The approach is tested in the frame of day-ahead sub-hourly
heating demand forecasting in a case study of a complex building, which has properties of a district heating system.
It is demonstrated that the methods significantly reduce variance in prediction performance and also increase average
prediction accuracy. When compared to other grey-box and black-box forecasting models, the approach performs
well.
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1. Introduction

Building and district heating and cooling energy
amounts to 70% of the total energy demand in house-
holds in Switzerland (BFE, 2014) and to more than
44% of the total primary energy consumption world-
wide (Ölz et al., 2007). To reduce this demand, novel
control strategies are constantly being developed and
tested on the level of individual buildings (see for ex-
ample Široký et al. (2011); Yudong Ma et al. (2012);
Oldewurtel et al. (2010); Sturzenegger et al. (2016);
Bünning et al. (2017), or Hameed Shaikh et al. (2014)
and the references therein).

In addition to control on a building level, there are
a number of higher-level control tasks with the objec-
tive of optimizing energy consumption in the building
domain or in coupled sectors (i.e. the electricity grid).
Such tasks are for example the optimal control of the
network temperature in low temperature district heat-
ing and cooling networks (Bünning et al., 2018), fre-
quency regulation with electrified heating systems and
water storage tanks (Kondoh et al., 2011), or optimal

control of energy hubs with various heating, cooling and
storage technologies (Geidl et al., 2007; Arnold et al.,
2009; Arnold and Andersson, 2011; Darivianakis et al.,
2017). Here, control tasks include minimizing energy
costs, maximizing self-consumption, peak shaving and
management of long-term and short-term energy stor-
age devices for example.

For these tasks, it is necessary to have detailed fore-
casts about the future energy consumption of individ-
ually connected buildings or the whole district. This
has motivated an increasing research interest in demand
forecasting for buildings for heating, cooling and over-
all electricity consumption, see for example the sur-
vey of different methods and models under (Mat Daut
et al., 2017; Zhao and Magoulès, 2012; Harish and
Kumar, 2016; Wang and Srinivasan, 2017; Foucquier
et al., 2013; Suganthi and Samuel, 2012; Amasyali and
El-Gohary, 2018; Ahmad et al., 2018). According to
Amasyali and El-Gohary (2018), 31% of related studies
make yearly, monthly or daily forecasts, while 57% con-
sider hourly and 12% sub-hourly forecasts respectively,
which would be suitable for above named control tasks.
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Artificial Neural Networks (ANN) have been proven to
perform well in a variety of complex and difficult tasks,
such as gaming (Silver et al., 2017), computer vision
(Wojna et al., 2018) and robotics (Tobin et al., 2017),
and several studies have also demonstrated that ANN
perform well on the task of short-term heating demand
forecasting with high temporal resolution in the build-
ing and district domain.

On a district level, Kato et al. (2008) use a Re-
current Neural Network to make 24 hour ahead pre-
dictions of the hourly heating load of a real district
heating system and compare it to a three-layered feed-
forward ANN. The Recurrent Neural Network has an
overall better forecasting performance, especially in pe-
riods that the authors consider as non-stationary. Sim-
ilarly, Park et al. (2010) compare feed-forward ANN,
Support Vector Machines (SVM) and the Particle Least
Squares (PLS) method to perform 24 hour ahead pre-
diction of the heating load of a real district heating sys-
tem. PLS slightly outperforms SVM and ANN. Johans-
son et al. (2017) compare Extra-Trees Regressors (ETR)
with feed-forward ANN on a real district heating test-
ing case in Sweden for 24 hour ahead hourly forecast.
ANN outperform ETR in this study. In Suryanarayana
et al. (2018) the same Neural Network approach is com-
pared to linear regression, ridge regression and lasso re-
gression with an automatized feature selection process
on two different district heating test cases in Sweden.
ANN outperform the other three approaches in both
cases. Saloux and Candanedo (2018) use ANN, SVM,
and Regression trees (RT) and compare them to Piece-
wise Linear Regression on six hour ahead and 48 hour
ahead heating demand forecasts with a sampling time
of ten minutes in the case of a real district heating sys-
tem. While ANN, SVM and RT clearly outperform the
Piecewise Linear Regression, no distinguished perfor-
mance difference is found between the other methods.

On the building level, Paudel et al. (2014) use ANN
together with a pseudo-dynamical model to make four-
day predictions with a sampling time of 15 minutes for
the heating demand of a French office building. Kwok
and Lee (2011) and Leung et al. (2012) combine ANN
with different occupancy prediction models to enhance
the hourly load prediction of a large office building and
a university building in Hong Kong respectively. The
same forecasting task is performed for a commercial
building in Mestekemper et al. (2013). Here, the authors
improve the prediction accuracy of ANN by splitting the
cooling demand in a trend and a periodic signal and by
training the ANN with the global optimization method
Modal Trimming.

Related to heating and cooling demand prediction,

Bagnasco et al. (2015); Kamaev et al. (2012); Escrivá-
Escrivá et al. (2011); Chae et al. (2016) use ANN to
make sub-hourly demand predictions for the electricity
consumption of hospitals, shopping centers and other
commercial buildings.

While all of the above named studies have promising
results for energy demand forecasting with ANN, none
of them communicate whether the achieved prediction
results are average results or best case results, or if they
were obtained with a fixed random seed. This is highly
problematic as certain Machine Learning approaches
and especially ANN suffer from high variance (Hender-
son et al., 2018; Recht, 2018; Bengio, 2012; Jamieson
and Talwalkar, 2016): Depending on the random seed
that is used while training the ANN, the ANN will have
different prediction accuracies for the same training and
testing data and same model parameters (i.e. number of
neurons, number of layers etc.). This is due to the ini-
tialization of the network’s weights with random values
and the following non-convex optimization that gener-
ally converges to a local minimum in the fitting process.
Jovanović et al. (2015), Jetcheva et al. (2014) and De
Felice and Yao (2011) use ensemble methods to over-
come this problem in the context of building energy de-
mand prediction. However, using ensembles also has
disadvantages. For example, the prediction accuracy
of an ensemble is not guaranteed to be better than the
one of its best predictor. Moreover, using ensembles is
computationally more expensive than using single pre-
dictors. The computational effort typically grows linear
with the number of predictors in the ensemble.

1.1. Contribution
We therefore aim to make the following contribution

with this work: A prediction model based on single
ANN to make 24 hour ahead forecasts with a 15-minute
sample rate of the heating demand for complex build-
ings and districts with individual uses, individual occu-
pant patterns and unknown control systems, is devel-
oped. Two simple forecast correction methods, based
on the error-autocorrelation and online learning, which
make use of the history of previous forecasting errors
during the online phase, are introduced. The meth-
ods are verified in a case study based on data from the
NEST building, which comprises independent modular
control zones that allow it to mimic a district heating
network. We demonstrate that uncorrected ANN in-
deed show high variance in prediction performance and
that the presented correction methods significantly re-
duce this variance, giving rise to reliable single predic-
tors. Moreover, the methods remove prediction bias.
The prediction results are compared to other machine
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learning (or regression-based) approaches and to con-
ventional resistor-capacitor building models (as used by
De Coninck et al. (2015); Zhou et al. (2008)).

1.2. Structure
The remaining article is structured as follows: In Sec-

tion 2 our ANN based methodology and the forecast
corrections, which are based on the forecasting error
autocorrelation and online learning, are described. In
Section 3 the case study is defined. The energy system
under consideration is introduced, and the structure of
the applied ANN and the benchmarking grey-box and
black-box methods are defined. In Section 4 the re-
sults regarding prediction accuracy and variance are dis-
cussed, as well as limitations of the study. Moreover,
the ANN methods are compared to the benchmarking
methods. In Section 5 the article is concluded.

2. Methodology

2.1. Forecasting task and correction methods
In this study the following forecasting task is consid-

ered: A heating demand forecast for a building or a dis-
trict is made at midnight for the next 24 hours, sampled
every 15 minutes. The training and validation data are
assumed to be sampled at the same rate. Furthermore,
perfect knowledge of the ambient temperature for the
forecasting period is assumed. This is done as it avoids
uncertainty in the inputs when comparing the different
methods.

The forecast is made with a feed-forward ANN,
which will be described in detail in Section 3. To
model the closed-loop response of the building and its
lower-level climate controllers to the ambient condi-
tions, model inputs related to ambient conditions and
time features are used. To reduce variance and to im-
prove the forecasting accuracy, we introduce two meth-
ods that are used in the online phase of the forecasting
task.

2.2. Error-autocorrelation correction
Empirical evidence suggests that forecast errors per-

sist over a longer period of time than a single forecasting
interval in the setting of building energy or district en-
ergy forecasting. For example, if windows are left open,
a room temperature set point is changed or a fluid pump
fails, this does not only have an effect on one single fore-
casting interval (15 minutes) but also on the following
intervals, as the source of the error is usually not elimi-
nated within one single interval.1

1This is further demonstrated in section 4.3.

Motivated by this, we predict the error ẽ for day T
and forecast interval t ∈ [1, 96] by setting

ẽT,t =
1
4

96∑

τ=93

eT−1,τRee(t, E) (1)

with

Ree(l, E) =
E[(E − µ)(E+l − µ)]

σ2
. (2)

Here the first term in the right hand side of (1) denotes
the average of the past day’s forecasting errors e for the
last four forecasting intervals; averaging over a few el-
ements helps to denoise the error at the cost of a small
decrease in the autocorrelation. The choice of four ele-
ments could be questioned, however, by further increas-
ing the averaging interval, prediction power is lost be-
cause of the decreasing correlation of the error. Ree(l, E)
denotes the autocorrelation for lag l, which is calculated
with the set E which contains all past forecasting errors
e that have occurred until day T - including the errors of
the training set. E+l is the same set shifted by lag l. The
expected value E, the mean µ and the standard devia-
tion σ are empirical approximations for the stochastic
process based on the set E.

Instead of including all past forecasting errors in E,
one can also implement a shifting window and compute
the autocorrelation using the forecast errors for the past
few days. However, our experiments suggest that this
does not improve the error prediction.2

Figure 1 shows a schematic of the forecast correction
procedure; A demand forecast is made with an ANN
(uncorrected forecast). Based on the database of all pre-
vious forecasting errors and the measured error of the
previous day’s forecast, the error estimation described
in (1)-(2) is made. The estimated error is then added
to the uncorrected forecast to give a corrected demand
forecast. At the end of the day, the difference between
demand realization and demand forecast is added to the
database. At the first prediction day in the online phase,
the correction is based on the errors in the training set.

2In case of a coupled multiple output system, e.g. energy demands
of different zones within a large building, measured errors from neigh-
bouring zones n ∈ N could also be used to make an correlation cor-
rection for the error in zone i. Equation 1 would be changed to

ẽi,T,t = siRee(t, Ei)
96∑

τ=93

ei,T−1,τ +
∑

n∈N

[snRi,n(t, Ei, En)
96∑

τ=93

en,T−1,τ],

in which Ri,n(t, Ei, En) denotes the Pearson correlation between
measured errors En in neighbouring zones and the error Ei in the zone
under consideration, shifted by lag t. si and sb are scaling factors that
need to be learned to avoid overestimation of ẽi,T,t .
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Figure 1: Forecast correction based on error-autocorrelation scheme

The corresponding algorithm is shown in Algorithm 1.
The results of this correction are shown in Section 4.

Algorithm 1
1: procedure Error-autocorrelation correction
2: for T in runtime do
3: for t in [1, 96] do
4: forecast[T,t]:=ANN.predict(inputs[T,t])
5: error[T,t]:=AvError[T-1]*Ree(t,E)
6: correctedFcast[T,t] := forecast[T,t]

+ error[T,t]
7: wait until day passes
8: measuredError[T] := realization[T]

- forecast[T]
9: E:=E.add(measuredError[T])

2.3. Online learning

The second forecast correction method is online
learning. Instead of using only the training set for train-
ing the model, after each day the newly collected data
(network inputs and demand realization) is used to re-
train the ANN. The inputs are identical to the ones used
in offline training. The argument behind this approach is
again that phenomena in the building domain persist for
time constants longer than hours and that the assump-
tion “tomorrow will be like today” (also referred to as
“persistence model” or “naı̈ve forecast”) has some va-
lidity here. By retraining the network on the previous
day, we intentionally bias the network towards a certain
solution, which is usually undesirable in machine learn-
ing (Huang et al., 2006), but potentially beneficial when
the model is persistent. We can adjust this biasing via
the learning rate of the optimizer used for training. This
balances the importance between the training set and the
daily feedback from the realised prediction errors.

Combining this online training heuristic with the
autocorrelation based error correction outlined above,
leads to Algorithm 2.

Figure 2: NEST building at Empa in Switzerland, Copyright: Zooey
Braun - Stuttgart

It should be noted, that in line 10 a second forecast is
made at the end of the day, after the ANN has been re-
trained on the inputs and demand realization of the day.
The error of this second forecast is then added to the
error database. This is done because next day’s error es-
timation needs to be performed for the retrained ANN.
If this is not done, the error for the next day is overesti-
mated. The results for this combined method are shown
in Section 4.

Algorithm 2
1: procedure Combined correction
2: for T in runtime do
3: for t in [1, 96] do
4: forecast[T,t]:=ANN.predict(inputs[T,t])
5: error[T,t]:=AvError[T-1]*Ree(t,E)
6: correctedFcast[T,t] := forecast[T,t]

+ error[T,t]
7: wait until day passes
8: ANN:=ANN.train(inputs[T],realization[T])
9: for t in [1, 96] do

10: forecast2[T,t]:=ANN.predict(inputs[T,t])

11: measuredError[T] := realization[T]
- forecast2[T]

12: E:=E.add(measuredError[T])

3. Case study

3.1. System description

The NEST building at Empa in Switzerland (Richner
et al., 2018), shown in Figure 2, is used as a case study.
The building contains multiple individual units with dif-
ferent uses that can be added and removed from the
building, in addition to office and meeting rooms that
are permanently installed. At different times during the
period covered by our data, two, three or four of these
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individual units were in operation. One of the units was
added during the training set (August 2017) and one
during the test set (February 2018) of the case study.
The configuration resembles a district heating system
because different units have different use patterns, some
of which resemble those of residential buildings while
others those of office spaces. Moreover, all of the indi-
vidual units are equipped with local controllers, whose
details are unknown to the forecasting system. The de-
mand forecast is therefore made for a collection of indi-
vidual closed-loop energy systems. The units are con-
nected via substations to a central heating system with
a supply temperature of 35 ◦C and a return temperature
of 25 ◦C. The heating system is served by a central heat
pump with a maximum thermal capacity of 100 kW. A
simplified schematic of the system can be seen in Figure
3. The heating demand that our algorithm is designed to
forecast is the energy flow difference between supply
line and the return line. For more information on the
complete system see Lydon et al. (2017).

The building is set-up as a test bed for district heating
and cooling and building energy experiments. It inte-
grates approximately 540 sensors, whose data is stored
in an SQL database with a temporal granularity of one
minute, and approximately 200 controllable actuators.
The measurement data used in this study contain 411
days (01.04.2017 to 16.05.2018) and include the mea-
surements for ambient temperature and total heat con-
sumption. The measured heating demand is shown in
Figure 4. Figure 5 shows the ambient air tempera-
ture measured at the roof top of the building. Though,
strictly speaking, weather forecasts should be used in
demand forecasting, in this study we use the actual am-
bient air temperature directly as an input. This is done to
avoid the additional uncertainty in the inputs and to al-
low direct comparison of the different forecasting meth-
ods.

3.2. Artificial Neural Networks
We use feed-forward ANN with the Python package

Keras (Chollet, 2018), which is a higher-level API to
TensorFlow (Abadi et al., 2016). We refrain from fun-
damental introduction to the concept here and refer the
reader to other sources (for example Shanmuganathan
(2016); Basheer and Hajmeer (2000)). Other topolo-
gies, such as Recurrent Neural Networks (RNN) and
Long-Short-Term Memory Networks (LSTMN) were
investigated in preliminary studies but showed weaker
performance. To fit the ANN to the training data, we
use the optimizer Adam (Yun et al., 2018) with standard
parameters. This includes the learning rate of 0.001 for
both offline and online learning. As a loss function, the

unit with
substation

heat-
pump
pump

return

supply

supply return

Figure 3: NEST heating system schematic

mean squared error and as activation functions, Recti-
fied Linear Units (ReLu) are used.

3.2.1. Structure
As we want to forecast the heating demand in a day-

ahead fashion, we forecast 96 data points at once. (One
value every 15 minutes for one day.) For the structure
of the ANN this gives two possibilities: 1) The network
is built with 96 outputs and the forecast for the day is
performed in one single step. 2) The network is built
with one output and the forecast is performed with 96
different input vectors to forecast 96 single output val-
ues.

Option 1 has one major advantage: As the heating de-
mand (forecast target) is highly correlated for small time
delays, the accuracy of the prediction is very precise for
the first few forecast data points at the beginning of the
day. This is because the network makes use of the mea-
sured heating demands at the end of the previous day.
In option 2 this is not possible as, for example, we can-
not use the demand of t − 4 as an input for the network
because for forecasts t = 5, ..., 96 this input has not yet
been measured at the time the forecast is made. As an
alternative, the forecasts of earlier time steps could be
used as inputs, but this would potentially lead to error
propagation. However, in case of option 1 the network
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Figure 4: Measured total heating load of the NEST building
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Figure 5: Measured ambient temperature at the roof of NEST building

needs a much higher complexity in terms of number of
layers and nodes, while the training set is not increased
when compared to option 2. Preliminary forecast runs
have shown that this results in reduced prediction per-
formance. For option 2, the disadvantage of not be-
ing able to use the last measured heating demands of
the previous day as inputs is compensated by the error-
autocorrelation based correction method that was intro-
duced in Section 2.2. We therefore use option 2 in this
study.

3.2.2. Feature selection
Although NEST also has measurements for wind

speed and solar radiation, the ambient temperature was
selected as the only weather-related feature3, because
preliminary experiments suggested that the other mea-
surements do not substantially improve forecasting ac-
curacy. This might appear surprising as generally solar
radiation has indeed an effect on the heating demand of
a building, however, with a Pearson correlation coef-
ficient of 0.54 between ambient temperature and solar

3The difference between “feature” and “input” is the level of de-
tail in the description: E.g. “daytime” can be a feature and the corre-
sponding inputs could be“hour of the day, encoded continuously” and
“minute of the hour, encoded continuously”.

radiation in the considered data set, it appears that the
ambient temperature incorporates much of the informa-
tion of the solar radiation already.

With the assumption that the demand of the system
shows daily and weekly patterns, as the units are used
for living and as office spaces, two more features were
added: the total heat consumption with a time delay
of one day (again following the assumption “tomorrow
will be like today”) and the total heat consumption with
a time delay of one week (motivated by the assump-
tion that weekly routines can expected). This allows
the prediction of the energy demand today based on the
demand at the corresponding time yesterday and last
week. Finally, the time stamp of all features was im-
plemented as two inputs: hour of the day and week-
day/weekend4. Hour of the day was one-hot encoded
(Aggarwal, 2018), meaning that instead of one contin-
uous input 24 binary inputs are used. Preliminary ex-
periments suggested that this improves the forecast ac-
curacy. We assume that the occupancy related internal
gains are indirectly captured by the time-related inputs
and do not use a separate occupancy model.

4Weekday/weekend was chosen instead of working day/non-
working day as the difference is marginal and the implementation ef-
fort substantially lower.
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Table 1: ANN parameters

Parameter Value

Number of hidden layers 2
Number of nodes per layer 8

Number of Epochs 10
Input scaling method Linear [-1,1]

The resulting network has 28 inputs, of which three
are continuous and 25 binary, and one continuous out-
put.

3.2.3. Parameter selection
There is no proven rule on how to best determine

the parameters of ANN. These values are commonly
set based on heuristics and an iterative approach that
involves a substantial amount of trial and error. Gener-
ally, a trade-off between overfitting and underfitting of
the training data has to be found.

A preliminary sensitivity analysis was conducted to
decide on the number of hidden layers, number of nodes
per layer, number of training epochs (number of times
the network’s weights are updated based on each indi-
vidual sample in the training set), and on the input scal-
ing method. The results for the suggested optimal pa-
rameter values are given in Table 1. They were used in
the case study.

3.3. Forecasting methods for benchmarking

To assess the performance of the ANN with the in-
troduced correction methods for forecasting the ther-
mal demand of NEST, the prediction accuracy is com-
pared to other state of the art prediction methods: These
are grey-box models in the form of resistor-capacitor
building models, and black-box models in the form of
other regression-based or machine-learning based ap-
proaches.

3.3.1. Grey-box method (R-C models)
For the grey-box approach, resistor-capacitor mod-

els are used. We note that while resistor-capacitor and
other grey-box models are often used as optimization
models for selecting control inputs for building level
MPC, they are also used for forecasting (De Coninck
et al., 2015; Zhou et al., 2008). Moreover, grey-box and
white-box models are also commonly used for building
performance simulation (which is essentially forecast-
ing without using the forecasts online), see for example
(Zhao and Magoulès (2012)).

Four different topologies were considered as shown
in Figure 6, inspired by the models used in (De Coninck

et al., 2015). In this approach, the thermal capacity of
wall materials, floor materials and air volumes is repre-
sented by capacitors, whereas the thermal resistance of
walls and floors is represented by resistors. The param-
eters of all resistors and capacitors are estimated to fit a
heating demand measurement curve. As the R-C mod-
els are purely thermal models, the ambient temperature
is the only used input.

The models were implemented in the modelling lan-
guage Modelica (Mattsson et al., 1998) and simulated
in Dymola (Brück et al., 2002). To estimate the param-
eters, a CMA-ES (Hansen et al., 2003) optimizer was
used in Python.

In models 1R1C and 2R2C, the parameters were es-
timated such that the mean squared error between Q̇
and the target heating demand is minimized. In model
1R1C, Q̇ was set equal to the heat flux through Rwall and
in model 2R2C Q̇ was set equal to the heat flux through
Rwall2, which keeps the temperature of Czone at a con-
stant 20 ◦C.

As an additional capacitor for the building core Ccore

was added for models 4R3C and 5R3C, the mapping of
the target heating demand is more complex. The opti-
mization was set up to minimize the mean squared error
between the target heating and Q̇total,

Q̇total = Q̇1 + Q̇2, (3)

which is the sum of the heat distributed via air condi-
tioning to Czone (Q̇1) and the heat distributed via floor
heating to Ccore (Q̇2). Moreover, as the direction of
heat loss is not unique in these models (losses can go
from Czone to Ccore and/or to Tground), a P-controller was
set-up to keep the temperature of Czone at a constant
Tset = 20 ◦C:

Q̇total = kp × (Tset − Tzone). (4)

A P-controller is chosen because buildings are often
controlled by a thermostat, which is a proportional con-
troller, and the closed-loop demand response to the am-
bient temperature is assumed to be dominated by the
building dynamics.5 Additionally a fraction coefficient
c f was introduced to distribute the heat between air con-
ditioning and floor heating, such that

Q̇1 = c f × Q̇total (5)

and

Q̇2 = (1 − c f ) × Q̇total. (6)

5This is the case for any well-regulated building.
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Figure 6: R-C building models

The values of kp and c f are also determined in the fitting
process.

3.3.2. Black-box method (regression-based methods)
For the black-box methods that are used for bench-

marking, we use Python’s scikit-learn package (Pe-
dregosa et al., 2011). The package features a variety
of different regression or machine learning methods. In
the case study, the following methods are used:

1. Least squares Linear Regression
2. Support Vector Machine
3. Huber Regressor
4. Orthogonal Matching Pursuit
5. SGD Regressor
6. Decision Tree Regression
7. Random Forest

The data sets used for these models were identical
to that used for the ANN method, including the scaling
of inputs and outputs and the one-hot encoding of cate-
gorical features. For all methods, a grid search regard-
ing model tuning parameters was performed to reach a
confident result. These parameters are in particular ker-
nel, gamma, C and degree for Support Vector Machine,

epsilon and alpha for Huber Regressor, nonzero coeffi-
cients for Orthogonal Matching Pursuit, alpha and L1
ratio for SGD Regressor, depth for Decision Tree Re-
gression, and number of estimators and depth for Ran-
dom Forests. We refer the reader to the API reference
of scikit-learn for details on the tuning parameters.

4. Results and discussion

For the case study, the measurement data from NEST
is divided into a training set and a testing set. The train-
ing set consists of 70% of the whole data set, which cor-
responds to 287 days (27552 data points). The testing
set consists of 124 days (11904 data points).

The data was post-processed with the help of the pan-
das package (Mckinney, 2011) in Python 3. Missing
data points were first linearly interpolated or extrap-
olated from neighbouring data points. This excludes
data points that have already been handled by the NEST
database (e.g. the constant values around September
2017 in Figure 5). The data set was then re-sampled to a
15-minute interval using the mean value of all relevant
data points.
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To benchmark the prediction performance, the coeffi-
cient of determination,

R2 = 1 −
∑

i∈N (yi − f (xi))2

∑
i∈N (yi − ȳN)2

, (7)

is used. It becomes zero if the forecast f (xi) is as good
as taking the average ȳN of the data in the considered
set N as a forecast, and becomes one if the forecast ex-
actly matches the validation data yi. In principle, R2

may also become negative if the forecast is worse than
taking the average, though this was not observed with
any of the methods tested here. In the following, if more
than one network is used, R2 describes the average of all
R2 achieved, unless otherwise stated.

We train and forecast with 100 individual ANN as the
initial input weights of each node in the network are ini-
tialized with a random value. This randomness leads to
different prediction performance for each network as the
training process involves the solution of a non-convex
optimisation problem that generally converges to a local
minimum. By simulating 100 networks, a more confi-
dent statement about R2 can be made and the quartiles
can be studied.

4.1. Prediction accuracy, quartiles and improvements
through forecast corrections

Figure 7 shows the box plot of the coefficient of deter-
mination in the test set of 100 different networks for the
uncorrected ANN, ANN with error-autocorrelation cor-
rection, ANN with online learning and ANN with error-
autocorrelation + online learning for full day-ahead
forecasts. First, it should be noted that the variance in
performance for uncorrected ANN is indeed very high,
as discussed in Section 1. The highest performing net-
work reaches R2 = 0.868, while the lowest performing
network reaches R2 = 0.732. It can be seen that the
quartiles regarding prediction accuracy amongst differ-
ent network instances are significantly reduced when
correction methods are used. While the interquartile
range (IQR) is 0.038 in the uncorrected case, it reduces
to 0.023 in the case with error-autocorrelation correc-
tion, 0.009 in the case with online learning and 0.008 in
the case where both correction methods are used. With
both corrections in place all R2 lie between 0.872 and
0.898. The average achieved R2 are 0.818, 0.860, 0.878
and 0.885 subsequently. Figures A.14 - A.16 in the Ap-
pendix show the results of a second experiment with
100 runs for the variance of three different KPI, Mean
Squared Error (MSE), Mean Absolute Error (MAE) and
Coefficient of Variation of the Root-Mean Squared Er-
ror (CV RMSE). The trend is identical to the one ob-

served for R2 in the first experiment. For clarity, the
analysis is therefore limited to R2 in the following.

Figure 8 shows the coefficient of determination for
a 2 hour ahead prediction and Figure 9 for a 24 hour
ahead prediction, again for 100 networks. First, it can
be noticed that the performance in terms of median and
IQR is similar for the uncorrected forecasts. However,
in case of the corrected forecasts, the performance is
better in the 2h ahead case, because the forecast is closer
to the model update and to the last measured error, on
which the error autocorrelation correction is based on.
Moreover, while the correction based on online learn-
ing shows a better performance in terms of median for
the full forecast (Fig. 7) and 24h ahead forecast, the cor-
rection based on error autocorrelation is more effective
in the 2h ahead case. However, the variance is signifi-
cantly reduced by both correction methods in all cases.

These results suggest that the corrections introduced
in Section 2 can to a large extent alleviate a main dis-
advantage of ANN, namely the dependence of the pre-
diction performance on randomly initialized node input
weights. Moreover, the average prediction performance
is significantly improved.

4.2. Influence of training set on prediction performance

The training set and the online application of fore-
casts can often fall into different seasons for real-life
applications, which results in different probability dis-
tributions of samples in training and application (or in
case of this study in the testing set). To investigate
the influence of different distributions, we have trained
100 networks based on randomly sub-sampled sets, with
random length and random location in the original set,
from the training set described in Section 4. The net-
works are validated on the same testing set for compa-
rable R2.

Figure 10 shows the variance of the coefficient of de-
termination. It can be seen that median and IQR has sig-
nificantly worsened for the uncorrected networks com-
pared to Figure 7. However, in the case where both cor-
rection methods are applied, both median (0.868) and
IQR (0.0183) are close to the ones achieved with the
full training set.

4.3. Prediction error analysis

To further evaluate the impact of the correction terms
introduced in Section 2 we analysed the statistics of the
forecast error with and without the corrections.6

6The absolute error is used here instead of the relative error, as the
latter is undefined for many of the data points where demand is close
to zero.
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Figure 7: Coefficient of determination for ANN and forecast correc-
tion methods for 100 individual networks (with boxes describing the
interquartile range, whiskers of 1.5 times the interquartile range, cir-
cles indicating outliers and the orange line indicating the median)

Uncorrected Auto Online Auto+Online
0.65

0.70

0.75

0.80

0.85

0.90

0.95

R
2  

sc
or

e 
(2

h 
ah

ea
d)

Figure 8: Coefficient of determination of 2h ahead prediction of 100
ANN and forecast correction methods
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Figure 9: Coefficient of determination of 24h ahead prediction of 100
ANN and forecast correction methods
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Figure 10: Coefficient of determination of 100 ANN and forecast cor-
rection methods with randomized training period
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Figure 11: Residual autocorrelation for uncorrected ANN and ANN
with error-autocorrelation correction + online learning
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Figure 12: Forecasting error histogram for uncorrected ANN and
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dard deviations are indicated by the vertical lines)
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Figure 11 shows the autocorrelation of the error for
one instance of an uncorrected ANN forecast (with a
relatively high R2 of 0.841) and the remaining error
after correction for one instance of a corrected ANN
with error-autocorrelation and online learning (with R2

of 0.887). It can be seen that the signal for the cor-
rected ANN is less correlated than the uncorrected sig-
nal. However, the residual is still not “white”, as the au-
tocorrelation is still substantial for many values of the
lag. We conjecture that this residual autocorrelation is
an intrinsic artefact of the day-ahead forecast: Distur-
bances that occur during the forecasting period will in-
troduce a systematic forecasting error for the rest of the
period, as there is no chance to correct the forecast until
the next forecasting period begins.7 Moreover, one can
see that there is no peak at t = 96, i.e. after one day.
This suggests that the network captured all regular daily
time-dependencies of the demand and has no systematic
error regarding this aspect.

Figure 12 compares the forecasting error histogram
of one instance of ANN without correction to the one
using both error correction methods.8 The plot is cut
at a frequency of 10 for the sake of readability, because
by far most errors are 0 for both cases. The interquar-
tile range reduces from 0.054 in the uncorrected case to
0.033 in the corrected case. Furthermore, the median
improves from -0.025 to 0, which shows that the bias
in the forecast is effectively eliminated by the forecast
corrections.

4.4. Forecasting trajectory examples

Figure 13 shows examples of the forecast heating de-
mand trajectory at different temporal resolutions for an
ANN that includes the error-autocorrelation and online
learning corrections. The figure also shows the empir-
ical confidence bounds for the forecast computed with
a posteriori analysis of the absolute error distribution
of the testing set. The dark-grey background depicts a
confidence bound of 68% (one standard deviation) and
the light-grey background depicts a confidence bound
of 95% (two standard deviations). Such confidence in-
tervals could be useful if one uses the forecast for pre-
dictive building energy management based on robust or

7To use the example of an opened window again: If the window is
opened at day T-1, we can use the resulting forecast error in day T-1 in
our forecast corrections for day T. However, if the window is opened at
day T, for example at t=5, this will introduce a systematic error in the
forecast for t=[6...96]. This error will show up in the autocorrelation
plot and is impossible to avoid in this forecasting setting.

8The number of bins is set according to the Freedman-Diaconis
rule.

stochastic model predictive control. For certain con-
trol tasks, such as temperature control within a building,
these confidence bounds might appear large. However,
for high level energy management tasks, methods such
as affine decision rules (Warrington et al., 2012, 2014)
can be deployed to introduce recourse in receding hori-
zon control schemes that significantly reduce the impact
of forecast uncertainty on the control performance.

The top graph of Figure 13 shows the prediction and
the actual heating demand for the complete testing set.
The general trend is captured well. We note in pass-
ing that the model seems to cope well with another unit
being added in February (as described in Section 3.1),
as the general trend is matched equally well before and
after February. The middle graph shows a more de-
tailed view of five days with a medium heating demand
in March. At this scale the capabilities and limitations
of the forecast correction methods can be observed. At
the beginning of the 18th of March and 19th of March,
the forecast signal is corrected towards the true demand,
because an error was observed at the end of the previous
days. The time of correction is indicated by the vertical
grey lines. On the other hand, in the middle of 17th of
March the forecast deviates from the actual demand for
several hours. However, this error can not be corrected,
as the correction is applied only at the beginning of each
24 hour forecasting interval. In the bottom graph, a sys-
tem shut-down or failure occurs in the afternoon of the
26th of February. The forecast is not corrected until the
start of the next day. At the beginning of the 28th of
February and 1st of March a correction of the forecast
towards the real demand at the beginning of the day can
be observed again.

4.5. Comparison of different forecasting methods

Table 2 compares the coefficient of determination in
the testing set for all ANN and the benchmark forecast-
ing methods for a full 24 hour forecast.9 It can be seen
that the ANN in all three corrected cases outperform the
other forecasting methods.

Decision Tree Regression and Random Forest reach
a high R2 without any additional corrections. It is pos-
sible that with appropriate correction methods (similar
to the ones introduced in this study) the performance of
our corrected ANN can be reached or exceeded. With
respect to the correction methods introduced here, we
note that online learning is not a viable option for re-
gression trees and random forests, because of the way

9N-step ahead error metrics are not analysed because the models
are not updated or corrected and the inputs are real measurements and
not forecasts.
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Figure 13: Forecasting examples with varying temporal resolution. The time of correction is indicated by the vertical grey lines. The grey shadings
indicate confidence bounds of 68% and 95%.

12



Table 2: Coefficient of determination for all forecasting methods

Method R2

ANN online + autocorr. 0.885

Huber Regressor 0.768
Orthogonal Matching Pursuit 0.770

Least squares Linear Regression 0.770
SGD Regressor 0.775

Support Vector Machine 0.811
Decision Tree Regression 0.844

Random Forest 0.860

Model 1R1C 0.691
Model 2R2C 0.702
Model 4R3C 0.739
Model 5R3C 0.761

these are constructed. Both methods are based on deci-
sion trees in which the input variables are split in par-
titions and the output is approximated with a constant
value in these partitions. The splitting variables and
splitting points are chosen heuristically. In online learn-
ing with ANN, the network weights are updated with the
measured input-output samples every day. The impor-
tance of the new samples can be adjusted with a learn-
ing rate. Such an adjustment of splitting variable and
point is not possible in trees, as the whole tree would
have to be rebuilt from the changed splitting point down.
Thus, regression trees or random forests always have to
be trained on the complete data set and cannot be up-
dated with single samples. Retraining on a combined
set of historical data and daily measurements is in the-
ory possible, but it would not bias the forecast towards
the recent behaviour of the building. Corrections based
on error-autocorrelation could, however, be used to cor-
rect forecasts made by any forecasting method.

The resistor-capacitor based models perform worse
than the majority of the regression based methods in this
case study. This could be due to the fact that these mod-
els can only make use of the ambient temperature as an
input, making it impossible to capture time-dependent
phenomena, such as occupancy for example. This short-
coming could be improved by an occupancy model.
Moreover, these models involve only a small number
of parameters, in the form of resistor and capacitor val-
ues. Increasing the model complexity further could im-
prove forecasting, as suggested by the fact that the R2

of the R-C models in our results continue to increase as
more parameters are added. The addition of more R-C

components of course implies increased modelling ef-
fort. Finally, R-C models are often used in this context
for modelling building thermal dynamics (Sturzenegger
et al., 2014) and not for demand forecasting. This study
suggest that they are not equally suitable for the latter.

4.6. Limitations

As evident from the discussion in the previous sec-
tion, the study has certain limitations. The scope of
the study is to find correction methods that solve the
problem of prediction accuracy variance of ANN and
to increase their prediction performance. As KPIs of
prediction performance parameters are not comparable
between different studies (as they heavily depend on the
predicted trajectory), ANN combined with online cor-
rection methods were benchmarked against other fore-
casting methods. As the scope of this study is not a com-
prehensive review and comparison of forecasting meth-
ods, the benchmarking methods have certain limita-
tions and could potentially be improved in further stud-
ies. For example, besides the already mentioned mea-
sures, the prediction performance of the grey-box mod-
els could benefit from re-initializing the model states
with temperature measurements from the building at the
beginning of each forecasting period. However, there
are also arguments that speak against this. In particular,
temperature measurements of individual buildings are
generally not available in an energy-hub or a different
higher level control context.

4.7. Generalization to other buildings

To strengthen the confidence in the correction meth-
ods, the case study was extended to three other build-
ings: An eleven-storey office building at ETH Zrich
with measurement data of 36 months, a three-storey
laboratory building at Empa Dbendorf with data of 24
months and a three-storey office building at Empa with
data of 24 months. The data quality of the last differs
from the other buildings, as the quantization error in
the heating demand measurement is at least three times
higher than that of the other case studies.

For all cases, the data was divided into 70% for the
training set and 30% for the testing set. The ANN used
are identical to those in the NEST case studies. Again,
100 instances of ANN were trained and tested for each
case in order to compensate for the variance in predic-
tion performance.

Table 3 shows the average R2 and the interquartile
range of R2 for each building with the uncorrected ANN
and both correction methods applied. The IQR ist re-
duced by a factor between 3 and 20 for the different
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Table 3: Performance of correction methods for other
Building R̄2 uncorrected R̄2 auto+online R2 IQR uncorrected R2 IQR auto+online

Office ETH 0.886 0.936 0.0329 0.0053
Laboratory Empa 0.674 0.809 0.0600 0.0033

Office Empa 0.856 0.862 0.0097 0.0032

cases. Moreover, it can be seen that the average co-
efficient of determination also increases for each case
when both correction methods are applied. The relative
improvement in case of the office building at Empa is
small compared to the other buildings. The fact that the
measurement data quality of this building is inferior to
the other ones suggests that the methods are sensitive
to data quality. A quantitative statement regarding this
issue is the topic of current research. Although these re-
sults are by no means a theoretical proof, they give con-
fidence that the methods generalize to different types of
buildings.

5. Conclusion

Artificial Neural Networks can be used for demand
forecasting in the building and district energy domain.
However, their prediction accuracy has high variance
and depends on network parameters that are commonly
randomly initialized. Here, we have introduced two
simple forecast correction methods to significantly re-
duce this variance without using ensemble methods.
The correction methods are based on the autocorrela-
tion of the forecasting error and on online learning.

With the help of a case study of a complex building
with district energy system character, we have demon-
strated that the methods significantly reduce variance in
the prediction performance and also improve prediction
accuracy and model bias for a sub-hourly day-ahead
heat demand forecasting task. Furthermore, we demon-
strated that ANN with both correction methods outper-
form other grey-box and black-box forecasting methods
in the case study. The results were confirmed with case
studies of three additional buildings.

We are currently investigating the use of the forecast-
ing approach in a variety of Model Predictive Control
and Data Predictive Control settings for building and
district energy systems. We intend to use the forecasts
as an input for control schemes to provide thermal re-
serves in low temperature district heating and cooling
networks or secondary frequency control in electrical
grids based on demand-side management in buildings.
Moreover, different modelling approaches, such as AR-
MAX, are under investigation.
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