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Abstract 

Biomechanical Analysis and Modeling of the In Vivo Lumbar Spine 

 

Ryan Byrne, PhD 

 

University of Pittsburgh, 2019 

 

 

 

 

Low back pain is the most prevalent musculoskeletal disorder in the United States and 

worldwide. To better understand the mechanical antecedents which exacerbate low back pain, 

further investigation of lumbar mechanics during functional activity is required. Advancements in 

medical imaging techniques have paved the way to address current knowledge gaps regarding in 

vivo lumbar mechanics, providing the capability of capturing motion of the lumbar spine with high 

accuracy during dynamic activities. The current work comprises three aims. The first aim was to 

accurately quantify in vivo deformation of the lumbar intervertebral discs in healthy subjects 

during dynamic lifting tasks. The second aim was to evaluate lumbar facet joint kinematics during 

the same lifting tasks. Utilizing directly measured subject-specific lumbar vertebral kinematics, 

the third aim was to investigate the potential for obtaining more accurate joint reaction and muscle 

force estimates. To accomplish this, in vivo data were incorporated within subject-specific 

musculoskeletal models, whereby the joint reaction and muscle force patterns of the lumbar spine 

during the lifting motion were estimated. The current study found uniquely different intervertebral 

disc morphometry, disc deformation, and facet join translational kinematics at the L5S1 disc 

during the lifting tasks. The incorporation of accurately measured lumbar vertebral kinematics 

within musculoskeletal models led to decreased joint reaction forces compared to those with 

generic, rhythm-based lumbar kinematic inputs. Lumbar kinematic input also displayed significant 

interaction with passive stiffness properties and the neutral state configuration defined at the 

lumbar joints of the musculoskeletal models. The results suggest that the mechanical behavior of 



 v 

the L5S1 is distinctly different from the rest of the lumbar segments, and that approaches to restore 

normal, functional motion at the segment should differ from other joint levels. Furthermore, results 

indicate that inclusion of the accurate vertebral kinematics – including rotational as well as 

translational kinematics – within musculoskeletal models may lead to improved estimates of 

lumbar loading patterns. Such input datasets can also provide a better insight into the stabilizing 

role of deep intrinsic muscles such as the multifidus. On the other hand, it may also heighten the 

demand for accuracy of accompanying parameters. 
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1.0 Introduction 

1.1 Background 

1.1.1  Low Back Pain 

For nearly three decades, low back pain (LBP) has been identified as one of the three 

leading causes of non-fatal disease and the most significant cause – Level 3 –  of global years lived 

with disability (YLD), with counts increasing from 2007 to 20171. Global disability-adjusted life-

years (DALYs) associated with LBP increased by more than 17% from 2007 to 2017, ranking LBP 

5th among all non-communicable diseases and 1st among musculoskeletal disorders. LBP has 

several causes, some of which include disc herniation, low back muscular and ligament strains, 

and osteoarthiritis, among many others, stenosis, nerve root inflammation.  

Studies investigating the etiology of low back disorders have established excessive or 

altered mechanical loading as a central factor leading to degenerative disc disease (DDD), a 

common disease of the intervertebral disc that can lead to further loss of structural integrity, and, 

more importantly, debilitating LBP2,3. Identifying the mechanical antecedents of DDD is a 

complex issue, however, as degenerative conditions in the intervertebral disc are often concomitant 

with facet joint osteoarthritis (degeneration of the facet joint) due to the interdependence of the 

motion and loading patterns between the two structural components. Furthermore, there is still 

much not known in understanding the basic science of low back mechanics during functional tasks.  



 2 

1.1.2  In Vivo Lumbar Mechanics 

1.1.2.1 In Vivo Measurements 

The mechanics of the disc and facet joint have a strong influence on the structural stability 

of the lumbar spine and alterations in their mechanical properties and motion patterns during non-

functional or static poses have often been associated with DDD2,4-10. What remains unclear, 

however, are the dynamic motion and loading patterns of these structures during the in vivo, 

functional activities that can exacerbate DDD. Identifying disc deformation and facet joint 

kinematics along with the corresponding loading patterns during a lifting task has the potential to 

improve our knowledge of the physiological demands inflicted on the structural components of 

the lumbar segments during functional activity. Furthermore, it can help establish a more concrete 

baseline of “normal” in vivo motion and loading patterns with which degenerative conditions can 

be compared against.  

1.1.2.2 Simulation and Modeling Techniques 

Due to the relative infeasibility of measuring the loading patterns of the mechanical 

structures in the lumbar spine in vivo, they are often estimated using biomechanical models. Many 

finite element (FE) models, musculoskeletal models, or hybrid FE-musculoskeletal models, have 

been developed to observe the functional mechanics of the lumbar spine4,11-24. However, validation 

of these models is a difficult task due to both the inevitable variability of physiological parameters 

among subjects and the absence of in vivo data in literature14,15,25. The results derived from these 

models are often validated against in vitro or in vivo data from previous studies. However, the 

kinematic and loading boundary conditions applied during in vitro studies do not guarantee the 
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spine to function as it would in vivo, and while utilizing in vivo datasets are an improvement, they 

often have limited accuracy or are based on static or nonfunctional loading conditions.  

The next three subsections will detail the knowledge and methodologies of previous studies 

regarding disc deformation, facet joint kinematics, and biomechanical modeling of the in vivo 

lumbar spine. 

1.1.3  In Vivo Disc Height and Deformation 

1.1.3.1 Significance 

Intervertebral discs are critical structural components of the spine, comprising the softer, 

more compliant portion that transmits approximately 80% of its axial loads, while providing 

almost all the mobility26-28. Degenerative or trauma-related changes to the intervertebral discs in 

the lumbar spine can lead to loss of structural integrity and, more importantly, debilitating chronic 

low back pain LBP29. Given the unclear etiology of degeneration-related LBP and lack of an 

accepted disease model, comprehensive treatment remains elusive30. For example, currently 

available surgical interventions such as lumbar fusion or artificial disc replacement might 

successfully mitigate pain symptoms when conservative treatment fails, but may not fully restore 

joint motion or force transmission capabilities31-35. Furthermore, iatrogenic factors lead to altered 

mechanical responses resulting in sub-optimal long-term outcomes36,37. Tissue engineering-based 

repair or replacement solutions to restore structural and functional capabilities, while retaining the 

capacity to remodel in response to external stimuli38, present a promising treatment approach39. 

However, a lack of well-defined biomechanical functional benchmarks or design parameters with 

respect to the in vivo load capacity as well as disc height and deformation patterns has hindered 

successful translation of these approaches into clinical reality40. 
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Although a multi-factorial conundrum, changes in the in vivo mechanical environment and 

the ensuing changes in biochemical environment within the discs have been accepted as separate 

but inter-related contributing factors to disc degeneration. Consequently, there is a growing interest 

in clarifying the mechanobiological links between the mechanotransduction, biochemical 

environment, and overall in vivo mechanical environment30,41. While aberrant mechanical loading 

has been determined to affect intervertebral disc cellular response in ex vivo experiments42-46, there 

is limited knowledge regarding the in vivo mechanical environment of the lumbar intervertebral 

disc – such as stress and strain patterns – during dynamic functional activities. Studies employing 

direct intra-discal measurement techniques have generated limited, precious data to allow 

characterization of the intra-discal pressure distribution in various static positions47-49 and even 

estimation of spinal loads therefrom49. Though insightful, a major limitation of these studies has 

been the inability to measure shear stresses and strains41, which are thought to drive the 

degenerative cascade in the intervertebral discs8,50. Moreover, highly invasive, needle-based disc 

puncture techniques are now discouraged41 due to the risk of instigating disc degeneration51, and 

our understanding of in vivo loading relies primarily on computational models employing inverse 

static and dynamic analyses14,22,52-57. 

1.1.3.2 Limitations of Disc Deformation Measurements  

 Although several studies have investigated the disc height and deformation of the lumbar 

intervertebral discs, only a few have observed them in vivo. Some studies have quantified such 

parameters in vitro58-60, while others have developed finite-element models to simulate disc 

deformation by utilizing disc geometry and material property data found in literature61-64. 

However, due to the absence of in vivo measurements in these studies, the kinematic and loading 

patterns prescribed may not be indicative of in vivo conditions, therefore limiting their 
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significance. Despite a number of studies having utilized imaging techniques to quantify in vivo 

lumbar intervertebral kinematics at certain static postures or movements, only a few studies have 

used such data to examine in detail the associated deformation patterns of the intervertebral disc.  

To our knowledge, (Pearcy et al.) was the first group to investigate lumbar disc deformation 

in vivo65. In this study, disc deformation was defined as the change in height of the anterior and 

posterior edges of the annulus fibrosis analyzed by lateral X-rays at the flexed and extended 

posture. Despite the simplistic analysis and imaging methodology, this study set the foundation 

for future investigations on lumbar intervertebral disc deformation. Many more subsequent studies 

have explored changes in disc height at discrete locations by utilizing similar imaging techniques 

to capture the lumbar spine during static poses66-69. While a few measurements may be satisfactory 

when attempting to calculate a rough estimate of disc height at a segment in order to make 

comparisons between symptomatic and asymptomatic groups, analyzing the disc in such a 

perfunctory fashion provides only limited information on the in vivo mechanical deformation of 

the intervertebral disc as a whole. 

In a study by (Kanayama et al.), the intervertebral discs were approximated as 

quadrilaterals by connecting points placed at the anterior and posterior “corners” of adjacent 

vertebra seen in a static radiograph70. Participants then flexed their trunk from the neutral to the 

fully-flexed position over a span of six seconds, then returned to their upright position at the same 

speed, while a cineradiographic system captured their lumbar motion at a frequency of 25 Hz. At 

every 10 frames of motion, the deformation of each disc was estimated by the displacement of 

each point from the neutral position. The deformation data were then utilized in a finite-element 

model consisting of nuclei pulposi, annuli fibrosi, and vertebral endplates to calculate the in vivo 

strains of the disc at each segment. Compressive strains were reported at the anterior and posterior 
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edges and shear strains were reported at the top and bottom edges of the L3L4, L4L5, and L5S1 

discs. While this study greatly improved knowledge of disc mechanics with a dynamic analysis, 

the intervertebral disc geometry lacked the detail necessary to provide an accurate estimation of 

disc deformation except for at the anterior and posterior discrete locations of the disc. Furthermore, 

the imaging technique captured only sagittal plane views of the lumbar spine and was therefore 

incapable of seeing out-of-plane deformation of the disc. 

A study by (Li et al.) investigated in vivo disc deformation using a more sophisticated 

method8,71. The participants were first asked to complete an MR scan in the supine position from 

which a model of the lumbar spine was created. The disc height, or distance between the adjacent 

vertebral endplates, was then calculated at approximately 800 points per disc. Participants were 

then asked to stand in the upright posture while a dual fluoroscopic imaging system captured 

images of their lumbar spine. Vertebral models of the L2 to L5 derived from an MR scan were 

then matched to the fluoroscopic image with a minimum accuracy of 0.3 mm and 0.7° in position 

and orientation, respectively. Once the position and orientation of each vertebra was determined, 

the elongation of the point-to-point distances in the normal and shear direction during the weight-

bearing kinematics were calculated to quantify the compressive and shear strains in the disc.  

Deformation plots at each joint level were created and compressive and shear strain values 

at nine discrete locations were further analyzed. This sophisticated method of quantifying disc 

deformation showed the ability to utilize imaging techniques to obtain the subject-specific 

vertebral geometry and kinematics necessary to calculate in vivo disc deformation. However, the 

deformation was calculated only at a static standing position, providing no indication of how the 

disc deforms during a dynamic task. An additional limitation is that the deformation characteristics 

of their extremely detailed discs (~800 points each) were only compared between joint levels at 
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nine different locations. A more complete analysis inclusive of the entire disc area would be 

preferred.  

In another study by (Li et al.), the same general technique was applied to analyze the effects 

of DDD on the disc deformation at cephalic levels of the lumbar spine8. In this study, deformation 

was analyzed at six end-range of motion postures with respect to the standing position. The 

maximum tensile and shear deformations, along with the percentage of disc area experiencing less 

than 5% deformation, were determined at each posture and compared between disc levels and 

patient types. This study improved upon the previous study by reporting range of motion values 

of disc deformation, however the limitation of only capturing deformation at static poses remained. 

Furthermore, the deformation plots corresponding to several of the static postures went unreported, 

while differences in deformation between segment levels were not determined across the entire 

disc area. 

(Martin et al., 2018) developed a framework for quantifying disc deformation in vivo and 

assessing durnial variations in lumbar disc shape72. While the MRI-based framework proved 

capable of detecting spatial changes in L5-S1 shape after daily activity, the changes in other lumbar 

segments were not studied, apart from serving as a sensitivity analysis of the methods. Further, the 

study was not designed to provide insight on the mechanical strains induced during normal 

functional activity, but only the resulting changes in disc height after activity. 

One study investigating the effect of lumbar axial rotation on the distribution of 

intervertebral disc height performed a very detailed and structured analysis of changes across the 

entire disc area73. In addition to providing color maps of the disc height distribution at the supine 

position and supine + axially rotated position during CT scans, each disc was separated into five 

regions, where the differences in mean disc height of each region before and after lumbar rotation 
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were determined. The effects of spinal level, disc degeneration, age, sex, and symptomatic low 

back pain were also analyzed using a Fisher post hoc test. The detailed analysis and description of 

the dataset showing areas of the disc that may be more affected by torsion and provides a strong, 

comprehensive benchmark with which future studies can verify their data against. However, 

despite the in-depth analysis, like many other studies this data does not reflect the functional and/or 

dynamic mechanics of the lumbar spine. 

1.1.3.3 Disc Deformation Knowledge Gaps 

Currently, some significant knowledge gaps surrounding the disc height and deformation 

patterns of the lumbar intervertebral discs continue to exist. First, a detailed description of the 

instantaneous intervertebral disc height and deformation patterns during dynamic motion is still 

missing. Second, quantification of disc deformation during more physically demanding functional 

activity, and how external loading and lumbar segment level affect the deformation patterns needs 

improvement. Third, there is still need for a more novel and comprehensive method of analyzing 

the deformation patterns throughout the entire disc area, while also establishing differences 

between segment levels of the lumbar spine. 

1.1.4  In Vivo Facet Joint Kinematics 

1.1.4.1 Significance 

Lumbar facet joint (FJ) pain is a prevalent pathology shown to account for around 20% of 

cases of low-back pain (LBP)74,75, but its biomechanical antecedents are less clear. Although 

changes in FJ mechanics, particularly kinematics, have been linked to tissue degeneration76-78, 

quantification of their normal mechanics in vivo during functional activity is lacking. Such 
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normative data are important, as studies have alluded to associations between deviations from 

“normal” facet mechanics and the overloading or damaging of surrounding spinal tissues, such as 

facet cartilage, capsular tissues, and intervertebral discs5,6,76. Additionally, excessive or abnormal 

motion between lumbar facet surfaces can stress the well-innervated cartilaginous tissues and 

capsular ligaments of the FJ, which have been shown to release pain receptors when put under 

significant stress79-82.  

From a clinical perspective, an accurate depiction of normal facet joint translational 

kinematics can help improve our understanding as well as diagnosis of degenerative diseases such 

as FJ osteoarthritis. For example, FJ gap is an important metric for evaluating the progression of 

osteoarthritis, as narrowing of the facet gap and subsequent articular cartilage thinning have been 

highly correlated with the onset of osteoarthritis76,83,84. Nevertheless, static CT imaging-based 

evaluations of facet gap76 or facet contact area85  may not discern the presence of different damage 

mechanisms based on differing movement patterns86, and, as reiterated by (Simon et al., 2012), 

relationships between extent and location of facet degeneration and in vivo kinematics still require 

further clarification. Secondly, although FJ pain and associated osteoarthritic conditions are often 

preceded by degenerative disc disease, it has also been shown to occur without concomitant disc 

degeneration in about 20% of degenerated spines87. This implies FJ pathologies are not always 

directly attributable to pathologies arising within the intervertebral disc87-90.  

Quantifying dynamic in vivo lumbar FJ motion, however, can be quite challenging given 

the relatively small magnitudes of translation. At present, our understanding of FJ motion is based 

primarily on in vitro cadaveric studies10,86 or CT and MRI imaging in static, non-functional 

positions76,91,92. Li and co-workers were the first — and to our knowledge the only to attempt —  

to demonstrate the use of biplane video-fluoroscopic imaging to quantify facet 3D angular and 
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translational orientations in functional weight-bearing poses in healthy individuals93. While their 

study provided invaluable insight into FJ orientation in static poses, a dynamic dataset acquired 

during functional activities could offer more clarity normal physiological motion of the lumbar 

facet joints.  

1.1.4.2 Progression of Facet Joint Kinematic Measurements 

(Otsuka et al.) investigated the in vivo lumbar facet area in both asymptomatic and chronic 

LBP subjects85. Following a CT scan of the participant, an orthopedic surgeon traced the superior 

and inferior facet joint surfaces slice by slice, ultimately creating a polygon mesh of the entire 

facet surface. The area of each facet joint was determined by combining the surface area of the 

two adjacent facet surfaces, and differences between left and right location, symptomatic pain 

group, segment level, and age were analyzed. (Simon et al.) investigated lumbar facet joint space 

in vivo by analysis of CT scans from asymptomatic subjects76. First, the facet surfaces from L1 to 

S1 were separated into five separate anatomical zones. Using a least-distance method, the facet 

joint space width was calculated between adjacent facets at each point on the surfaces. Differences 

in spacing between the zones, segment levels, age, and pain symptoms were evaluated. These 

studies provides valuable, detailed information regarding facet joint parameters associated with 

mechanical loading and osteoarthritic conditions of the facet joint. Nevertheless, static CT 

imaging-based evaluations of facet gap or facet contact area may not discern the presence of 

different damage mechanisms based on differing movement patterns86, and, as reiterated by 

(Simon et al., 2012), relationships between extent and location of facet degeneration and in vivo 

kinematics still require further clarification. 

Li and co-workers were the first — and to our knowledge, the only group — to demonstrate 

the use of biplane video-fluoroscopic imaging to quantify lumbar facet 3D angular and 
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translational orientations in static, functional weight-bearing poses in healthy individuals93. In this 

study, the same methodology as described by (Li et al., 2009) was utilized to examine the 

functional range of motion of the lumbar facet joints. Participants were asked to assume several 

different postures while a biplane fluoroscopy system captured static images of their lumbar spine. 

MR models of each vertebra were created and registered to the images to determined their 

respective 3D position and orientation in space during each posture. Facet joint ranges of motion 

were based on the overall difference in kinematics between the flexed and extended, left and right 

bending, and left and right axial rotation postures. Although range of motion data provides 

valuable insight on the overall motion the facet joint may experience, the degree of linearity of the 

kinematic pattern is undetectable due the absence of instantaneous facet joint kinematics during 

dynamic motion of the lumbar spine. It should also be noted that although the overall accuracy in 

determination of position and orientation of the vertebra are impressive (0.3 mm and 0.7°, 

respectively), the facet joints’ translational and angular ranges of motion, primarily during twisting 

and bending, were nearly just as small. Therefore, even slight improvements in accuracy would 

lead to more dependable results. In two other studies by Li and co-workers, the effects of disc 

degeneration and degenerative spondylolisthesis on facet joint kinematics were determined using 

the same approach and consisted of the same limitations5,94.  

Similar to disc deformation, there are still a few aspects of facet joint kinematics that 

remain absent from literature. First, a dynamic description of in vivo facet joint kinematics, as 

opposed to static or range of motion values, is not yet available. Furthermore, the effect of a more 

physiological demanding functional activity on the dynamic in vivo motion of the facet joint has 

not yet been examined. Due to the relatively small values of facet joint translations, improvements 
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in accuracy of the position and orientation of the lumbar vertebrae are necessary to adequately 

examine in vivo facet joint motion. 

1.1.5  Biomechanical Models of the Lumbar Spine 

1.1.5.1 Lumbar Spine Finite Element Models 

Due to the relative infeasibility of measuring the loading patterns in the lumbar spine in 

vivo, they are often estimated using computational models. Several studies have developed or 

utilized finite element (FE) models to observe the functional mechanics of the lumbar 

spine4,20,21,23,24,95-98. A common limitation shared amongst these studies is that their models’ lumbar 

motions are either prescribed according to, or validated against, ex vivo data or in vivo data with 

substantial limitations. These limitations include lack of dynamic characterization, lack of 

translational kinematics, and limited accuracy. While some of these models have proven capable 

of replicating kinematic and loading patterns within ranges of measured values from ex vivo 

studies20,23,24,95, a study comparing eight previously validated and published FE models found that 

replicating in vivo flexion of the lumbar spine is a challenge16. When subjecting the models to the 

physiologically realistic compressive loads and flexion moments determined by (Rohlmann et al., 

2009)99, each model that was able to converge produced L2L3, L3L4, and L4L5 intervertebral 

rotations that substantially underestimated those measured in vivo by (Pearcy et al., 1984)65. As 

demonstrated by this study, a disadvantage of FE modeling is the difficulty of replicating the in 

vivo physiological environment of the lumbar spine. 



 13 

1.1.5.2 Lumbar Spine Musculoskeletal Models 

Another approach to analyze lumbar mechanics is rigid body modeling. While FE 

modeling offers the advantage of investigating the stress and strain distributions within deformable 

structures, FE models are typically best-suited for static analyses. On the other hand, rigid body 

modeling has often been used to determine generalized forces, moments, and muscle activity 

during dynamic motion. Some studies have taken the approach of combining rigid body and FE 

modeling to obtain both rigid body and soft tissue behavior of the lumbar and cervical spine100,101. 

While there are advantages of incorporating FE models of the intervertebral discs and ligaments 

within a dynamic RBM of the lumbar spine, their inclusion is not necessary to drive the proposed 

model. In our case, soft tissue properties – such as the intervertebral disc, facet joint capsules, and 

ligaments – will have no effect on the model’s lumbar kinematics, as the intervertebral joint motion 

will be explicitly prescribed as an input based on the acquired measurements from DSX. However, 

the stiffness of the soft tissue will affect the magnitude of loads transferred to the joints during 

simulation. In an FE model, these loads would rely entirely on the material properties defined 

within the model, which unfortunately were not quantifiable in vivo and would have to be estimated 

based on data from previous studies. Although feasible, generating subject-specific FE models of 

the soft tissue at each segment level for every subject involved in the study would be an extremely 

time-consuming task. Given that the behavior of the FE components would be completely reliant 

on estimated material property values, the value added to the model may not justify the effort 

required. This decision was made with the realization that a more time-efficient solution was 

available.  

Alternatively, rigid-body modeling software allows the stiffness of a joint to be defined by 

a “bushing element”, described by a 6x6 matrix defining the force-displacement and moment-
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angle relationships at a joint. Like the material properties of intervertebral soft tissue, joint stiffness 

data based on ex vivo studies is also readily available from literature102-104. Implementing bushing 

elements at each joint will provide us with a more computationally efficient method to define 

intervertebral joint stiffness compared to generating FE models. Therefore, FE modeling will not 

be included within the main body of work in this study. However, to aid in defining the stiffness 

properties of the model’s bushing elements, load-displacement curves of the lumbar joints 

quantified by a co-existing FE study will be utilized.  

A number of RBMs have been developed to estimate muscle forces and joint reaction loads 

in the lumbar spine11,12,17,19,22,54,105-111. While dynamic models of the lumbar spine exist, a lack of 

comprehensive dynamic in vivo lumbar kinematics in literature compels these models to prescribe 

motion based on an average dataset from either individual or a combination of studies. In all but 

one of these studies, the lumbar intervertebral kinematics implemented within the models are 

prescribed using data from ex vivo or static in vivo datasets. To our knowledge, (Eskandari et al., 

2017) is the only study that has used image-based subject-specific kinematics to drive the 

kinematics of an RBM model109. However, it should be noted that the translational motion, 

although acquired, did not appear to be included within the RBM model. Furthermore, only static 

postures were analyzed by the model for a single subject. An additional limitation of this study, 

which is commonplace among many of the existing RBMs12-15,19,22,96,97,105,109,111, is the absence of 

passive elements such as ligaments or facet joints necessary to simulate the load-sharing capability 

of the lumbar spine. Without the incorporation of subject-specific vertebral kinematics, direct use 

of these models aren’t necessarily suitable to evaluate subject-specific lumbar mechanics as 

differences in lumbar rhythms – for example, between an individual’s lumbar rhythm and that of 

an average dataset – have been shown to affect the distribution of lumbar loads11. 
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1.1.5.3 Improving Subject-Specific Musculoskeletal Models 

Multi-body musculoskeletal modeling based on inverse dynamics is a commonly deployed 

approach for assessing mechanical loading within the lumbar spine. As with any modeling 

approach, the accuracy of resulting load predictions is sensitive to the quality of the input 

parameters. Fundamental to modeling is the validity of simplifying assumptions governing two 

key sets of input parameters and their interaction: joint kinematics and passive tissue 

[intervertebral discs (IVD) and ligaments] stiffness properties. 

Under conventional assumptions, three rotational degrees of freedom (DOF) are sufficient 

for describing the kinematics of individual intervertebral joints (IVJ) comprising the lumbar spine; 

translational DOF are either non-existent, or, at best, small enough to only negligibly influence 

joint reaction force estimates. Second, individual IVJ rotations can be satisfactorily interpolated 

from the overall lumbar spinal rotations based on a fixed fractional distribution—lumbar spinal 

rhythm—throughout the entire range of a given movement14,112-114. Consequently, IVJ were 

routinely modelled in rigid body musculoskeletal spine models as 3-DOF spherical joints with 

their individual rotational contributions estimated based on a presumed lumbar rhythm. Over the 

last decade, however, new in vivo 6-DOF intervertebral kinematic data acquired using 

technologies such as dynamic X-ray imaging have challenged these assumptions37,109,115-119. 

The availability of in vivo subject-specific intervertebral kinematics data presents a 

dilemma for the modelers. On one hand, the 6-DOF kinematic datasets for individual IVJ based 

on direct vertebral motion measurements theoretically present the opportunity to obtain more 

accurate joint load estimates than was possible before. On the other hand, increased complexity of 

these input datasets can not only lead to higher computational cost, but also extract a more stringent 

penalty for any errors within these datasets, heightening the demand on the accuracy of these 
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parameters. For example, a recent Monte Carlo simulation-based study reported that even small 

translation component errors (0.1 – 0.3mm) could induce large variations in IVD joint force 

estimates120.  

Passive stiffness properties of the intervertebral disc (IVD) and ligaments comprise the 

second key set of input parameters. Solving an inverse dynamics problem, as it pertains to the 

lumbar spine, requires an accounting of the contribution of active (muscles) and passive (IVD and 

ligaments) components supporting the lumbar joint to properly satisfy the joint’s measured 

generalized displacements, velocities, and accelerations during a specific movement. Passive 

reaction moments arising from IVD and ligament deformations contribute to the total reaction 

moment, thus altering the net moment contribution from the musculature and, consequently, the 

distribution of forces across the involved muscles and the resultant joint reaction forces. Hence, 

assumptions regarding the representation of the IVD and ligaments could have significant effects 

on model simulation results. For instance, while the IVD and ligaments are inherently nonlinear, 

linear stiffness properties are often assumed121-123.  Second, the corresponding in vivo initial or 

“neutral position” and, consequently, the magnitudes of inherent pre-strain within these structures 

are not always known, thus creating an additional source of variability.  
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1.2 Specific Aims and Significance 

1.2.1  Specific Aim 1 

Quantify subject-specific 3D lumbar intervertebral disc height and disc deformation 

patterns during a dynamic lifting task. Instantaneous measured of nominal compressive and shear 

strain across the entire disc area will be calculated with respect to disc height at the upright posture. 

Hypothesis 1.2.1.1: Upright disc height, flexed disc height, and the dynamic nominal 

compressive, shear, and radial strain trends will vary with segment level. 

Hypothesis 1.2.1.2: The magnitude of external load listed will affect the upright disc height, 

flexed disc height, and the dynamic nominal compressive and shear strain trends.  

Hypothesis 1.2.1.3: Intervertebral disc height will influence the rotational kinematics of 

the corresponding joint level.  

1.2.2  Specific Aim 2 

Determine subject-specific 3D lumbar facet joint kinematics during the dynamic lifting 

task. Instantaneous measures of translational kinematics between adjacent facet surfaces will be 

calculated. 

Hypothesis 1.2.2.1: Facet joint translational motion patterns will vary with segment level.  

Hypothesis 1.2.2.2: The magnitude of external load lifted will affect facet joint translational 

motion patterns. 
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1.2.3  Specific Aim 3 

Quantify subject-specific joint and muscle loading patterns in the lumbar spine during the 

dynamic lifting tasks. Study the effects of vertebral kinematic input and joint stiffness properties 

on joint reaction forces and force distribution among the components of the lumbar spine. A 

previously-existing lumbar model will be enhanced to include intervertebral soft tissue passive 

stiffness and 6-DOF subject-specific in vivo lumbar kinematics. Rhythm-based lumbar kinematics 

from literature and DSX-derived kinematics will be implemented within the model separately, as 

will linear and nonlinear stiffness properties of the soft tissues. 

Hypothesis 1.2.3.1: The inclusion of DSX-derived vertebral kinematics, as opposed to an 

average, rhythm-based kinematic dataset, will affect joint reaction force magnitudes during the 

lifting task. 

Hypothesis 1.2.3.2: Force distribution trends among lumbar muscles will be affected by 

the integration of DSX-derived vertebral kinematics.  

Hypothesis 1.2.3.3: The inclusion of linear passive stiffness properties, nonlinear passive 

stiffness properties, or the exclusion of passive stiffness will result in uniquely different lumbar 

muscle force distribution and joint reaction forces throughout the lifting motion. 

Hypothesis 1.2.3.4: Compressive and shear deformation trends (from Aim 1) will linearly 

correlate with the compressive and shear joint reaction forces estimated by the model simulations. 

1.2.4  Clinical Significance 

Despite the valuable insights provided by previous studies investigating the lumbar spine, 

knowledge of in vivo lumbar mechanics remains incomplete. Disc deformation and facet joint 
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kinematics have been quantified by previous studies but are limited by their lack of dynamic 

characterization, particularly during functional activity. The loading patterns of lumbar 

components estimated by MS models also remain limited due to either assumptions regarding 

lumbar vertebral kinematics, absence of dynamic analysis, inability to quantify load distribution, 

and limited sample size. The current work will fill the knowledge gap first by utilizing previously 

measured vertebral kinematics to quantify in vivo disc deformation and facet joint kinematics 

during a functional lifting task. Subsequently, subject-specific DSX-derived vertebral kinematics 

will be incorporated within a full-body musculoskeletal model – consisting of an enhanced lumbar 

spine – to estimate loading patterns in the intervertebral discs, facet joints, ligaments, and muscles 

of the lumbar spine. The sensitivity of the simulation’s results will be thoroughly assessed to 

observe the influence of model parameters, such as input kinematics, joint configuration, and 

stiffness properties 

Potential applications of the work resulting from this proposal are widespread. As 

previously emphasized, studies investigating the kinematic or loading patterns of the lumbar spine 

often look to ex vivo or static in vivo datasets to validate their results. Although appropriate for 

some studies, the limited availability of dynamic in vivo datasets hinders the ability of those 

investigating dynamic lumbar mechanics to properly evaluate their data. The characterization of 

disc deformation, facet joint kinematics, and load distribution between lumbar structures 

determined in this work can provide dynamic, functional benchmarks that previous studies were 

unable to provide. Furthermore, the data could serve as a reference for healthy lumbar mechanics 

to assist studies with identifying aberrations in the mechanics of the dysfunctional lumbar spine, 

such as patients suffering from DDD for facet joint osteoarthritis. 
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These benchmarks, aside from validation, can be utilized for other purposes as well. From 

a clinical perspective, accurate characterization of in vivo lumbar mechanics during a functional 

activity is critical to the design of orthopaedic interventions. For example, the current “gold 

standard” treatment for DDD is lumbar fusion, where the two adjacent vertebrae surrounding the 

injured disc are fused together to prevent the pain-inducing segmental motion. Although this 

procedure has achieved moderate success in relieving symptomatic pain, studies have found that 

lumbar fusion may have long-term adverse effects on the health of adjacent segments31,124. Ideally, 

in the case of DDD and also other musculoskeletal disorders, spinal interventions would 

effectively restore the motion and loading patterns of a healthy intervertebral disc and facet joint 

to effectively eliminate abnormal loading of adjacent segments. An example is the total disc 

replacement (TDR), an alternative treatment to the lumbar fusion that inserts an artificial disc 

between adjacent vertebrae to relieve pain while maintaining flexibility at the joint. However, a 

systematic review on TDR for patients with symptomatic lumbar degenerative disease found no 

sufficient evidence of long-term benefits compared to lumbar fusion. Furthermore, cohort studies 

have reported a wide range of post-TDR complication rates due to many factors, including implant 

failure or displacement125. Successful translation of these approaches into clinical implementation 

may be hindered by the lack of well-defined functional benchmarks or design parameters with 

respect to load capacity as well as motion patterns of the intervertebral disc40. Advancing our 

knowledge on disc deformation, facet joint kinematics, and joint loads during a dynamic lifting 

task can provide insight on the physiological mechanics that orthopaedic interventions should 

account for. Furthermore, knowledge of how the mechanics vary across intervertebral levels may 

indicate the need for segment-specific implants or intervention techniques.  
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2.0 Research Design and Methods 

2.1 Previous Data Acquisition 

2.1.1  Participant Recruitment 

Data utilized in the current work was acquired during an Institutional Review Board (IRB)-

approved study in which 14 healthy participants (8 male, 6 female, aged 19-30, 54-92 kg) were 

recruited to perform upright standing and functional load-lifting tasks while their lumbar spine 

motions were recorded using dynamic stereo-radiography (DSX)116. Participants reported having 

no issues of low back pain or lumbar spine deformities. All participants provided informed 

consent, and IRB guidelines and regulations were appropriately followed.  

2.1.2  Data Collection and Data Processing 

The study involved DSX imaging of a participant’s lumbar region during several static 

standing and dynamic straight-legged lifting tasks while holding various weights of external load 

(4.5 kg, 9.1 kg, 13.6 kg). Simultaneously, surface marker-based motion and ground reaction forces 

(GRF) were captured to obtain full-body kinetics and external loads of the participants. 

Afterwards, the participants completed a CT scan in the supine position. Using a previously 

validated methodology, vertebral bone models derived from the CT data were co-registered to the 

two DSX radiographs using a volumetric model-based tracking process to determine the 3D bone 
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positions and orientations in space with sub-millimeter accuracy (≤ 0.5°; 0.3mm). This was done 

during each timeframe of the static standing and dynamic lifting tasks116,126.  

2.2 Disc Height and Deformation 

2.2.1  Approximation of Intervertebral Disc 

On each endplate of the vertebra from L2 to L5, four points were manually picked; two at 

the furthest anterior and posterior locations along the approximate anterior-posterior (AP) axis, 

and two at furthest left and right locations along the approximate medial-lateral (ML) axis. Based 

on the eight endplate markers, a right-handed orthogonal coordinate system was created at the 

center of the vertebral body.  

 

 

Figure 1: Manually picked points and anatomical coordinate system of vertebra. 
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The anatomical origin of the vertebral body was defined as the average of the eight points 

(Figure 1), while the vertebra’s X-axis extended from origin parallel to the vector connecting the 

middle right point to the middle left point. The Y-axis was defined as the cross-product of the 

vector connecting the middle posterior point to the middle anterior point and the X-axis. Finally, 

the Z-axis was then defined as the cross product of the X- and Y- axes. Due to its difference in 

geometry, the coordinate system of the S1 was dependent only on four points picked on the 

superior surface (Figure 2).  

 

 

Figure 2: Difference in coordinate system definition for sacrum 

 

The origin of the S1 was defined as the average location of the four points, while the X-axis was 

defined as the vector connecting the superior right marker to the superior left marker. The Y-axis 

was defined as the cross product of the vector connecting the superior posterior point to the 
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superior anterior point and the X-axis, and the Z-axis was defined as the cross product of the X- 

and Y- axes. The vertebrae’s X-, Y-, and Z- axes corresponded to the ML, superior-inferior (SI), 

and AP directions, respectively. The CT-acquired surfaces of the vertebral bone models were 

represented as triangular meshes sampled with a 0.8 mm spacing.  

The location of all triangular element vertices and centroids in the defined anatomical 

coordinate system were imported into MATLAB (R2016b, Mathworks Inc., Natick, MA) as point 

clouds. 

 

Figure 3: Vertices of all triangular elements forming the vertebra with coordinate system 

 

A MATLAB algorithm was developed to generate a representation of each intervertebral disc as 

approximately 4000 line segments (exact number varies by bone size) between adjacent endplates 

of the vertebrae based on a previously published method127. A custom written algorithm was 

developed to isolate the vertebral endplates of each vertebral while it was placed in its local 
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anatomical coordinate system (Figure 3). Triangular elements with a Y-coordinate greater than or 

less than zero were said to be located on the superior or inferior half of the vertebra, respectively. 

Any triangular element on the superior (or inferior) half of the vertebra with a centroid whose X-

coordinate was further from the center than the superior (or inferior) left or right marker was 

excluded. Any triangular element with a centroid who Z-coordinate greater than 1.5 times that of 

the superior (or inferior) posterior or anterior points was also excluded; the extra 0.5 allowance 

was to prevent exclusion of the vertebral endplate’s left and right posterolateral regions, which can 

curve slightly outwards from the center of the vertebra (Figure 4). For the L2 to L5, any triangular 

element whose centroid was between -7 and 7 mm in the Y-direction was excluded, as these were 

points located towards the center of the vertebral body. Since the anatomical coordinate system 

for the S1 was on its superior vertebral surface, any triangular element of the S1 whose centroid 

was less than -5 mm was excluded, as these points were located below the superior endplate 

(Figure 2). Altogether, these criteria effectively excluded the more central portions of the vertebral 

bodies which the disc would not contact. Next, any triangular element above the vertebral body 

center with a Y-component of the normal vector less than 0.3 was excluded, as it was considered 

to be located on the side of the vertebral, as opposed to the top or bottom endplate. Similarly, a 

triangular element below the vertebral body center with a Y-component of the normal vector 

greater than -0.3 was excluded. These two criteria excluded triangular elements on the curved 

edges present between vertebral surfaces and the vertebral body which faced more outwards (along 

AP or ML axes) than upwards or downwards (along SI axis). An example of the resulting surface 

after filtering these points is shown in Figure 4. After applying these criteria, each vertebra was 

represented only by an inferior and superior vertebral endplate. 
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Figure 4: Superior endplate surface of a vertebra after filtering via MATLAB. Red points 

are the centroids of triangular elements considered to be part of the intervertebral disc area.  

 

The point clouds for the L2 to S1 endplates were placed in their respective 3D orientation and 

position, in the S1 coordinate system, corresponding to the participant’s recorded DSX positions 

and orientations while assuming the upright position. It was decided that the intervertebral disc 

would be formed by line segments starting from the inferior bone and intersecting the superior 

bone. The superior surfaces of the vertebrae (inferior surfaces of the discs) were represented by 

the triangular element centroids. While it is valid to model a line segment from any point on the 

surface – such as the centroid of an element – the locations of the triangular vertices and their 

connections with one another is what represents the actual CT-measured surfaces of the vertebrae, 

and are necessary to calculate the exact intersection point of the line segments with the superior 

vertebra. Thus, the inferior surfaces of the superior vertebrae (superior surfaces of the discs) were 

represented by the triangular element vertices and their connections with one another (Figure 5). 
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Figure 5: Inferior and superior surfaces of the intervertebral discs in the sacrum’s 

coordinate system. Inferior surfaces of the discs (red) are represented by the centroids of the 

triangular elements, while the superior surfaces of the discs (blue) are represented by the 

vertices of the triangular elements 
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A plane was then fit to the full set of coordinates representing each inferior or superior vertebral 

endplate by finding the plane of least squared distance to the set of isolated centroids (Figure 6). 

The orientation of the plane was determined by finding its normal vector, which is the eigenvector 

(𝑣1⃑⃑⃑⃑ ) associated with the lowest eigenvalue (𝜆) where: 

[𝑹′𝑹]𝑣 = 𝜆𝑣                                                               2-1 

Here, 𝑹 is an 𝑁 × 3 matrix (𝑁 = number of centroids) of centroid coordinates with respect to the 

average location of all centroids (p), and [𝑹′𝑹] is the covariance matrix. The plane of each disc – 

which we will call the disc plane – from L2 to S1 was set to equal the average of the planes of the 

two adjacent surfaces (Figure 7).  

 

 

Figure 6: The average planes of the vertebral endplates were determined 
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Figure 7: The disc plane at each joint was defined as the average of the two endplate planes 

 

A line starting at the triangle’s centroid on the superior surface of the inferior vertebra extended 

perpendicular to the disc plane and through the inferior surface of the superior vertebra (Figure 8). 

The triangular vertex on the intersected surface nearest to the line segment (T2) was found. To 

maintain the line segment’s perpendicularity with the normal plane, while also allowing it to 

intersect the surface, it was required to determine which triangular element consisting of vertex T2 

the line segment intersected. To do this, a ray-triangle intersection method was employed between 

the line segment and each of the triangular elements touching T2. The ray-triangle intersection 

method involved two steps, the first of which determined the intersection point (𝑝1) between the 

line segment – extending from the centroid of the inferior vertebra (𝐿1) to an end point (𝐿2) defined 

to be beyond the superior vertebra – and the plane along which the triangular element lies: 
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𝐿𝑖𝑛𝑡(𝑝1) = 𝐿2+𝑝1(𝐿1 − 𝐿2)                                                      2-2 

where 

𝑝1 =
𝐧∙(𝑇0−𝐿2)

𝐧∙(𝐿1−𝐿2)
                                                              2-3 

and n is the normal vector of the triangular element plane. However, this intersection point is where 

the line segment intersects the infinite plane on which the triangular element lies, not the plane 

bounded by the element’s vertices. Thus, the second step calculated the parametric coordinates 

(s,t) with respect to the vertex T0 of the element: 

𝑇(𝑠, 𝑡) = 𝑇0 + 𝑠𝐮 + 𝑡𝐯                                                       2-4 

𝑠 =
(𝐮∙𝐯)(𝐰∙𝐯)−(𝐯∙𝐯)(𝐰∙𝐮)

(𝐮∙𝐯)2−(𝐮∙𝐮)(𝐯∙𝐯)
                                                        2-5 

𝑡 =
(𝐮∙𝐯)(𝐰∙𝐮)−(𝐮∙𝐮)(𝐰∙𝐯)

(𝐮∙𝐯)2−(𝐮∙𝐮)(𝐯∙𝐯)
                                                        2-6 

𝐮 = 𝑇1 − 𝑇0, 𝐯 = 𝑇2 − 𝑇0, 𝐰 = 𝐿𝑖𝑛𝑡 − 𝑇0 

When 𝑠 > 0, 𝑡 > 0, and 𝑠 + 𝑡 < 1, the line segment was confirmed to intersect within the 

triangle’s boundary and the parametric coordinates were stored. This process was repeated for all 

centroids on the superior endplate of the inferior vertebra (Figure 9). If a point extending near the 

edge of the inferior vertebra’s superior endplate didn’t intersect the superior vertebra, the line 

segment was considered to be outside of the boundary of the intervertebral disc and was discarded. 

Endpoints of the line segments remained connected to the endplates at these defined locations as 

the vertebrae moved relative to each other during lumbar motion. 
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Figure 8: Line segments extended from inferior bone, perpendicular to the disc plane, until 

intersecting a triangular element on the superior bone.  
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Figure 9: Line segments remained normal to disc plane and connected to adjacent 

vertebral endplates to form the discs. 
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2.2.2  Disc Height and Normalized Disc Height 

A characteristic ellipse was fit to the superior endplate of the inferior disc, where the 

centroid was defined as the average location of four line segments at the maximum anterior, 

posterior, left and right locations of the disc (Figure 10). To capture the geometry of the 

intervertebral disc, as opposed to the vertebral end plates, the maximum left and right locations of 

the disc were defined to be the left-most and right-most line segments within 2mm in the AP 

direction of the vertebra’s ML axis.  

 

Figure 10: Definition of characteristic ellipse and geometric center of the disc. 

 

Similarly, the maximum anterior and posterior locations were defined to be the anterior-most and 

posterior-most line segments within 2 mm in the ML direction of the vertebra’s AP axis. Bounds 

of 2 mm were chosen so that the diameters of the ellipse were determined based on disc geometry 
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in the approximate AP and ML directions, in case of irregular disc geometry. The directions of the 

AP and ML axes of the characteristic ellipse remained identical to those of the inferior vertebra, 

while the diameter of the ellipse in the ML and AP directions were defined as (𝐷𝑀𝐿 = 𝑥𝐿 − 𝑥𝑅) 

and (𝐷𝐴𝑃 = 𝑧𝐴 − 𝑧𝑃), respectively (Figure 10b-c).  

The upright central disc height (hc) was defined as the length of the line segment nearest to 

the geometric center of the characteristic ellipse. At the subject’s upright standing position, the 

instantaneous length (disc height) of each line segment (hi) within the disc was normalized to the 

disc’s upright central disc height to obtain the upright normalized disc height (nDH) of all line 

segments forming the intervertebral disc.  

𝑛𝐷𝐻 =  
ℎ𝑖

ℎ𝑐
                                                               2-7 

Transformation matrices describing the body-fixed rotations and translations of each bone during 

the dynamic lifting trials with respect to the lab’s global coordinate system – determined by the 

DSX model-based tracking process – were used to place the superior points of the disc with respect 

to the inferior vertebra’s coordinate system during the lifting tasks. To achieve this, the superior 

points of the disc (𝑋𝑠𝑢𝑝) – attached to the superior vertebra (sup) – were first transformed to the 

lab coordinate system (lab), then afterwards transformed from the lab coordinate system to the 

coordinate system of the inferior vertebra (inf). 

𝑋sup _𝑡𝑜_𝑖𝑛𝑓 = 𝑇𝑙𝑎𝑏_𝑡𝑜_𝑖𝑛𝑓𝑇sup _𝑡𝑜_𝑙𝑎𝑏𝑋𝑠𝑢𝑝                                             2-8 

After applying the transformation matrices (T) corresponding to the subject’s position in the flexed 

posture (beginning of the lift), the nDH of all line segments – the distance between the two line 

segment endpoints – were calculated to determine the flexed disc height of each line segment. 
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2.2.3  Normal and Shear Strain 

The intervertebral disc deformation is defined based on the relative motion between the two 

adjacent vertebral endplates, with the individual’s upright standing position as the reference 

(Figure 11). Similar to the calculations for flexed disc height, the body-fixed rotation and 

translation matrices corresponding to the position and orientation of the vertebrae’s origins with 

respect to the global coordinate system at every timeframe of the lifting motion were applied to 

the superior points (𝑋𝑠𝑢𝑝) of each disc to place them in the inferior (inf) vertebra’s coordinate 

system (Equation 2-7). This provided the instantaneous locations of the superior points of each 

line segment with respect to the coordinate system of the inferior vertebra (𝑋sup _𝑡𝑜_𝑖𝑛𝑓) throughout 

the entire lifting motion.  

Nominal strains of the line segments were calculated with respect to the disc height values 

at the upright position – defined as Lref – and were decomposed into two orthogonal components: 

normal strain, defined as (∆y/Lref ), and shear strain, defined as (∆x/Lref ) (Lref,∆x,∆y = upright disc 

height, displacement along average disc plane and normal displacement, respectively). By this 

definition, positive and negative values of normal strain corresponded to distraction and 

compression, respectively, while shear strains are positive with their direction defined by the 

displacement of the superior point of the line segment with respect to the inferior point in the xz 

plane. 
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Figure 11: Schematic describing the calculation of disc height and deformation. 

2.2.4  Disc Bulge 

In FE simulations of the intervertebral disc, bulging of the disc is essentially a product of 

the intervertebral kinematics and the specified material and structural properties of the disc. While 

the radial displacements of the disc in the current study were not measurable, the radial 

displacement (𝑑𝑏) at the mid-point of the line segment was approximated as the compressive 

displacement (∆𝑦) of the line segment times a Poisson’s ratio of 0.45, a value used in a number of 

lumbar spine FE models98,128.  

𝑑𝑏 = 0.45 × ∆𝑦                                                            2-9 
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The direction of radial displacement was defined as the vector connecting the mid-point of 

the central line segment to the mid-point of the particular line segment of interest. The bulging 

direction of the line segment directly in the center of the disc was said to equal the direction of 

shear displacement. 

2.2.5  Point-wise Mapping  

To compare the nDH, strain, and disc bulge values across all joint levels and participants, 

the geometry of each disc was mapped to consist of an identical number of line segments at the 

same locations relative to the disc’s size. First, a 2D elliptical point grid was projected on the 

inferior disc, consisting of 60 equidistant ellipses concentric to the disc’s characteristic ellipse and 

extending from the centroid up to 150% the size of the characteristic ellipse (Figure 12).  

 

 

Figure 12: Projection of 2D elliptical point grid onto superior surface of inferior vertebra. 
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The point grid extended 50% beyond the characteristic ellipse to ensure inclusion of the 

entire disc area, as the intervertebral disc is not perfectly elliptical. Second, sample points were 

evenly distributed along each elliptical profile – each consisting of 8*n points, where n = number 

of ellipses away from the centroid (n = 0) – together forming a 2D point grid extending well beyond 

the outermost line segments of the disc’s cross-sectional area. The exact number of points for each 

disc varied due to the irregularities and inconsistencies in shape, however on average the disc 

consisted of approximately 8,000 points. The upright standing nDH at each point on the elliptical 

grid was then defined to equal that of the nearest original line segment (prior to re-sampling), 

resulting in a consistently sampled 2D plot of upright disc height over the entire disc area. Any 

point on the elliptical grid greater than 1 mm away from all line segments was considered to be 

outside of the disc region, and was therefore excluded from the 2D plot. The reasoning behind this 

exclusion criteria was to be doubly sure that any random line segments connecting between 

spinous or transverse processes of adjacent vertebrae weren’t part of the intervertebral disc. 

However, much work was done in previous steps to avoid these occurrences. By repeating this 

process at each intervertebral level across all participants, all discs were defined by approximately 

8,000 distributed points scaled to their respective disc’s characteristic ellipse. At the flexed 

position, the same methodology was used to map the nDH and strain values (Figure 13) of all line 

segments to a 2D color and vector map 
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Figure 13: Mapping of line segment normalized disc height to elliptical point grid. 

2.2.6  Regional Characteristics 

The average nDH and deformation of the discs were quantified within five consistently 

identifiable regions: anterior, posterior, and central locations in the mid-sagittal plane; left and 

right locations in the mid-coronal plane. Each of the five regions was defined by a circular area on 

the superior endplate of the inferior vertebra, all with diameters equal to the AP distance between 

the 35th and 40th elliptical profiles (Figure 14). The average nDH and deformation among all line 

segments within each specified circular region were determined at the flexed and upright positions.  
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Figure 14: Five defined anatomical regions to quantify disc height and deformation. 

 

2.2.7  Instantaneous Disc Deformation and Disc Bulge 

In addition to quantifying deformation at the flexed position, the average deformation and 

bulging of line segments within each of the five circular regions was tracked throughout the lifting 

motion as well. Normal strains shear strains, and disc bulge were then plotted with respect to 

percent motion completion (%MC), a normalized representation of time based on the overall L2-

S1 flexion angle, defined as (i, c, f = initial, current, and final L2-S1 lumbar flexion angle).  

%𝑀𝐶 =
𝜃𝑐−𝜃𝑖

𝜃𝑓−𝜃𝑖
× 100                                                     2-10 

Additionally, magnitudes of disc bulge along the anterior-posterior axis of the intervertebral disc 

were compared with those found in the disc by the concurrent FE modeling study on the same 

dataset . 



 41 

2.2.8  Statistical Analysis 

2.2.8.1 Point-wise End-range Differences 

Where data were successfully recorded from both trials per load for a participant, the two 

datasets were averaged into a single dataset to represent the participant’s motion for subsequent 

analyses. Level-specific differences in upright and flexed disc height were determined by 

identifying regions of the disc exhibiting location-specific differences in nDH. At each segment 

level, the mean and 95% confidence interval (CI95) of the mean nDH at the upright and flexed 

positions were calculated at every elliptical point corresponding to the same relative disc location. 

Each point exhibiting non-overlapping CI95 between segment levels or external load magnitudes 

indicated segment-wise or load-wise differences, respectively. Points close in proximity (within 3 

mm) were grouped together to form anatomical areas of significantly different nDH characteristics. 

Any area containing less than three points was considered an outlier and was deemed insignificant. 

The same methodology used to quantify nDH differences was also utilized to determine areas of 

segment-wise or load-wise differences in normal and shear strain at the flexed position. As the 

reference frame for disc deformation was the upright standing position, deformation needed not 

be analyzed at this position as it was equal to zero.  

2.2.8.2 Time Series Differences 

Time series plots (“time”, as indicated by %MC progression) of the instantaneous normal 

and shear strains at five distinct circular regions defined above — the anterior, posterior, left, right, 

and center — of disc at each segment level were generated. CI95 of the mean normal and shear 

strain at every decile of %MC from 0% to 80%MC were calculated. Instances of non-overlapping 

confidence intervals indicated time intervals for which deformation trends between the 
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corresponding segment levels were significantly different. Data beyond 80%MC was not included 

in the time series data as multiple subjects failed to reach 90%MC during the lifting motion. 

2.2.8.3 Repeated Measures and Post-hoc Tukey 

Repeated measures analysis with data compiled as a mixed model was employed to identify 

segment-wise and load-wise differences in nDH and total disc strains at the five regions. The 

restricted maximum likelihood (REML) approach was used for the analysis. Segmental level (four 

levels: L2L3, L3L4, L4L5, L5S1) and load magnitude [three levels: 4.54 kg (10 lb), 9.1 kg (20 lb), 

13.6 kg (30 lb)] were the two within-subject fixed-effect factors while “participant” was the 

random factor. The dataset comprised 10 groups (subjects) and a total of 116 observations. Starting 

with a null or empty model, the model was progressively updated by adding the fixed-effect 

factors, as below: 

Empty Model Formula: ~1 + Random effect: Participant; 

Update 1: Fixed effects: ~ Segment_Level; 

Update 2: Fixed Effects: ~ Segment_Level + Load_Level; 

Whenever a main or interaction effect was deemed significant, post-hoc Tukey Honest Significant 

Difference (HSD) comparison-of-means tests would follow to determine differences between the 

levels. The above-mentioned steps were implemented separately for each response variable. All 

analyses were performed using R® Statistical Software129. 
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2.3 Facet Joint Kinematics 

2.3.1  Facet Joint Coordinate System 

Local coordinate systems (LCS) were defined on the inner and outer surfaces of the 

superior and inferior facet surfaces of the L2 to S1 based on four anatomical points chosen by the 

same researcher: the inferior, superior, posterior, and anterior (Figure 15). The average anatomical 

location of the four landmarks defined the LCS origin. The Z-axis represented the direction parallel 

to the facet faces (sideways facet sliding) and was defined to extend from the LBS origin parallel 

to the axis connecting the anterior and posterior points. A temporary axis was defined, extending 

from the inferior point to the superior point. The cross product of temporary axis and the Z axis 

defined the X-axis of the LCS, representing the direction normal to the facet faces (facet gap). 

Lastly, the Y-axis was defined by the cross product of the Z- and X-axes, creating a right-handed 

orthogonal coordinate system on the facet surface. This procedure was done for all four facet 

surfaces of each vertebra; the inferior left and right, and the superior left and right. To represent 

facet joint kinematics in a sagittally symmetric manner at the left and right facet joints, the LCS 

X-axis of the left facets were flipped to point outwards, effectively creating a left-handed 

coordinate system. 
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Figure 15: Local coordinate systems (LCS) on the inferior and superior facet surfaces. 

2.3.2  Translational Kinematics 

The DSX model-based tracking algorithm, initially run with the vertebral coordinate 

systems located at the vertebral body center, was re-run individually for each facet joint with the 

coordinate systems located at the facet surfaces. The algorithm calculated the 3D body-fixed 

transformation matrix of the inferior facet LCS of the superior vertebra with respect to the superior 

facet LCS of the inferior vertebra at every timeframe of the upright standing position and dynamic 

lifting motions (Figure 16). From the transformation matrices, the body-fixed translations along 

the X-, Y-, and Z- axes were extracted and reported with respect to the fully-flexed position at the 

beginning of the lifting motion and the more natural, upright reference position. Differences 

between the instantaneous translations between facet surfaces at the beginning of the lifting motion 

(flexed position) and at the static upright position were also reported.  
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Figure 16: Facet joint translations between adjacent facet surfaces. 

 

To normalize FJ kinematics across lifting trials and subjects, data were presented with 

respect to the progression of the lift, or percent task completion (%MC), as opposed to time.   

2.3.3  Statistical Analysis 

2.3.3.1 Effects of External Load and Segment Level 

Data acquired from the two trials per task of identical external load magnitude were 

averaged into a single dataset. Further, results from the left and right FJ were not significantly 

different (except for X- component of L2L3 and L3L4 segments); hence these data were averaged. 

Mean (±CI95) translations in the X-, Y- and Z directions for every decile of L2-S1 extension ROM 

were computed for each load-lifting task across participants to enable qualitative observations of 



 46 

differences across segments and across load levels. Time series plots (“time” as indicated by 

%MC) of the translations between 0%-80% of L2-S1 ROM were generated, with the start of the 

lift (fully flexed position) defined as our zero-translation reference position. Corresponding linear 

regression-based slopes were computed to identify migration trends, demonstrated by a slope 

significantly different from zero (α = 0.05). 

2.3.3.2 Repeated Measures and Tukey’s HSD 

Repeated measures analysis was employed with data compiled as a mixed model, with 

segmental level (four levels: L2L3, L3L4, L4L5, L5S1) and load magnitude [three levels: 4.54 kg 

(10 lb), 9.1 kg (20 lb), 13.6 kg (30 lb)] as the two within-subject, fixed effect, categorical factors 

and “participant” as the random factor. The total translations in each of the three directions were 

the outcome variables. Differences across segments and load magnitudes were assessed based on 

post-hoc Tukey’s Honest Significant Difference (HSD) comparison-of-means tests. Similar 

analyses were also conducted for left and right facet X- translation components separately. The 

extent of overlap between the notches of the respective boxes in notched box plots of the left-right 

averaged datasets provided an additional, visual representation of the differences between the 

groups. The notches, which represent a 95% confidence interval (CInotch) of the median, extend to 

[± 1.58*IQR/((n) 0.5)], where “IQR” = interquartile range between first to third quartile, and “n” = 

number of non-missing observations within the group. No overlap indicated significant 

differences. All analyses were performed in R® statistical computing software129 (R_Core_Team 

(2015). 
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2.4 Subject-Specific Musculoskeletal Model 

2.4.1  Objectives and Summary of Procedure 

The objectives of the current subject-specific musculoskeletal modeling work and the steps 

taken to achieve such objectives are as follow: 

1) What are the joint reaction forces (JRF) and muscle loads associated with a functional 

lifting task of 10 lb and 30 lb? 

a. A generic, full-body model was constructed in OpenSim by combining two 

existing models. 

b. The generic model was adjusted to include subject-specific parameters. These 

include surface marker measurements and ground reaction force data acquired 

during in vivo testing, DSX-measured lumbar kinematics during the lifting 

motion, lumbar vertebral positions and orientations at the upright and supine 

postures, and subject-specific nonlinear tissue stiffness properties derived from 

a displacement-controlled FE study. 

c. A sequence of OpenSim algorithms were run on the model:  

i. Inverse Kinematics (IK) to determine full-body kinematics,  

ii. Inverse Dynamics (ID) to determine generalized forces at each joint 

iii. Static Optimization (SO) to determine muscle forces 

iv. Joint Reactions Analysis (JRA) to determine the JRF. 

2) How do JRF and muscle force estimates obtained with DSX-based subject specific 6-

DOF kinematics differ from those obtained with pre-determined, generic rhythm-based 

rotational kinematics? 
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a. The OpenSim sequence of algorithms were run identically on models with two 

variations of prescribed L2 to S1 lumbar motion. 

i. DSX-measured 6-DOF L2-S1 kinematics of the subject 

ii. Rhythm-based 3-DOF rotational kinematics typically assumed in 

lumbar spine models, where the rotational motions of the entire lumbar 

spine are fractionally distributed across joint levels (e.g. L2L3 rotation 

= 30% of L2-S1 rotation). 

3) How do joint tissue passive stiffness property assumptions influence JRF and muscle 

force estimates? 

a. The OpenSim sequence of algorithms were run identically on models with three 

variations of tissue passive stiffness properties;  

i. No bushing stiffness (NBS), where tissue passive stiffness was ignored,  

ii. Linear bushing stiffness (LBS), where generic force-displacement 

relationships from literature were prescribed at each joint.  

iii. Nonlinear bushing stiffness (NLBS), where force-displacement 

relationships derived from a subject-specific displacement-driven FE 

model were prescribed. 

b. In LBS and NLBS models, joint stiffnesses were modeled by a 6x6, uncoupled 

force-displacement matrix meant to represent the lumped stiffness of all tissues 

in the joint (intervertebral disc, ligaments, tendons, etc.) 

4) What is the effect of the assumed initial, zero-stress state of the tissues – or “neutral” 

joint position (supine state vs. upright standing) – on muscle and JRF force estimates? 
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a. While tissues are preloaded in vivo and most always under stress, a zero-stress 

state must be assumed when prescribing force-displacement relationships at a 

joint; in rigid-body modeling, these are often assumed to be equal to the lumbar 

vertebral positions at the upright or supine posture. 

b. The OpenSim sequence of algorithms were run identically on models with two 

variations of the neutral joint configurations. 

i. Joint positions and orientations at the upright standing posture, as 

measured by DSX. 

ii. Joint positions and orientations at the supine posture, as measured by 

CT.  

2.4.2  Model Development 

A generic full-body musculoskeletal model was constructed in OpenSim®130-133 by 

combining an existing lower-body model developed by (Arnold et al., 2010) and an upper-body 

model developed by (Senteler et al., 2016)22,134. Overall, the generic model consisted of 114 body 

segments, 113 joints, 334 muscles, described by a total of 81 DOF. 

2.4.2.1 Model Musculature and Marker Set 

The OpenSim model consisted of a total of 334 muscle fascicles, all represented by the 

Thelen 2003 Muscle Model135. Based on the Hill muscle model, these muscles generate force as a 

function of activation value, as well as the normalized length and velocity of the muscle unit. The 

path of each muscle was determined by defining X, Y, and Z coordinates in the local coordinate 
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system of at least two bodies in the model through which the muscle fascicle must connect. The 

parameters which characterize the muscle behavior are its maximum isometric force, tendon slack 

length, optimal fiber length, and pennation angle, and maximum contraction velocity. Initially, 

these parameters were set identical to those present in the Arnold and Senteler models used to 

compose the generic model. The back muscle parameters were adjusted to equal those derived 

from a recently published thoracolumbar spine model54, where the maximum muscle stress of each 

muscle was set to 100 N/cm2. A maximum muscle stress of 100 N/cm2 is larger than typically used 

in many lumbar spine models, however (Bruno et al., 2015) determined that to support 

physiological flexion tasks, the back muscle properties had to be appropriately adjusted. The 

current work focuses on muscle activity in four major muscle groups (Figure 17); the multifidus 

(MF), iliocostalis lumborum (IL), longissimus thoracis (LT), and abdominal (ABD).  

                    

Figure 17: Musculature of the front (left) and back (right) of the upper body. 
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Figure 18: A set of virtual markers corresponding to the Plug-In Gait model was added to 

the generic model. 
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To incorporate the subject-specific full-body motion of the subject, virtual markers were added to 

the generic model to approximate those placed on the subjects during data acquisition (Figure 18). 

Markers were placed on the subject and model according to the Plug-In Gait Model136,137. 

2.4.2.2 Neutral State Configuration 

At each level, the joint’s position and orientation with which the soft tissues are at their 

zero-stress state – termed the “neutral state configuration” – was defined. This is the joint position 

and orientation where if passive elements were modeled by force-displacement relationships, no 

passive forces or moments would exist. Simulations were performed with two variations of the 

joint neutral state, corresponding to either the upright or supine positions. The upright neutral state 

was defined by adjusting the vertebral posture from the L2 to S1 based on the DSX-measured 

vertebral positions during upright posture with no external weight being held by the participant. 

The supine neutral state was defined by the CT-measured L2-S1 positions present as the participant 

lied in the supine position.  

At the neutral state, the center of rotation (COR) of each joint was defined so that the lever 

arms from the COR to each vertebral body center were of equal length while also remaining 

parallel to the vertebrae’s local Y axes. With this constraint and the prescribed FE rotation (∅𝑢𝑝 or 

∅𝑠𝑢𝑝), an additional AP translation of the COR with respect to the inferior vertebral body 

coordinate system – 𝑥𝑢𝑝 or 𝑥𝑠𝑢𝑝 – was prescribed to achieve the accurately measured kinematics. 

Generally, the position of the COR was approximately located at the center of the intervertebral 

disc to facilitate comparison of results to those derived from previous modeling studies using 

rhythmic-based kinematic input, which are usually implemented about a COR at the disc 

center54,138 (Figure 19). 
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Figure 19: Two variations of joint neutral state; upright neutral state (a) and supine 

neutral state (b). Prescribed joint kinematics to achieve DSX-measured positions varied 

between the two neutral states (c). 

2.4.2.3 Incorporation of DSX kinematics 

The lumbar spine portion of the upper body model was adjusted to allow for the 

incorporation of measured DSX intervertebral kinematics. Each lumbar joint from L2L3 to L5S1 

was modeled to describe 6-DOF motion – three rotations and three translations – of the superior 

vertebra with respect to the inferior vertebra about the joint’s COR at the neutral state. 6-DOF 

motion was implemented first by prescribing three rotational DOF; flexion-extension (FE), lateral 

bending (LB), and axial rotation (AR). Through the OpenSim 3.3 Application Programming 

Interface (API) in MATLAB, these coordinates were prescribed (prescribed_function in 

OpenSim) within the model as spline functions (SimmSpline) based on the DSX-measured 

kinematics during the lifting motion versus the time. The location of the joint COR in the superior 

body was then allowed to translate along three axes in the inferior vertebra’s coordinate system; 

anterior-posterior (AP), superior-inferior (SI), and medial-lateral (ML). Translational motion 
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along each axis was defined by piecewise linear functions (PiecewiseLinearFunction in OpenSim) 

with respect to the FE rotation of the joint. 

As the raw DSX data describing lumbar intervertebral motion were in the form of body-

fixed kinematics of the superior vertebral body coordinate system (CS) with respect to the inferior 

vertebral body CS, the kinematic data were transformed to describe intervertebral motion with 

respect to the neutral state about the newly defined joint CORs. This transformation was performed 

for both the upright- and supine-relative neutral state configurations to ensure identical lumbar 

motion in space.  

The raw DSX-measured data described intervertebral motion by ordered body-fixed 

rotations of the superior vertebral body coordinate system with respect to the inferior vertebral 

body coordinate system. Thus, the relation between the superior body’s vertebral body center, 

[𝑥; 𝑦; 𝑧], with respect to the inferior vertebral body center, [𝑥′; 𝑦′; 𝑧′], can be calculated by 

represented by a body-fixed rotational and translational transformation, �̅� and �̅�, respectively: 

[
𝑥′
𝑦′

𝑧′

] = 𝑅𝑧𝑅𝑦𝑅𝑥 [
𝑥
𝑦
𝑧
] + [

𝑇𝑥

𝑇𝑦

𝑇𝑧

]                                                2-11 

However, the location of the vertebral body center in its own coordinate system is 

[𝑥 =  0; 𝑦 =  0; 𝑧 =  0], so the position of the superior vertebra origin with respect to the inferior 

origin after transformation is simply: 

[
𝑥′
𝑦′

𝑧′

] = [

𝑇𝑥

𝑇𝑦

𝑇𝑧

]                                                            2-12 
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In our OpenSim model we have modeled the lumbar joints such that the superior vertebral body 

rotates about the COR located between adjacent vertebrae, as opposed to rotating about its own 

local coordinate system with Euler body-fixed rotations. Furthermore, we have added an anterior-

posterior (AP) translation and flexion-extension (FE) rotation between adjacent vertebrae. Due to 

the change in joint representation, prescribing the same exact values of rotations and translations 

to the joint would result in different spatial locations and orientations of the superior vertebra with 

respect to the inferior vertebra. Therefore, we must account for this when prescribing joint motion 

so that we can orient and position the vertebrae identically in space to that measured by DSX. 

Accounting for the difference in angular orientation is rather straightforward. Regardless 

of whether a body is rotating about its own coordinate system axes or those of another coordinate 

system, if the coordinate systems are angularly oriented identically in space, the orientation of the 

body in space after a rotational transformation will remain the same; only the position of the body 

in space may differ based on the body’s distance from the point in which it was rotated about. For 

our modeled joints, the only angular orientation adjusted when defining the neutral state of the 

joint is the FE rotation. Since FE rotation is the first ordered body-centered rotation in the DSX-

derived data, applying the appropriate amount of FE rotation from the neutral state about the joint 

center – in this case, the DSX-derived FE rotation plus the opposite FE rotation present at the 

neutral state – will orient the superior vertebral coordinate axes exactly as the DSX-derived body-

fixed FE rotation would. Thereafter, the values of AR and LB as measured by DSX can be directly 

prescribed about the joint center to match the angular orientation of the superior vertebra in space 

measured by DSX (Figure 20a). However, as previously stated, since the OpenSim joint is rotating 

about a joint center and not its own anatomical axes, the superior vertebra will not be positioned 

correctly (Figure 20b-c). 
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To place the superior vertebra of the L23 to L45 joints in the same respective position in 

space after rotation about the joint center and any translational offset present in the neutral state 

definition, an additional translational vector must be applied (Tjc):  

[
𝑥′
𝑦′

𝑧′

] = [

𝑇𝑥

𝑇𝑦

𝑇𝑧

] = 𝑅𝑧𝑅𝑦𝑅𝑥 [
0

𝑆𝐼/2
0

] + [
0

𝑆𝐼/2
0

] + [
0
0

𝐴𝑃_𝑜𝑓𝑓𝑠𝑒𝑡
] + [

𝑇𝑗𝑐_𝑥

𝑇𝑗𝑐_𝑦
𝑇𝑗𝑐_𝑧

]               2-13 

Solving the expression for the joint center translational vector leads to: 

 

[

𝑇𝑗𝑐_𝑥
𝑇𝑗𝑐_𝑦
𝑇𝑗𝑐_𝑧

] = [

𝑇𝑥

𝑇𝑦

𝑇𝑧

] − 𝑅𝑧𝑅𝑦𝑅𝑥 [
0

𝑆𝐼/2
0

] − [
0

𝑆𝐼/2
0

] − [
0
0

𝐴𝑃_𝑜𝑓𝑓𝑠𝑒𝑡
]                     2-14 

For the L51 joint, the process is identical except that the distance between the joint center and the 

inferior and superior vertebral centers is SI/5 and 4*SI/5, respectively. 

[

𝑇𝑗𝑐
𝑇𝑗𝑐
𝑇𝑗𝑐

] = [

𝑇𝑥

𝑇𝑦

𝑇𝑧

] − 𝑅𝑧𝑅𝑦𝑅𝑥 [
0

4 ∗ 𝑆𝐼/5
0

] − [
0

𝑆𝐼/5
0

] − [
0
0

𝐴𝑃_𝑜𝑓𝑓𝑠𝑒𝑡
]                    2-15 
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Figure 20: Transformation of DSX kinematics with respect to the neutral state of the joint 

defined in OpenSim. DSX-measured rotations were body-fixed (a), while rotations in 

OpenSim were applied about a joint center (b), requiring an additional translation of the 

superior body to match it’s DSX-measured position and orientation (c). 

 

It’s important to note that the instantaneous location of the joint center is not necessarily equal to 

the instantaneous center of rotation (ICR) of the joint, as calculated in a previous study on the same 

dataset. ICR is calculated based on the instantaneous translational and rotational motion of the 

joint, whereas the location of the joint center in our study is simply the translation necessary so 

that the vertebrae can be positioned and oriented in space identically to the location and orientation 

measured by DSX after the rotations have already been applied. 

2.4.2.4 Intervertebral Passive Stiffness 

Uncoupled stiffness matrices describing the force- or moment-displacement relationship 

between consecutive bodies were defined at each joint from L2L3 to L5S1 for the linear (LBS) or 

nonlinear (NLBS) models. For LBS models, the rotational and translational stiffness constants at 
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each joint were identical to those used in a previous musculoskeletal model22, and were 

implemented in OpenSim via the BushingForce (Table 1). The passive forces and moments 

corresponding to the translation and rotational motion of the superior body with respect to the 

inferior body – 𝑢 and 𝜃, respectively – were defined by a 6x6 matrix. 

[
 
 
 
 
 
𝐹𝐴𝑃

𝐹𝑆𝐼

𝐹𝑀𝐿

𝑀𝐿𝐵

𝑀𝐴𝑅

𝑀𝐹𝐸]
 
 
 
 
 

=

[
 
 
 
 
 
𝑘𝐴𝑃

0
0
0
0
0

   0
   𝑘𝑆𝐼

   0
   0
   0
   0

   0
   0

   𝑘𝑀𝐿

   0
   0
   0

   0
   0
   0

   𝑘𝐿𝐵

   0
   0

   0
   0
   0
   0

   𝑘𝐴𝑅

   0

   0
   0
   0
   0
   0

   𝑘𝐹𝐸]
 
 
 
 
 

[
 
 
 
 
 
𝑢𝐴𝑃

𝑢𝑆𝐼

𝑢𝑀𝐿

𝜃𝐿𝐵

𝜃𝐴𝑅

𝜃𝐹𝐸 ]
 
 
 
 
 

                                 2-16 

NLBS model stiffness relationships in non-sagittal directions remained the same as LBS models. 

The sagittal plane stiffnesses were defined as piecewise linear functions based on force-

displacement relationships derived from a displacement-controlled finite element study on a single 

subject’s L4L5 segment (Figure 21)139. In this study, a 3D hexahedral mesh was created for the L4 

and L5 based on the CT-derived vertebral surface data. An intervertebral disc mesh was fit to the 

space between the subject’s L4 and L5 meshed vertebral surfaces and consisted of a nucleus 

pulposus surrounded by an 8-layer annulus. The DSX-measured kinematics of the L4L5 segment 

during the lifting motion were prescribed to the FE model, and the resulting compressive forces, 

shear forces, and reaction moments of the model were outputted at various time steps during the 

lifting motion. Using the force and moment outputs from this study, along with the prescribed 

DSX kinematics, force- or moment-displacement relationships for the AP, SI, and FE motions 

were prescribed to the L2L3 to L5S1 joints in the OpenSim model. These were defined as 

piecewise linear functions via the FunctionBasedBushingForce function. Based on the differences 

in rotations and translations between adjacent vertebra, with respect to the defined neutral state, 
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equal and opposite passive forces and moments were applied to each body at the location of the 

joint center. 

Table 1: LBS and NLBS uncoupled stiffness properties prescribed to each joint. 

 

 

Joint – 

Bushing type 
𝑘𝐴𝑃 (N/m) 𝑘𝑆𝐼 (N/m) 

𝑘𝑀𝐿 

(N/m) 

𝑘𝐿𝐵 

(Nm/rad) 

𝑘𝐴𝑅 

(Nm/rad) 

𝑘𝐹𝐸  

(Nm/rad) 

L23 – LBS 246348 1783989 135000 64 268 37 

L23 – NLBS 
Figure 

21a 

Figure 

21b 
135000 64 268 

Figure 

21c 

L34 – LBS 148855 1890170 135000 69 291 51 

L34 – NLBS 
Figure 

21a 

Figure 

21b 
135000 69 291 

Figure 

21c 

L45 – LBS 85714 1962000 135000 94 293 65 

L45 – NLBS 
Figure 

21a 

Figure 

21b 
135000 94 293 

Figure 

21c 

L51 – LBS 386511 1669000 135000 131 281 79 

L51 – NLBS 
Figure 

21a 

Figure 

21b 
135000 131 281 

Figure 

21c 
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Figure 21: Nonlinear stiffness curves derived from displacement-controlled FE study. 
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2.4.3  Simulation Pipeline 

A sequence of OpenSim algorithms was run on the model to quantify subject-specific joint 

reaction force and muscle forces estimates in the lumbar spine during the functional lifting tasks. 

The main steps include scaling of the generic model, Inverse Kinematics (IK), Inverse Dynamics 

(ID), Static Optimization (SO), and Joint Reactions Analysis (JRA). 

2.4.3.1 Scaling the Model 

The generic model was scaled using the surface marker locations recorded by the 8-camera 

Vicon system while the subject assumed the upright standing posture. The scaling process 

employed was a two-step process. First, OpenSim adjusted the length and mass of the body 

segments in the model by a scaling factor equal to the ratio of the measured distance between 2 or 

more real markers attached to the segment to the distance between the model’s virtual markers 

(Figure 22). Body segments for which no markers were placed, such as the fingers and skull, were 

not scaled during this step. During the second step, each body was scaled once more by the ratio 

of the total body mass measured during data acquisition to the total mass of the scaled model. With 

exception of the lumbar spine, the muscle attachment points, joint frame locations, and mass center 

locations of the remaining body segments were modified by the calculated scaling factors. The 

lumbar spine was not scaled, as the subject-specific joint locations were defined based on 

accurately measured bone kinematics.  
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Figure 22: Scaling of the generic model based on virtual and experimental surface markers. 

2.4.3.2 Inverse Kinematics  

Through the OpenSim GUI, Inverse Kinematics (IK)130 was performed on the model at 

each time step during the lifting motion. IK solved the weighted least squares equation to determine 

the joint angles necessary to achieve maximum correlation between the model’s virtual marker set 

and the measured experimental surface marker positions recorded by Vicon throughout the lift 

(Figure 23):   

𝑚𝑖𝑛𝑞 [∑ 𝑤𝑖‖𝑥𝑖
exp

− 𝑥𝑖(q)‖
2
+ ∑ 𝜔𝑗(𝑞𝑗

𝑒𝑥𝑝 − 𝑞𝑗)
2

𝑗∈unprescribed coords𝑖∈markers ]          2-17 
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Figure 23: Inverse kinematics maximized correlation between virtual and experimental 

markers. 
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Here, q is the vector of generalized coordinates being solved for, xi
exp is the experimental 

position of marker i, xi(q) is the position of the corresponding marker on the model, and qj
exp is the 

experimental value for coordinate j. wi and 𝜔𝑖 are the marker weights and coordinate weights 

prescribed, respectively. For the current work, marker weights were set equal to one for all surface 

markers, with exception of the four head markers which were set to 0.2. Furthermore, the surface 

marker trajectories recorded by Vicon were put through a Butterworth filter with a frequency of 6 

Hz, the recommended frequency by OpenSim. L2S1 kinematics were explicitly prescribed 

according to those measured by the DSX system during the lifting motion and were completely 

independent of surface marker locations. Thus, 𝒒𝒋
𝒆𝒙𝒑

= 𝒒𝒋 for lumbar joints form L2L3 to L5S1. 

During the IK process, the sacrum was assumed to be rigidly attached to the pelvis (pelvic motion 

was based on surface marker data), while motion from the L12 and upwards was not considered. 

IK was run on the model for each lifting trial performed during data acquisition, resulting in a 

motion file describing the complete set of joint kinematics of the model throughout the lifting task.  

2.4.3.3 Inverse Dynamics 

Inverse Dynamics (ID) solved the classical equations of motion to determine the 

generalized forces (𝜏) at each joint necessary to generate the generalized positions (𝑞), velocities 

(�̇�), and accelerations (�̈�) in the full-body motion derived by IK.  

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) =  𝜏                                             2-18 

In addition to forces present from the acceleration of the mass matrix (M), the Coriolis forces (C) 

and gravitational forces (G) were also considered. The net joint forces and moments calculated 

from ID represent the loads at each joint which must be stabilized to satisfy the classical equations 

of motion. 
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2.4.3.4 Static Optimization 

Subsequently, Static Optimization (SO) was performed in MATLAB via the OpenSim API 

to compute the individual muscle activations (𝑎𝑚) and forces necessary to produce the calculated 

net joint moments from ID at each time step of the lifting motion (Figure 24). Inputs to the SO 

algorithm included a .mot file describing the joint kinematics from IK, an .xml file describing the 

ground reaction forces applied at the feet collected during data acquisition, and an .xml file 

consisting of residual actuators and coordinate actuators necessary to help drive them model.  

The activation patterns of the muscles were constrained so that the sum of the muscle 

activation squared was minimized: 𝑚𝑖𝑛(∑ (𝑎𝑚)2𝑛
𝑚=1 ), which is approximately equivalent to 

minimizing the total muscle stress. Furthermore, the muscle activations were constrained by force-

length-velocity properties described by the maximum isometric force (𝐹𝑚
0), muscle length (𝑙𝑚), 

muscle shortening velocity (𝑣𝑚), and moment arm about the joint axis (𝑟𝑚,𝑗): 

∑ [𝑎𝑚𝑓(𝐹𝑚
0 , 𝑙𝑚, 𝑣𝑚)]𝑟𝑚,𝑗 = 𝜏𝑗

𝑛
𝑚=1                                             2-19 
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Figure 24: Muscle activations derived from static optimization during the lifting task. Red 

indicates activation = 1 (max) 
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The ground reaction forces and moments measured by two force plates during data acquisition 

were applied to the right and left calcaneus muscles of the OpenSim model. Given the difference 

in coordinate system orientation between Vicon and OpenSim, the force and moment values were 

appropriately transformed before being applied during SO. 

A good practice during SO is to apply residual actuators to the model to help resolve any 

dynamics inconsistencies that may be present between the ground reaction force data and the 

model’s estimated accelerations. However, it is preferred that these residuals are low, as high 

residual forces or moments indicate potential issues with either the surface marker data or inertial 

properties of the model. Thus, residual actuators were added to the four degrees of freedom 

describing motion of the pelvis; FE rotation and AP, SI, and ML translation. To ensure that 

activation of the residual actuators was highly penalized during SO compared to the muscles, the 

optimum generalized force of the actuators was set equal to 5 N or 5 Nm. Furthermore, Coordinate 

Actuators were added to each degree of freedom of the model to aid the muscles in achieving 

dynamics stability if the muscles were incapable of producing the necessary generalized forces of 

the joint. Similar to the reserve actuators, the optimum generalized force was set to equal 5 N or 5 

Nm to discourage use of the coordinate actuators unless a high penalty was applied. 

SO is performed separately at each time step, and does not depend on the time steps prior 

to or after. Thus, the default algorithm in the OpenSim for SO sets the time variable equal to zero 

(t = 0) regardless of the instance of the lift being examined. Because of this, it was necessary to 

disable the lumbar spine SimmSpline functions within the model architecture; if not done so, the 

lumbar kinematics at every time instance of the lift would have equaled the values of intervertebral 

kinematics at the beginning of the lift (t = 0). The appropriate L2-S1 joint kinematics were accessed 

via the joint coordinates file from IK, used as an input to SO. Once run, SO output an .sto file 
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describing the time history of muscle activations during the lifting motion, an .xml file describing 

the muscle controls, which also stores the time history of muscle activations, and an .sto file 

describing the time history of muscle forces. The total muscle forces in the four muscle MF, LT, 

IL, and ABD – were calculated at each time step during SO by summing up the individual muscles 

forces within each group.  

2.4.3.5 Joint Reactions Analysis 

Lastly, Joint Reactions Analysis (JRA) was run on the model to compute joint reaction 

forces from the L2L3 to the L5S1 during the lifting motion. In addition to the IK .mot file, actuator 

force .xml file, and the ground reaction force .xml file, input files to run JRF via the OpenSim API 

included the muscle control .xml file and the muscle force .sto file. JRA was run at each time step 

of the lifting motion for each recorded trial, outputting an .sto file describing the net joint reaction 

forces and moments present at each joint throughout the lift 

It is useful to preface these results with a brief clarification on the calculation of bushing 

(IVD) forces and its incorporation into the net joint reaction force calculations in the Joint Reaction 

Analysis (JRA) step in OpenSim®. JRA in OpenSim is a post hoc calculation which determines 

the resultant forces and moments carried by all un-modeled joint structures required to produce 

the specified joint kinematics. Thus, the decision to either include or exclude certain structural 

components of the joint within the model will directly affect the resultant loads calculated by JRA. 

In a purely rigid body dynamics analysis of the lumbar joint – where no passive soft tissue 

structures are modeled (NBS model) – these forces, referred to as net joint reaction forces (Rx, Ry, 

Rz), collectively represent the total load to be resisted by all passive structures within that joint. In 

this study, we have also explicitly modeled passive tissue stiffness by prescribing either linear 

(LBS) or nonlinear (NLBS) bushing-based force-kinematic relationships at the joint. Under this 
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scenario, the net joint reaction force will not represent the total load acting at that particular joint, 

as the resisting forces of the passive tissue are explicitly modeled (they are no longer un-modeled 

joint structures). In order to obtain the total joint reaction forces – including those carried by the 

passive tissues – in LBS and NLBS models and allow comparison with the corresponding the NBS 

model output, we must add the modeled passive (bushing) forces back to the net force output from 

JRA (Figure 25).  

 

Figure 25: Representation of “total joint reaction force” for NBS, LBS, and NLBS models. 

2.4.4  Influence of Input Parameters  

The same sequenceof analyses was implemented on 24 model variations; all with different 

combinations of the two variations of input kinematics, two variations of the neutral state 

configurations types, three variations of passive stiffness properties, and two variations of external 



 70 

load magnitude lifted. To study the effects of the adjusted parameters on results from simulation, 

the total joint reaction forces at the L2L3, L3L4, L4L5, and L5S1, along with the total muscle 

forces in the four muscle groups were estimated for each variation of the OpenSim model. Brief 

descriptions of the varied parameters are described below. 

2.4.4.1 Joint Neutral State Configuration 

The influence of neutral state configuration – whether modeled based on the upright and 

supine kinematics – on estimated joint reaction loads and muscle forces was investigated. The 

location and orientation of the neutral state, or “reference frame” of the joint, has potential effects 

on estimated loads in two ways. First, the definition of the neutral state determines where the joint 

center is located with respect to its adjacent vertebrae. Thus, the location within the joint from 

which the joint reaction forces reported by Joint Reactions Analysis will be slightly different based 

on neutral state definition. Second, the neutral state defines the intervertebral position and 

orientation where no passive forces or moments are present at the joint, and thus alters the passive 

forces and moments present at the joint at every time instance during the lifting motion. 

2.4.4.2 Vertebral Kinematic Input 

Load estimates from subject-specific 6-DOF DSX-measured kinematics (DSX) were 

compared to those resulting from running the same OpenSim sequence on models consisting of 

generic, rhythmic (Rhy) vertebral kinematics. Rhythmic kinematics, which are often used 

throughout the literature in modeling studies, neglect translational motion of the joint and prescribe 

a constant ratio of flexion-extension (FE) motion at each joint based on the total lumbar flexion-

extension motion. The ratios were defined based on the distribution of the total L2S1 flexion-
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extension motion across individual segments present in literature based on measured motion from 

in vitro and in vivo studies14,22,104: 

𝐹𝐸𝐿2𝐿3 = 0.349*𝐹𝐸𝐿2𝑆1                                                   2-20 

𝐹𝐸𝐿3𝐿4 = 0.29*𝐹𝐸𝐿2𝑆1                                                    2-21 

𝐹𝐸𝐿4𝐿5 = 0.204*𝐹𝐸𝐿2𝑆1                                                   2-22 

𝐹𝐸𝐿5𝑆1 = 0.256*𝐹𝐸𝐿2𝑆1                                                   2-23 

In the case of the current modeling study, 𝐹𝐸𝐿2𝑆1 represents the instantaneous FE rotation of the 

lumbar spine from L2 to S1 with respect to the neutral state configuration. While distribution of 

lumbar FE motion was assumed in rhythmic models, the lateral bending and axial rotation of the 

lumbar spine was not, and instead remaining equal to the DSX-measured values.  

2.4.4.3 Intervertebral Stiffness 

The influence of passive (bushing) joint stiffness – meant to approximately represent the 

passive loads carried by the intervertebral disc and in some cases, the ligaments – on JRF and 

muscle forces were also investigated. Simulations were run on models with either no bushing 

stiffness (NBS), linear bushing stiffness (LBS), or nonlinear bushing stiffness (NLBS) properties. 

As previously described, the net JRF resulting from JRA have different representations based on 

whether passive stiffness properties were included within the model. To ensure a valid comparison, 

the total JRF was compared between models of varying stiffness properties.  
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2.4.4.4 External Load Magnitude 

Individuals participating in the study performed the dynamic lifting task with 10 lb (4.5 

kg) and 30 lb (13.6 kg). The magnitude of load lifted was added to the hands of the musculoskeletal 

model, distributed evenly between the left and right hand. How the magnitude of external load 

lifted during the dynamic lifting tasks affected estimates of joint reaction loads and muscle forces 

was quantified. While the external load magnitude was the only experimental variable explicitly 

changed in between trials during data acquisition, it should be noted that this change also 

corresponds with a new dataset of DSX-measured kinematics, surface marker measurements, and 

ground reaction forces. Thus, the effect of external load magnitude on simulation results with DSX 

kinematics incorporated is not simply the effect of adding a larger load to the hands of the subject-

specific model, but also the indirect effects of the corresponding input kinematics. 

2.4.4.5 Statistical Comparisons 

The main effect and interactions of input kinematics, neutral joint configuration, and 

passive stiffness on estimated JRF and muscle forces were determined separately for 10 lb and 30 

lb trials at 0%, 25%, 50%, 75%, and 100% percent motion completion (%MC) of the lifting task. 

The main effect was quantified by averaging results across all model variations containing the 

independent of variable of interest, while ignoring the effects of the other variables. For example, 

to observe the main effect of bushing stiffness, the values from all 10 lb models consisting of LBS 

stiffness properties were averaged (Figure 26), and similarly done for NLBS and NBS models. 

The same was then done for the 30 lb models. In addition to the average values of each group, the 

standard error of the mean was calculated as 𝑆𝐸𝑀 = 
𝑆𝐷

√𝑛
, where SD is the sample standard 

deviation. Following, the differences in average JRF or muscle forces between groups of different 
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independent variables – but of the same parameter type (e.g. NBS vs LBS, DSX vs RHY) – were 

determined. The interactions of between multiple independent variables within another level of 

other independent variables were examined as well. For example, within LBS models, the effect 

of neutral joint configuration in DSX kinematic models was observed; with differences defined as 

(LBS_DSX_SUP - LBS_DSX_UP). Interactions of each independent variable on the dependent 

variables were determined across the 10 lb and 30 lb trials. 

 

Figure 26: Schematic showing how the average forces across all model variations were 

averaged to calculate the main effect differences. 

 

Differences describing the main effect and interactions of the three varied parameters were 

calculated as follows. 

1) Joint neutral state: Difference = 𝐹𝑆𝑈𝑃𝐴𝑉𝐺_10
− 𝐹𝑈𝑃𝐴𝑉𝐺_10

; 𝐹𝑆𝑈𝑃𝐴𝑉𝐺_30
− 𝐹𝑈𝑃𝐴𝑉𝐺_30

 

2) Kinematic input: Difference = 𝐹𝐷𝑆𝑋𝐴𝑉𝐺_10
− 𝐹𝑅𝐻𝑌𝐴𝑉𝐺_10

; 𝐹𝐷𝑆𝑋𝐴𝑉𝐺_30
− 𝐹𝑅𝐻𝑌𝐴𝑉𝐺_30
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3) Bushing stiffness: Difference = 𝐹𝐿𝐵𝑆𝐴𝑉𝐺_10
− 𝐹𝑁𝐵𝑆𝐴𝑉𝐺_10

; 𝐹𝐿𝐵𝑆𝐴𝑉𝐺_30
− 𝐹𝑁𝐵𝑆𝐴𝑉𝐺_30

 

Or                         Difference = 𝐹𝐿𝐵𝑆𝐴𝑉𝐺_10
− 𝐹𝑁𝐿𝐵𝑆𝐴𝑉𝐺_10

; 𝐹𝐿𝐵𝑆𝐴𝑉𝐺_30
− 𝐹𝑁𝐿𝐵𝑆𝐴𝑉𝐺_30

 

2.4.5  Simplified Model Validation 

While the complexity of the developed model allows for detailed analysis of lumbar 

mechanics during the functional lifting task, it is not conducive for easily identifying the direct 

causes of variation between all models. A simplified model of the lumbar joint was therefore 

developed to ensure that the lumbar joints are behaving as intended. The model comprised of only 

two bones, two posterior muscles, and two anterior muscles. While the included muscles were not 

physiologically representative of all muscular components which act on the joint in vivo, their 

placement allowed for stability of the joint under different circumstances to analyze the 

relationship between muscle forces and joint reaction forces reported by OpenSim. Rhythmic 

kinematics of the L4L5 during the 10 lb lift of a single subject were prescribed to the joint. 

Thereafter, SO and JRA were run on the model to calculate the muscle forces and joint reaction 

forces which stabilized the joint and satisfied the dynamic equations of motion. The relationships 

between joint motion, muscle forces, and joint reaction forces were observed. 
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3.0 Results 

3.1 Disc Height and Disc Deformation 

Results on disc morphometry, measured as normalized disc height (nDH) between adjacent 

endplates, and disc strains are presented in different ways to visualize their variations along one or 

more of the following dimensions: (1) across lumbar segmental levels; (2) over the entire surface 

or transverse planar area; (3) between two discrete positions, the flexed position at the beginning 

and the upright standing position at the end of a motion; (4) over time or the range of motion; and 

(5) across five selected, consistently identifiable disc regions: anterior, posterior, left, right, and 

center. 

3.1.1  Intervertebral Disc Height  

The nDH measurements for trials of different external load magnitudes for each subject are 

pooled, as no load effect is observed across each disc’s entire transverse planar area. In general, 

the relative distribution of disc height along the anterior-posterior axis compared to the central disc 

height is consistent with disc height data from previous computed tomography (CT) studies (Bach 

2018, Albietz 2012). The L5S1 nDH data from the current study show distinct patterns, as 

compared to the L2L3, L3L4 and L4L5 discs, which all displayed similar nDH values across the 

disc area at the upright and flexed positions. Discs from L2L3 to L4L5 have the smallest nDH at 

the posterior (≈ 0.5) and anterior (≈ 0.7) regions in the upright and flexed positions, respectively. 
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Figure 27: Average normalized disc height (nDH) of five regions of each disc. 

 



 77 

L5S1 nDH at corresponding locations are much greater, with values of approximately 0.7 (p<1e-

04) and 1 (p<1e-05), respectively (Figure 27). The L5S1 nDH is smallest (≈ 0.5 – 0.6) at the left 

and right regions of the discs in both upright and flexed positions (Figure 28); these were 

significantly lower than the left (p<0.01) and right (p<1e-04) regions of the other discs (nDH ≈ 0.7 

– 1.0). In general, nDH at the left and right regions of the disc becomes progressively smaller 

moving from the cranial to caudal intervertebral levels (Figure 28). This pattern appears consistent 

with disc height patterns measured in the supine and axially twisted positions73 and may be 

attributed to the increased inferior endplate concavity of lower lumbar vertebrae observed in 

previous lumbar morphometry studies140,141. 

 

 

Figure 28: Mapping of nDH across the axial planar surfaces of the lumbar discs. 
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The regions within the discs exhibiting nDH approximately equal to one (0.95 – 1.05) span 

approximately 50% to 66% of the disc width (medial-lateral axis) and 33% to 50% of the disc 

depth (anterior-posterior axis) in the upright position. These areas roughly correspond to the 

location of the hydrostatically pressurized and incompressible nucleus pulposus (NP) component 

of the discs142,143. At the flexed position, these regions are shifted posteriorly relative to their 

location in the upright position (Figures 28-29).  

 

 

Figure 29: Average normalized disc height (nDH) along the AP axis of each disc. 

 

Past ex vivo magnetic resonance imaging (MRI)-based studies have also reported NP posterior and 

anterior migration in the presence of joint flexion and extension, respectively58,144. While the 

current results reinforce this notion, subtle segment-specific differences are identified: 



 79 

distributions of nDH along the anterior-posterior axis of the L2L3 and L3L4 show similar trends 

at both positions; however, compared to the cranial discs, the NP regions are more anterior in 

L4L5, and more posterior in L5S1 at the upright position (Figure 29). 

3.1.2  Intervertebral Disc Strains 

External load magnitude had no effect on the normal or shear strain at any of the five 

regions. Furthermore, Post-hoc Tukey results indicate no effect of external load magnitude on any 

regional normal or shear strain at the flexed position. Therefore, normal and shear strain data for 

trials of differing external load magnitudes are pooled before displaying the instantaneous strains 

over the entire ROM (Figure 30). 

Normal strains at the anterior and posterior regions demonstrate strong linear correlations 

with the amount of lumbar flexion, as indicated by high R2 values resulting from linear regressions 

with percent motion completion (%MC) as the single explanatory variable; correlations for normal 

strains at the left, right, and center are moderate or weak (Table 2, Figure 30). Shear strains at all 

regions of the L2L3, L3L4, and L4L5 discs demonstrate strong linear correlations with lumbar 

flexion as well, while correlations at the L5S1 are notably weaker (Table 2, Figure 30).  

The L5S1 disc displays unique shear strain patterns compared to the other discs. First, L5S1 

shear strain magnitudes (~0.2 on average) are significantly less than others discs across most of 

the disc cross-sectional area at the fully flexed position, as suggested by non-overlapping ±95% 

confidence intervals (Figure 31b). Post-hoc Tukey tests (p<0.001, Figure 32) confirm this 

observation at the anterior and posterior regions. Second, L5S1 shear strains remain more or less 

constant over the entire ROM while the L2-L5 discs exhibited a linearly decreasing trend (Figure 

30f-j). This contrast is particularly noticeable in the posterior region of the discs, where shear 
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strains in L2-L5 discs at the flexed position are significantly higher. Normal strain trends show 

similar differences: L5S1 exhibits significantly less distraction (p<0.001) and compression 

(p<0.001) compared to the other discs at the posterior and anterior regions, respectively (Figure 

32). (Nagel et al., 2014) also identified L5S1 posterior normal strain (~29%) to be less than L3L4 

(~50%) and L4L5 (~65%); however, no differences were realized at the anterior region of the 

disc145. 

The overall magnitudes of strains at the posterior and anterior regions are comparable to 

those measured by previous studies during flexion or lifting tasks58,70,145,146. (Costi et al., 2007) 

measured physiological maximum shear strains (MMS) to be 38% during simple flexion of the 

lumbar spine58. When simulating a repetitive lifting task, MMS values of approximately 50% and 

75% were measured at the posterior and anterior ends of the disc’s AP axis by (Amin et al., 

2019)146. Similar to the current results, they also showed the anatomical center of the disc to be in 

compression with respect to the reference state of the functional spinal unit.  
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Figure 30: Level-specific disc strains at the five disc regions during the lifting motion. 
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Further, L5S1 shear direction transitions gradually from about 120° to the medial-lateral (ML) axis 

in the posterior regions to about 80° in the anterior regions, indicating a changing anterior-posterior 

(AP) and ML coupled shear pattern from the posterior to the anterior region. On the other hand, 

the direction of shear remains more consistent throughout the other discs – approximately 75° to 

85° off the ML direction (Figure 31a). 

Differences in L5S1 strain patterns compared to the other lumbar discs extend to the entire 

ROM. The clearest differences are seen in the posterior region, where L5S1 exhibits significantly 

smaller normal and shear strains through about half the range of motion (~50%MC). The anterior 

region shows a similar trend, although these are less pronounced than in the posterior region. For 

example, L5S1 anterior normal strain appears to be only significantly less than L4L5 (Figure 30a), 

while L5S1 anterior shear strain is significantly less than the L2L3 and L4L5 from the flexed 

position through 20%MC, based on the CI95 values (Figure 30f). 

The center region of the L5S1 exhibits significantly less shear strain than all other discs 

(Figure 32) at the flexed position (p<1e-04) and at multiple time points during the lifting motion 

(Figure 30j). No differences among segment levels were observed with regards to normal strain at 

the center of the disc. Ex vivo studies show reduced shear strains at the nucleus region of the disc 

compared to the annulus regions, which was not identified in the current work58,146. 

Interestingly, the left regions of the cranial levels (L2L3 and L3L4) exhibit significantly 

less normal strain than the caudal levels (L4L5 and L5S1) at the flexed position (L2L3: p<0.001, 

L3L4: p<0.02), while no differences in normal strain between segment levels were observed at the 

right region. 
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Table 2: Linear R-squared coefficients of strain vs. percent motion completion 

Figure 31: Mapping of disc strain across the axial planar surfaces of the lumbar discs. 

Disc 

Normal strain Shear strain 

A P L R C A P L R C 

L2L3 .92 .97 .43 .54 .44 .84 .86 .83 .86 .86 

L3L4 .94 .97 .49 .52 .51 .83 .87 .80 .88 .87 

L4L5 .97 .99 .78 .38 .69 .81 .84 .88 .79 .85 

L5S1 .88 .92 .65 .46 .62 .44 .50 .43 .36 .47 
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Figure 32: Average disc deformation of five regions of the disc at each segment level. 
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3.1.3  Intervertebral Disc Radial Strains and Bulging 

Average radial strains across all subjects ranged from approximately -0.3 at the posterior 

region to 0.2 at the anterior region, with respect to the upright standing position (Figure 33). These 

values corresponded to bulging of the disc of approximately -1 mm and 1 mm at the posterior and 

anterior regions, respectively (Figure 34). Radial strains were small and generally close to zero at 

the left, right, and center regions throughout the lifting motion. L5S1 posterior radial strains were 

significantly smaller in magnitude than other segments during the first half of the lifting motion, 

while L5S1 anterior radial strains were significantly smaller than the L4L5 segment. Regions of 

significant differences in radial strain between segment levels were identical to those identified for 

normal strains, given the direction relationship defined between the two measures (Figure 31). 

Magnitudes of radial strains were larger than those observed by (Tsantrizos et al., 2005), however 

this can be explained by the increased loading conditions imposed on the lumbar spine in the 

current study144. (Amin et al., 2019) reported radial displacements of approximately 1.5-2.0 mm 

at the posterior and anterior ends of the AP axis when simulating a lifting task on cadaver 

functional spinal units146. While magnitudes differed slightly between studies, the inward and 

outward bulging of the disc at the posterior and anterior regions of the disc, as observed in the 

current work, is consistent. 
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Figure 33: Level-specific disc radial strains at the five disc regions during the lifting 

motion. Positive strains indicate radial strain outwards from the disc center. 
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Figure 34: Radial bulge at the anterior, middle, and posterior regions of the disc across all 

subjects. 
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Disc bulging at the L2L3 to L5S1 of a single subject was compared with results from a concurrent 

displacement-controlled FE study utilizing the subject’s identical subject-specific data (Figure 35). 

Approximating disc bulging from the normal strains during the 10 lb lift led to greater anterior and 

posterior bulge compared to the FE study with respect to the upright standing position. Results 

were less comparable during the 20 lb lift and were generally bulged more inwards compared to 

the upright position than as observed in the FE model. However, at the point of furthest flexion 

the bulge data seemed fairly comparable between the two methods.  

Figure 35: Disc bulging (mm) estimates from disc deformation analysis (DD) and FE 

simulation. 
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3.1.4  Disc Height and Rotational Kinematics 

Correlations between disc height and range of intervertebral rotation were weak at all 

segment levels, regardless of whether the FE joint rotations were normalized with respect to the 

overall L2-S1 FE rotation (Figure 36). Positive slopes were present at nearly every segment during 

all lifting trials, while linear R-squared coefficients between intervertebral rotation and central disc 

height were all under 0.45 (L2L3, 30 lb lift), the majority of which were between 0 and 0.2. While 

normalization of intervertebral range of FE rotation to the overall L2S1 range of FE rotation led 

to a slight increase in linear R-squared coefficients, they remained weak – the majority were around 

0.1 to 0.4, with the maximum being 0.69 (L2L3, 30 lb lift). 
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(a)                                                                     (b) 

Figure 36: (a) Range of FE rotation (degrees) vs. central disc height (mm) across all 

subjects. (b) FE rotation was also normalized to total L2-S1 FE rotation to observe 

potential changes in relationships. 
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3.2 Facet Joint Kinematics 

Data from three participants were excluded owing to poor image capture quality and 

tracking issues. One additional participant was excluded due to poor image quality for the static 

trials making 10 participants’ data available for processing yielding 116 observations.  

3.2.1  Upright translational kinematics 

Static, upright (reference) SI spacing was substantially larger at L5S1 compared to other 

segments (Table 3), measuring approximately 2 mm compared to -0.4 mm to -0.9 mm for the other 

segments. In general, sideways sliding and facet gap spacing were small in magnitude; the mean 

+-SD for nearly all segments spanned zero mm. No differences in upright kinematics were detected 

between left and right facet joints at any segment level. For most translational measurements across 

all segment levels and kinematic directions, the standard deviation across all subjects were larger 

than the average. 

Table 3: Segment-specific FJ translations at the upright standing position. Mean ± CI95
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3.2.2  Dynamic Translation Kinematics 

Although coupled translation was observed, translation in the superior-inferior (SI, local 

Y-axis) direction was the dominant contributor. SI translation was significantly lower in L5S1

[p<0.001] compared to L2L3, L3L4 and L4L5 segments. No significant differences were detected 

between the other segments (p>0.5, Figure 37, Table 4). Time series plots including the mean 

(±CI95) for the segment-specific translations for each of the three load cases are shown in Figure 

38. Corresponding linear regression-based slopes (Figure 39) revealed strong linearity (r2 >0.94)

for SI translation component and reasonably good linear fit for the sideways sliding (Z-) 

component (r2 > 0.8), with a much lower correlation coefficient for X-component (facet gap, r2 

~0.5).  L4L5 and L5S1 exhibited larger translations along the averaged, local X- (Md=0.4mm and 

0.4mm, respectively) and Z-axes (Md=1.5mm and 1.6mm, respectively) compared to L2L3 and 

L3L4 ((x-axis Md = 0.2 mm and 0.03 mm, respectively; z-axis Md = 0.7mm and 0.7 mm, 

respectively). Following differences were significant along Z- (L5S1>L3L4, p=0.01; L4L5>L3L4, 

p=0.04, L5S1>L2L3, p <0.001; L4L5 >L2L3, p=0.0016).  For the right side, L5S1 and L4L5 X-

components were significantly greater than L3L4 (p = 0.01 and 0.04 respectively). Averaged X-

component translations as well as those for the left facets were not significantly different across 

segments. No significant effect of the magnitude of weight lifted was detected (p>0.7, Figure 40, 

Table 5). Overall magnitudes of translation in the cranial (L2-L5) segments were quite similar (Md 

= 5.9mm, 6.3mm and 6.6mm respectively), but L5S1 facet translations were markedly different 

(Median (Md) = 3.5mm, p<0.0001).  



 93 

 
Figure 37: Effect of segment level on FJ translation in the X-, Y-, and Z- directions. 

Notches indicate confidence intervals of the median. Lack of overlap indicates significant 

difference, while plot whiskers encompass the total range of data in each group. 
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Figure 38: Lumbar facet translations in the X-, Y-, and Z- directions from the starting 

flexed position to 80% percent task completion – flexed position being the zero point. 

Errors bars represent ±95% confidence intervals. 
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Figure 39: Linear regression-based slopes of the facet joint translation components for each 

segment. Lack of overlap between error bars between groups indicates significant 

difference. 
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Figure 40: Effect of load magnitude on facet translations. Lack of overlap between notches 

indicates significant difference, while plot whiskers encompass the total range of data in 

each group. 
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Table 4: Segment-specific facet joint translations at the upright standing position with 

respect to the fully flexed position. Median (confidence interval range based on ± CInotch). 

 

 

Table 5: Load-specific facet joint translations at the upright standing position with respect 

to flexed position. Median (confidence interval range based on ± CInotch). 

 

3.3 Musculoskeletal Modeling 

JRF and muscle forces from the 24 model variations are compiled to illustrate the 

sensitivity to choices made within the three primary input parameters: vertebral kinematics, 

passive stiffness and neutral state. JRF and muscle force estimates for each model variation are 

also reported (Tables 6-14, Appendix). Additionally, differences due to interactions of choices 

made within the primary parameters were calculated (Tables 15-41, Appendix). 

It is useful to preface these results with a brief clarification on the calculation of bushing 

(IVD) forces and its incorporation into the net joint reaction force calculations in the Joint Reaction 
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Analysis (JRA) step in OpenSim®. Joint Reactions Analysis in OpenSim, is a post hoc calculation, 

which determines the resultant forces and moments carried by all un-modeled joint structures 

required to produce the specified joint kinematics. Thus, the decision to either include or exclude 

certain structural components of the joint within the model will directly affect the resultant loads 

calculated by JRA. In a purely rigid body dynamics analysis of the lumbar joint – where no passive 

soft tissue structures are modeled (NBS model) – these forces, referred to as net joint reaction 

forces, collectively represent the total load to be resisted by all passive structures within that joint. 

In this study, we have also explicitly modeled passive disc (and ligament) stiffness by prescribing 

either linear (LBS) or nonlinear (NLBS) bushing-based force-kinematic relationships at the joint. 

Under this scenario, the net joint reaction force output from JRA already includes the resisting 

forces generated within the bushing. Hence this value will not represent the total load acting at 

that particular joint. In order to obtain the total joint reaction forces in LBS and NLBS models and 

allow comparison with the corresponding the NBS model output, we must add the modeled passive 

(bushing) forces back to the net force output from JRA. 

3.3.1  Joint Reaction Forces 

Joint reaction forces (JRFs) were reported on the inferior vertebra, in the inferior vertebra’s 

coordinate system (Tables 6-11, Appendix). Positive JRF in the SI and AP directions correspond 

forces in the superior and anterior directions, respectively (Figure 41). Thus, SI JRF were always 

negative, indicating a compression, while AP JRF were typically positive, indicating anterior shear 

force. In general, compressive JRF were similar across all four segment levels in each of the three 

subjects (Figure 42). Compressive JRF ranged from approximately -32 N/kg to -55 N/kg (-2000 

N to -4000 N) at the beginning of the lifts to approximately -14 N/kg to -35 N/kg (-1000 N to -
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2500 N) near the upright position depending on the particular subject and magnitude of external 

load carried.  

Figure 41: SI (Y-axis) and AP (X-axis) joint reaction forces were reported on the inferior 

vertebra, and were positive in the superior and anterior directions, respectively. 

Maximum shear JRF experienced at the joint throughout the lifting motion varied significantly 

between subjects and segment levels, ranging from approximately 2-26 N/kg (100-1600 N) at the 

L5S1 (Figure 43). Magnitudes of shear JRF were smallest and of similar magnitude at the L23 and 

L34 near the beginning of the lift, and were largest at the L51. While L23 shear forces dissipated 

towards zero while approaching the upright standing position, shear JRF from L34 to L51 did not, 

and in some cases even increased. The effect of added external load was noticeable at the L45 and 

L51, but was not as significant as for compressive JRF. 

Results are comparable to those reported by previous studies examining flexion and lifting 

tasks, which have focused mostly on estimating lumbar loads at the L4L5 and L5S1 levels. 
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(Eskandari et al., 2017) reported compressive JRF of approximately -25 N/kg at the L4L5 and 

L5S1 during 70 degrees of flexion – approximately equal to the 75 degrees of flexion achieved by 

subjects in the current lifting study – while holding no load in the hands109. Magnitudes of shear 

JRF were low at both joint levels, ranging anywhere from approximately 0-3 N/kg. (Ghezelbash 

et al., 2018) reported L5S1 compressive and shear JRF ranging from -19 to -35 N/kg and 6 to 12 

N/kg, respectively, with flexion of the lumbar spine147. When performing tasks with loads in the 

hands, studies have reported L4L5 and L5S1 compressive JRF to be approximately -40 N/kg and 

-55 N/kg during 70 degrees of trunk flexion while holding 5 kg and 15 kg, respectively. Results 

from these two studies report L4L5 shear JRF to have reached approximately 2 N/kg and 6 N/kg 

while holding 5 kg and 15 kg, respectively, while maximum L5S1 shear JRF were 7 N/kg and 17 

N/kg for the 5 kg and 15kg load. While the exact trunk rotations in another study were not reported, 

another study reported  L4L5 compression loads to be approximately -40 N/kg to -60 N/kg while 

lifting 6 kg and 14 kg load, respectively, using a two-handed stoop lifting technique – similar to 

the straight-legged lifting motion the subjects in the current study were asked to perform. The same 

study reported L5S1 compressive loads to be approximately -50 N/kg while lifting 15 kg. Shear 

loads at the L4L5 and L5S1 ranged from 10-15 N/kg and 20 N/kg at the L4L5 and L5S1, 

respectively. 

The increase in shear JRF at the L5S1 compared to the L4L5 align well with results from 

literature. Furthermore, the noticeably higher JRF due to additional external load lifted agree with 

results reported by the literature. Maximum shear JRF during the lifting study were at the higher 

end of ranges reported in literature and aligned best with those measured by (Gauvreau et al., 

2019)148. One distinct difference of the current results is that L5S1 shear JRF at the upright 

standing position were larger than those reported in literature. A potential explanation for this is 
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that the lumbosacral angle of the subjects at their upright position in this study were larger than 

those present in previous literature. This may have particularly been the case due to the pelvic rest 

which sustained light contact with the lower back during the lifting task. Increasing the external 

load from 10 lb to 30 lb resulted in an approximate -10 N/kg to -15 N/kg (-500 N to -1000 N) 

increase in estimated compressive JRF throughout the lifting motion for all three subjects. Trends 

in compressive JRF throughout the lifting motion remained fairly consistent across all segment 

levels. 
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Figure 42: Compressive joint reaction forces from the beginning to end of the lifting motion 

(mean + SEM). 
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Figure 43: Shear joint reaction forces from the beginning to the end of the lifting motion 

(mean + SEM). 
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3.3.1.1 DSX vs Rhythmic Kinematics 

The effect of input kinematics varied considerably by the subject being investigated, 

however input kinematics had an obvious effect on JRF estimates for each subject (Figures 44-

45). JRF estimates were substantially lower in magnitude in DSX-based models compared to 

rhythm-based kinematics at several instances from the beginning of the lift to approximately mid-

range. In general, these differences reduced greatly nearer to the upright position. Peak differences 

over the whole range of motion (ROM) due to inclusion of DSX kinematics reached 1351 N in SI 

JRF, indicating a reduction in compressive force, and -841 N in AP JRF, also indicating a 

reduction in shear force, when calculated based on assessing the main effect of kinematic input 

(Figure 46). Secondly, assumptions with respect to passive stiffness properties and the neutral state 

modulated these differences, however the manner in which they differed depended on the subject 

being investigated (Tables 15-20, Appendix). For example, differences in the second subject’s 

compressive JRF due to input kinematics were greater in models consisting of the upright- neutral 

state configuration. Furthermore, the differences in compressive JRF at the L4L5 and L5S1 

increased in magnitude with the presence of stiffness properties (LBS or NLBS) in the upright 

neutral state configuration models. In subject 3, the introduction of DSX kinematics, as opposed 

to rhythmic, led to greater magnitudes of difference in models with a supine neutral state 

configuration. A generally consistent trend was that models with DSX kinematics tended to reduce 

the amount of shear JRF at the joint, particularly at lower levels of the lumbar spine (L4L5 and 

L5S1) (Figure 46). Furthermore, values of compressive JRF reduction due to inclusion of DSX 

kinematics were of much greater magnitudes than instances of compressive JRF increase. Overall, 

differences in compressive JRF due to kinematic input across all bushing stiffness types and 
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neutral state configurations ranged from -612 N to 2017 N across all subjects during the lifting 

motions, while differences in shear force ranged from -1150 N to 405 N. 
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Figure 44: Main Effect of kinematic input on compressive joint reaction forces. 
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Figure 45: Main Effect of kinematic input on shear joint reaction forces. 
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Figure 46: Joint reaction force differences due to input kinematics (F_DSX-F_RHY). 

Values are reported on the inferior vertebra. Positive values in compression and shear 

represent decreased compressive force and increased anterior shear force, respectively. 
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3.3.1.2 Passive Stiffness Properties 

While differences varied by segment level and subject, LBS and NLBS- model-based 

compressive and shear JRF varied only marginally in all three subjects (Figures 47-48). The largest 

magnitudes of difference seen in compressive and shear JRF when assessing the main effect were 

approximately 200 N or lower. LBS- and NLBS model-based shear JRF estimates showed only 

subtle difference at the L2L3 and L3L4 based on the main effect of bushing stiffness, while at the 

L4L5 and L5S1 led to an increase in shear JRF, which appeared to grow with lumbar extension. 

While differences in SI JRF were generally positive, they began to decrease and eventually become 

substantially negative (more compressed) with extension of the lumbar spine to the upright 

position. Across the three subjects, peak differences in SI JRF based on the main effect of bushing 

stiffness ranged from -550 N to 490 N towards the end of the lifting task, respectively (Figure 49). 

Furthermore, these differences were rather consistent across all joint levels, while major 

differences in shear JRF occurred only at the L4L5 and L5S1, reaching approximately 540 N. In 

general, interaction effects of the neutral state configuration and kinematic input type on JRF 

differences due to stiffness properties were small (Tables 21-26, Appendix). However, there were 

some instances of notable interaction effects with. For example, the effect of stiffness properties 

on 25-75%MC differed noticeably between DSX and RHY models in the second subject, 

particularly at the upper joint levels. Additionally, the presence of rhythmic kinematics in 

combination with the supine neutral state led to increased compressive JRF (more negative) near 

the upright position (75-100%MC) during the third subject’s 30 lb lift. 
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Figure 47: Main Effect of bushing stiffness on compressive joint reaction forces. 
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Figure 48: Main Effect of bushing stiffness on shear joint reaction forces. 
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Figure 49: Joint reaction force differences due to bushing stiffness properties (F_LBS-

F_NBS). Values are reported on the inferior vertebra. Positive values in compression and 

shear represent decreased compressive force and increased anterior shear force, 

respectively. 
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3.3.1.3 Supine vs Upright Neutral State 

Although still substantial, the main effect of neutral state was the smallest of the three 

primary input factors (Figures 50-51): differences in compressive JRF ranges from -292 N to 238 

N, while differences in shear JRF ranged from -167 N to 277 N. No consistent trends in the main 

effect across subjects were identified. However, the effect of neutral state configuration on L5S1 

compressive JRF was unique compared to other joint levels, in that the supine neutral state models 

consistently reduced compressive JRF compared to the upright neutral state models (Figure 52). 

Interaction effects with the choice of kinematic input and bushing type on SI JRF were evident in 

all subjects (Tables 27-32, Appendix). For the second subject, inclusion of the supine neutral state 

led to an increase in compression in DSX models, but a decrease in compression in RHY models. 

At the L23, the magnitude of increased compression at 0%MC in DSX models was greater with 

the presence of LBS stiffness properties (-630 N) compared to NBS or NLBS models (-195 N and 

-57 N, respectively). 
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Figure 50: Main Effect of neutral state configuration on compressive JRF. 
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Figure 51: Main Effect of neutral state configuration on shear joint reaction forces. 
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Figure 52: JRF differences due to neutral state configuration (F_SUP-F_UP). Values are 

reported on the inferior vertebra. Positive values in compression and shear represent 

decreased compressive force and increased anterior shear force, respectively. 
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3.3.2  Muscle Forces 

Muscle forces of the multifidus (MF), iliocostalis lumborum (IL), longissimus thoracis 

(LT), and abdominal (ABD) muscle groups were reported throughout the lifting motion (Tables 

12-14, Appendix). In general, muscle forces were largest at the LT muscle group, reaching 

approximately 1000 N and 1500 N at the beginning of the 10 lb and 30 lb lifts, respectively (Figure 

53). IL forces were nearly just as high, ranging approximately 600-1000 N and 900-1500 N for the 

10 lb and 30 lb lifts, respectively, across the three subjects at the beginning of the lift. MF forces 

were also substantial, reaching approximately 600-800 N during the lifting tasks., while ABD 

forces were considerably lower. As expected, muscle forces in these four groups reached peak 

levels at the beginning of the lifting motion and continued to decrease with extension of the lumbar 

spine to the upright position; however with exception of ABD muscles of a single subject during 

the middle portion of the lifting motion. LT and IL forces increased by approximately 300-400 N 

with an increase in external load from 10 lb to 30 lb, while similar trends were seen at the MF and 

ABD to the degree of approximately 200 N and 50 N, respectively. Such increases were present 

throughout the lifting motion, including the end of the lifting task where the subjects reached 

approximately the upright standing position. 
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Figure 53: Muscle forces at the multifidus (MF), latissimus dorsi (LT), iliocostalis 

lumborum (IL), and abdominal (ABD) muscle groups during the lifting motion. 
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While the tasks simulated vary by study, total muscle force in the current study agree well 

with those estimated by previous lumbar spine modeling studies simulating flexion or lifting tasks. 

Across the three subjects, the combined muscle forces form the four studies muscle groups ranged 

approximately 2200-3000 N and 3000-4000 N at the beginning of the 10 lb and 30 lb lifts, 

respectively. A study by (Kim et al., 2017) reported total muscle forces of over 5000 N simulating 

the lifting of a 12 kg crate from the floor to a table; over 4500 N of the total muscle force was 

produced by the IL muscle group, while the LT, MF, and ABD muscles groups accounted for 

approximately 300 N, 100 N, and 100 N, respectively. In a study by (Ghezelbash et al., 2015), the 

local and global muscle forces were reported at various flexion angles of the trunk while holding 

zero or 180 N in the hands. Total muscle forces exceeded 2500 N at the 40 degrees trunk flexion 

and continued to grow past 3500 N with 80-90 degrees of flexion. (Eskandari et al., 2017) and 

(Arshad et al., 2017) reported total muscle loads of approximately 2500 N when simulating 

inclination of the upper body with loads in the hand of the subjects. 

While some studies did not report specific force estimates of individual muscle groups, MF 

forces in the current study – which reached 700-800 N at the beginning of the lifting motion –  are 

higher than those estimated by previous studies, which have estimated MF forces to be around 500 

N, at most, during flexion or lifting tasks108-110. The current study also displayed a fairly even 

distribution of erector spinae muscle forces between the IL and LT muscle groups. While 

magnitudes of muscle forces were smaller in (Arshad et al., 2017), the relative distribution was 

also quite even between the two groups in this study108. (Eskandari et al., 2017), on the other hand, 

reported LT forces greater than 1100 N at 40 degrees of trunk inclination, over twice as large as 

IL forces109. (Kim et al., 2017) reported the majority of muscle force located at the IL group (>4500 

N)110. Differences in muscle distribution between studies is most likely due to differences in 
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muscle parameters between models, which has a direct effect on how optimization algorithms 

distribute loads across the muscles to produce the necessary moments. The reported abdominal 

muscle forces in this study (including the internal and external obliques, and the rectus abdominus) 

align well with those estimated by other models. In general, activation of these muscles were 

relatively lower than in other groups, and varied from approximately 0 to 400 N depending task 

being simulated.  

3.3.2.1 DSX vs Rhythmic Kinematics 

Compared to models with rhythmic vertebral kinematic input, predicted muscle forces in 

models with DSX input kinematics showed uniquely different trends (Figures 54-55). While the 

muscle groups experiencing the largest differences varied by subject, all muscle groups showed 

considerable main effect differences during the lifting motion. For example, while LT forces were 

greatly reduced at the beginning of the 30 lb lift in the first subject with the inclusion of DSX 

kinematics, differences were not nearly as significant for the other subjects. Furthermore, the 

relative direction of these differences with respect to the rhythmic models largely varied even 

throughout the same lifting task. For example, while the second subject’s LT forces in DSX models 

were 133 N less at the beginning of the lift, just 25%MC later they were greater by 259 N. Despite 

their relatively low magnitudes of force compared to other muscle groups, differences in ABD 

forces due to kinematic input remained large, with peak differences across all subjects reaching 

nearly 430 N, when calculated based on the main effect. Furthermore, MF increased with inclusion 

of DSX kinematics, while IL forces decreased: maximum peak main effect differences for each 

group were 417 N and -242 N, respectively. In many cases there were also significant interaction 

effects with kinematic input and other input parameters (Tables 33-35, Appendix). For example, 

the inclusion of DSX kinematics in the second subject had a much larger effect on IL muscle forces 
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in models with the upright neutral state configuration than those with supine neutral state 

configuration. 
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Figure 54: Main effect of kinematic input on muscle forces. 
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Figure 55: Muscle force differences due to kinematic input (F_DSX-F_RHY). 
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3.3.2.2 Passive Stiffness Properties 

Effects of passive stiffness properties varied across muscle groups, although the largest 

differences generally appeared at the beginning of the lifting motion (Figure 56). The introduction 

of LBS stiffness as opposed to NBS stiffness led to decreased LT force across all, with peak main 

effect differences reaching nearly -240 N and mitigating with extension of the lumbar spine to the 

upright position (Figure 57). Differences observed in other muscle groups varied by subject: while 

IL forces were greatly reduced in subject one, particularly near the beginning of the lift, differences 

were of lesser magnitude in the other two subjects. And while subject two experienced generally 

larger ABD forces in LBS models, differences were mitigated in the other two models. Differences 

in muscle force between LBS and NLBS models were generally smaller than those between LBS 

and NBS, with exception of a few instances where ABD, LT, and IL forces were reduced by 80-

120 N. In general, it was difficult to pinpoint consistent trends due to variation of bushing stiffness 

properties in DSX models. Closer to the upright position, models with bushing forces included 

tended to predict higher MF and ABD muscle forces compared to NBS models. As was the case 

for input kinematics, other input parameters had interaction effects on differences in muscle force 

estimates due to variation of stiffness properties (Tables 36-38, Appendix). However, the degree 

to which interaction effects were present differed largely by the subject. For example, the 

magnitude of differences in muscle force estimates due to passive stiffness properties varied much 

more substantially based on kinematic input (DSX or RHY) in the second subject than the other 

two subjects. 
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Figure 56: Main effect of bushing stiffness properties on muscle forces. 
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Figure 57: Muscle force differences due to bushing stiffness properties (F_LBS-F_NBS). 
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3.3.2.3 Supine vs Upright Neutral State 

While IL forces were substantially reduced at the beginning of the lift for a single subject, 

the main effect of neutral state configuration on muscle forces was smallest of the three main 

parameters (Figure 58). Only at a few instances of the lifting motion did differences in any muscle 

force group exceed magnitudes of 100 N (Figure 59). Overall, the MF muscle group seemed least 

affected by the inclusion of the supine neutral state. Neutral state had a minimal effect on MF and 

LT muscle forces. However, the effects of neutral state on ABD and IL forces were considerable, 

particularly with greater external load and during the latter half of the lifting motion. As previously 

noted, differences due to neutral state configuration had strong interaction effects with the type of 

kinematic input depending on the particular subject. While LBS or NBS passive stiffness 

properties had a moderate effect on MF muscle force differences due to neutral state configuration 

during the 10 lb lift, interaction effects between the two parameters were lower for other muscle 

groups, and also during the 30 lb lift (Tables 39-41, Appendix).  
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Figure 58: Main effect of neutral state configuration on muscle forces. 
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Figure 59: Muscle force differences due to neutral state configuration (F_SUP-F_UP) 
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3.3.2.4 Intervertebral Input Kinematics 

Differences in intervertebral kinematics at the upright and supine positions – as captured 

by DSX and CT, respectively – led to slight differences in upright- and supine-relative input 

kinematics. For example, flexion-extension (FE) kinematics of a single subject’s (subject 1) L45 

were shifted approximately two degrees (more negative) when described with respect to the 

upright position compared to the supine position (Figure 60), while AP and SI translation were 

shifted by approximately -1 mm each. LB and AR motion, along with ML translation, were the 

same regardless of neutral state definition, as only the sagittal plane kinematics were taken into 

account when defining the neutral state.  

 

Figure 60: Variation of a single subject’s (subject 2) L4L5 sagittal plane kinematics based 

on neutral state configuration and type of input kinematics. 
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3.3.2.5 Simplified Model Results 

When the joint was placed in flexion with respect to the reference orientation of the joint, 

models with LBS stiffness required less muscle force to stabilize the external moments compared 

to NBS models (Figure 61). This led to lower magnitudes of JRF in models with bushing stiffness 

compared to NBS models. When the joint was in extension, with respect to the reference 

orientation, models with rotational stiffness required greater muscle force to stabilize the external 

moments, which correspondingly resulted in larger magnitudes of JRF compared to NBS models. 

These results are to be expected. In flexion, the reaction moment corresponding to the rotational 

stiffness acts in extension, thus aiding the muscles to help stabilize the external moments and 

decreasing joint reaction forces. In extension, the reaction moment of the passive stiffness element 

acts in flexion, producing an additional external moment for which the muscles must stabilize, 

therefore increasing muscle forces and joint reaction forces. Overall, the results ensured that the 

relationships between the kinematics, muscles and joint reaction forces in the musculoskeletal 

model were behaving as intended. 
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Figure 61: Joint kinematics, muscle forces, and joint reaction forces for simulation of 

simple model 
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3.3.2.6 Joint Reaction Forces and Anterior Disc Deformation 

Relationships between JRF and disc deformation varied between the three subjects 

investigated. At a particular instance of anterior compression, compressive JRF could vary up to 

2000 N or even higher depending on the subject or lifting trial being investigated (Figures 62-63). 

Despite having similar ranges of anterior compression in 10 lb and 30 lb trials, the compressive 

JRF at the L23 to L45 estimated by the musculoskeletal model were significantly increased during 

30 lb trials. This was especially apparent for subjects 5 and 10, where estimated compressive JRF 

could be about 500-100N greater during the 30 lb lift despite having the same magnitude of anterior 

compression as the 10 lb lift. However, relationships between compressive JRF and anterior 

compression at the L5S1 appeared more maintained between trials of different external load 

magnitude. While the magnitude of L23 shear JRF tended to increase with the amount of L23 

anterior shear strain, such a relationship was not seen at other segments. L34 shear forces remained 

at a similar magnitude despite changes in anterior shear strain. At any particular instance of anterior 

shear strain, the estimated shear JRF at the L45 and L51 varied widely depending on the subject 

and lifting trial. Where anterior shear strain magnitudes were similar between the 10 lb and 30 lb 

trials, L45 and L51 shear JRF were generally larger during the 30 lb lift. 
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Figure 62: Compressive joint reaction force vs. anterior normal strain of the disc. 

 

 

Figure 63: Shear joint reaction force vs. anterior shear strain of the disc. 
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4.0 Discussion 

4.1 Disc Height and Deformation 

The data presented here demonstrate how dynamic X-ray imaging of the vertebral bone 

motion enables a detailed accurate characterization and analysis of the morphometry and 

deformation of lumbar intervertebral discs in vivo. The results clearly show that the morphometry 

and deformation characteristics of the L5S1 disc are uniquely different from the rest of lumbar 

intervertebral discs. The substantial reduction of normal and shear strains at the L5S1 disc has 

three possible mechanistic explanations. First, the L5S1 material properties and morphological 

structure form an intervertebral disc of greater elastic modulus compared to the cranial discs. While 

in vivo material property data for the discs remain unattainable, the effect of intervertebral disc 

height on segment stiffness determined by previous studies149-151 may suggest that the different 

disc height patterns observed at the L5S1 may play a role in facilitating increased segment 

stiffness, effectively reducing the magnitudes of normal and shear strain. Generally, these studies 

have found that a disc exhibiting lower disc height, typically measured at the center of the disc, 

would result in a stiffer motion segment of the spine. And while the loading conditions likely 

varied between segment levels and across subjects, the lack of positive correlation across subjects 

between central intervertebral disc height and intervertebral range of motion during the functional 

lifting task challenges this explanation. A recent study also found that while disc height was 

directly correlated to axial stiffness of a segment, it was not correlated to any of the rotational 

stiffnesses of the segment152. However, the effect of regional changes in disc height, or a 

significantly altered distribution in disc height, is not well understood. It is plausible that disc 
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height distribution throughout the disc cross-sectional area may play a significant role on the 

stiffness of a segment. An alternative explanation is that active forces of the muscles stabilizing 

the L5S1 segment produce a larger portion of the load compared to the cranial segments, therefore 

reducing the load experienced by the L5S1 disc. However, modeling studies have estimated L5S1 

normal and shear loads to be comparable to discs at other levels52,53, implying a substantial disc 

load reduction being implausible. A third explanation is that the L5S1 disc, contrary to the other 

lumbar discs, is substantially more pre-loaded at the upright position compared to the flexed 

position. This would explain the smaller L5S1 strains observed throughout the lifting motion, as 

deformation of the disc at the upright position compared to its non-deformed state would remain 

undetected given that the upright position was used as the reference frame for computing disc 

deformation. Past studies have also observed significantly different behavior of the L5S1 when 

compared to other lumbar segments, and have determined the L5S1 segment to have greater 

contribution during extension of the spine than in flexion70,153. Furthermore, disc degeneration and 

facet joint osteoarthritis have been found to occur independently at the L5S1, while associations 

between the two degenerative diseases were found at the L3L4 and L4L5153. These findings, along 

with the new insight from the current study, suggest that the mechanical environment of L5S1 and 

its related biochemical environment may be distinctly different from the other intervertebral discs. 

Establishing deformation characteristics baselines in healthy lumbar intervertebral discs 

has important implications on the understanding and modeling of disc degeneration. Degenerative 

conditions in the intervertebral discs are often associated with changes in disc height and segment 

mobility, although the degree to which the in vivo mechanical environment causes these changes 

remains unclear. High mechanical strain of the disc tissues has been related to the secretion of 

inflammatory cytokines associated with disc degeneration and low back pain43. Therefore, 
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knowledge of dynamic strain responses in the lumbar spine during a functional activity provides a 

crucial link between in vivo mechanical and biochemical milieus of the intervertebral discs in 

understanding different cellular responses in vivo.  

It is envisioned that the data from the current study will add a critical piece of scientific 

evidence for designing treatments aimed at mitigating low back pain attributed to mechanically 

damaged or degenerated discs and restoring spine function. There has been much discussion 

surrounding the comparison of lumbar fusion – the current gold standard procedure – and various 

artificial disc replacement strategies as potential alternative surgical approaches for treating low 

back pain. Despite a theoretical mobility advantage offered by the total disc replacement, several 

clinical trials and meta-analyses failed to find sufficient evidence to support the claim154. The 

majority of current total disc replacement techniques focus on emulating the biomechanics of a 

spine motion segment as a whole but pay little attention to the mechano-physiological 

characteristics of the disc155. However, mimicking a healthy disc’s mechanical responses, i.e., 

motion and deformation, is the ultimate goal of implants designed to achieve full functional 

restoration35. To date, attempts to replicate the physiological elastic-type characteristics or the 

more ‘organic’ aspects of intervertebral discs have been unsuccessful155. Critically missing in the 

prior efforts are data and knowledge regarding in vivo loading and deformation behavior of the 

intervertebral discs40.  

The current work provides insight into hitherto unavailable time-dependent disc 

deformation trends and their differences between segments, and demonstrates the importance of 

acquiring dynamic, functional benchmarks as opposed to those determined by static or 

nonfunctional modes. For example, the significantly lower L5S1 posterior distraction compared to 

the L2L3-L3L4 from 0% to 40%MC may not have been identified in a study examining a mid-
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flexion static pose or a flexion pose without any external load. This implies that conclusions based 

on static or nonfunctional in vivo behavior may not be sufficient to accurately describe level-

specific deformation patterns. 

Despite the ability to accurately measure the overall lumbar disc deformation, a major 

limitation of such an analysis is the inability to accurately measure bulging of the disc or localized, 

cell-level strains or bulging of the disc. Comparing estimates of disc bulging based on tissue level 

compressive strains to those derived from FE simulations provided mixed results based on the 

lifting trial being investigated. Despite the kinematic boundary conditions being identical, disc 

bulge values estimated based on nominal compressive and tensile strain values did not align well 

with results from an FE simulation during the 20 lb lift; however, did they were much closer at the 

very beginning and end positions of the lift. Without in vivo measurements, it cannot be determined 

which of the two may be more accurate in estimation of disc bulge. While accurate tissue-level 

deformations were measured via DSX imaging, the preloading and internal mechanics of the disc 

cannot be accounted for in the current methodology. Furthermore, there was a limitation in 

assumed disc properties by the lack of distinction between the nucleus and annulus regions when 

prescribing a Poisson’s ratio to estimate radial strain of the disc. A value of 0.45 was prescribed to 

the midpoints of all line segments of the disc, while typically values of 0.49, 0.495 or 0.499 are 

more indicative of nucleus pulposus properties. This should be taken into account when evaluating 

radial strains and displacements nearer to the center of the disc. When comparing intervertebral 

disc strains with data from literature, the current methodology was also incapable of accurately 

measuring the decrease in shear strains towards to the incompressible nucleus of the intervertebral 

disc as commonly seen in literature58,146. Estimates of shear strains were much more comparable 

in magnitude at the anterior and posterior annulus regions of the disc. 
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An additional limitation of this study was defining the reference frame for disc deformation 

as the upright standing position. By this definition, no strains or disc bulging occurred at the 

intervertebral discs during the standing position. However, it is known that strains are present 

within the intervertebral disc even during tasks of low exertion such as sitting or standing. Studies 

have reported average peak radial strains of approximately 8%, and normal and shear strains of 

approximately 10-20%, at annulus regions under loading conditions representative of sitting or 

standing71,142,156. It therefore must be noted that the deformation values provided by the current 

disc deformation analysis do not account for such strains at the upright position, and likely do not 

represent the true magnitude of strains present in vivo.  

4.2 Facet Joint Kinematics 

The current study used a previously acquired lumbar kinematics dataset from a dynamic, 

sagittally symmetric lifting task to quantify facet joint translations in healthy, asymptomatic 

individuals. Variations across the individual lumbar segments and the sensitivity of the motion to 

magnitude of external load lifted were assessed. 

 

4.2.1  Segment-specific Differences 

The clearest differences were observed in SI translation, which was about 45% less at L5S1 

compared to the rest, on average. Continuous time-series curves (Figure 38) generally indicated a 

linear translation pattern with respect to L2-S1 extension. The highly linear (r2 ≥ 0.94) “time-
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series” curves imply that, at least for healthy and asymptomatic individuals, accurate end-ROM 

based measurements at flexed and upright poses might be adequate to estimate SI translations 

within the lumbar facet joints. However, comparing SI translation results with the limited number 

of previous studies based on end-ROM static imaging techniques yields somewhat mixed results. 

For example, (Svedmark et al., 2012) reported overall translation magnitudes of 6.5 mm and 4.6 

mm at the L4L5 and L5S1 facets respectively, although these were based on CT measurements of 

supine flexed- and extended spines91. On the other hand, (Kozanek et al., 2009) reported L4L5 

translations to be much lower than L2L3 and L3L4 segments. Moreover, the overall magnitudes 

reported were also much lower (�̅� < 4 𝑚𝑚) than those measured in the current study93. 

Interestingly, although SI translations at the L5S1 facets were of a smaller magnitude, SI 

FJ spacing at the static upright position was considerably larger compared to the other segments. 

A possible explanation could be that in the standing position, there is an inherent superior shift in 

FJ spacing at L5S1 compared to other segments on account of a difference in vertebral orientation 

and lordosis. Although the SI spacing is approximately 2 mm larger for L5S1 in upright stance 

compared to the upper segments, it should necessarily reduce further in hyperextension, when the 

facet joints bear a larger proportion of the lumbar loads, with the magnitude of translation being 

proportionally larger in L5S1. Given the special orientation of the L5S1 segment (lordosis) 

compared to the remaining segments, the uniquely different patterns within the L5S1 facet joints 

compared to the rest appear to reflect an adaptation to allow for more load-bearing to occur in a 

hyperextended pose. Orientation and translation patterns also suggest greater contact forces and 

hence higher risk of wear at the lower extremities of the superior (L5) facets; however, few studies 

are available to directly confirm this hypothesis. FE models of functional spinal units simulating 

sagittal rotation have predicted greater contact at relatively superior locations on the inferior facet 
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of the superior bone (L2) for the L2-L3 joint157 but relatively more inferior locations on L4 inferior 

facets for the L4-L5 joint21, implying a progressive downward shift of the contact location from 

cranial to caudal segments. Secondly, the combination of a larger SI spacing along with a smaller 

facet gap for L5S1 facets, which narrows further into a flexion pose, also suggests upper 

extremities of the S1 facet could be at higher risk for wear and degeneration, particularly with any 

disc height loss following an onset of disc degenerative conditions. Results from a recent FE 

study158 appear consistent with this hypothesis: contact forces during flexion movement appeared 

exclusively in the L5S1 segment on the upper extremities of the superior facets of S1. Facet contact 

did not appear to occur within the upper (L1-L5) segments during flexion. 

Translations in the X- (facet gap normal to facet face) and Z- (facet sliding parallel to facet 

face) directions were relatively small and similar to those reported by (Kozanek at al., 2009)93. 

The results indicated that coupled translation patterns in the caudal segments, while small, are 

significant, particularly for L5S1. Some of the segment-wise differences in X- and Z-directions 

could be due to differences in articular facet orientation. (Masharawi et al., 2004) reported 

progressively more coronally oriented facet surfaces as one moved caudally along the 

thoracolumbar spine, postulating this to be an adaptation to allow a progressively increased range 

of movement in the lumbar segments159. (Masharawi et al., 2014) also showed that the mismatch 

in both transverse orientation (angle made with the sagittal plane) and longitudinal orientation 

(angle made with the frontal plane) between the adjacent facets increased from the cranial to the 

caudal segments. This “opening up” of facet surfaces in the two directions could explain the larger 

changes in facet gap and facet sliding observed at the caudal segments in the current study, further 

supporting Masharawi et al.’s speculation that a mismatch in orientation of adjacent facets 

encourages more coupled translations. 
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One peculiarity in the results was the difference in X- (facet gap) translation magnitudes 

between left- and right sides for the cranial segments L2L3 and L3L4. Our previous analyses on 

vertebral 3D rotations did show coupled, non-sagittal translations and rotations to be small, but 

significantly greater than zero116 (Aiyangar et al., 2014). Although differences were not 

statistically significant, cranial segments exhibited slightly larger lateral bending, which might 

partially explain these differences by simultaneously increasing facet gap on one side while 

reducing it proportionally on the other.  

4.2.2  Load-specific Differences 

No significant differences in facet translations were observed due to magnitude of the lifted 

load. Previous investigations into effect of the external load on intervertebral rotations patterns 

and migration patterns of the instantaneous centers of rotation based on this dataset also failed to 

discern statistically significant differences115,160. However, this does not necessarily imply that 

external weight does not have any effect on FJ motion. It is plausible that the incremental increase 

in load for this study was not enough to produce significant effects on lumbar facet kinematics.  

4.2.3  Implications For Facet-based Pain 

The study presents a hitherto unavailable baseline dataset of facet translations measured 

accurately and with high precision during dynamic, functional activities. The primary motivation 

for documenting a benchmark for FJ translations in a health cohort, however, was to enable future 

investigations of the biomechanical antecedents of pathological conditions. It is then worthwhile 
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to ponder the implications of deviations from the relatively small translations observed in this 

study.  

Although motion between facet surfaces is relatively small, nominal strains developed 

within the facet capsules during the course of a normal range of motion can be quite large. For 

example, (Ianuzzi et al., 2004) demonstrated that principle strains in the facet capsules reached 

upwards of 14% at the maximum prescribed lumbar flexion angle (40°)161. It is also understood 

that strains developed within the lumbar facet capsules can activate pain receptors. In vitro studies 

have suggested the strain threshold for sustained painful capsular stretching to be anywhere from 

20% to 47%81,162-166. Relatively minor increases in translation = of the order of a millimeter – could 

significantly increase capsular strains and consequently the likelihood of pain, particularly if these 

translations were sustained or occurred repeatedly during daily activity. Secondly, small deviations 

from the normal ranges of translation could increase the risk of adjoining facet face impingement 

and surface cartilage. For example, observations of facet kinematics in patients with DDD revealed 

a marked increase in coupling of the translation components compared to asymptomatic controls5. 

These increases were observed at the index- as well as the adjacent level. The situation could be 

particularly exacerbated in conditions associated with lumbar instability, where sudden but 

transient deviations in translation patterns could momentarily cause impingement within the facet 

joints, or cause facet capsular strain levels to exceed the pain threshold. Further studies are needed 

to quantify the threshold for kinematics deviations leading to the onset of painful FJ pathological 

conditions. 

Several limitations are present within this study. First, a few participants’ data were not 

useable, reducing the sample size of our study to 10. Additionally, we were unable to include the 

L1 in our study due to capture volume limitations of the DSX system. The age range of participants 
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included in this study was very limited as well and is not representative of the general 

demographics. However, since our goal was to provide a dataset of healthy lumbar kinematics, the 

relatively young age group included in this study may be adequate. Although all participants were 

instructed and trained to finish the lifting motion within a 2-second time period, not all participants 

were able to reach their upright position during DSX imaging, limiting our ability to quantify 

lumbar facet motion at these time instances exceeding 80%. 

4.3 Musculoskeletal Modeling 

4.3.1  Load Estimates 

The current study describes, in detail, the steps implemented for incorporating detailed 6-

DOF subject-specific kinematics and passive stiffness properties into a full-body OpenSim® 

musculoskeletal model. While no specific validation studies were conducted, the magnitudes of 

estimated L23-L51 JRF across the three investigated subjects were within bounds reported by 

previous studies examining lumbar flexion or lifting motions108,109,148,167. Maximum compressive 

and shear loads ranged from approximately 2000N – 4000N and 100N – 1600N, respectively, 

across all segments and model variations. Results showed that while lumbar compressive loads of 

were distributed rather evenly across segments, the lower segments – particularly the L5S1 – 

accounted for the bulk of shear loads during the lifting tasks. While peak muscle forces varied 

widely by muscle group, the largest forces were observed at MF, LT, and IL, reaching 

approximately 900N, 1500N, and 1600N, respectively, during the lifting tasks. While variation in 
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the grouping of muscle fascicles complicates comparison across studies, muscle forces appeared 

to be within range of those calculated by previous studies108,109.  

4.3.2  Effect of Input Kinematics 

In general, implementing 6-DOF DSX-based kinematics predicted lower magnitudes of 

JRF compared to a rhythm-based distribution of lumbar segmental motion without translational 

DOF through the first half of the lifting motion. This result is consistent with a previous 

musculoskeletal modeling study, which showed that the optimal COR location for minimizing JRF 

may vary for each instantaneous flexed position of the lumbar spine123. A preceding analysis of 

instantaneous CORs using the finite helical axis method also showed that these CORs migrated 

over the range of the lifting motion160. Since rhythm-based models had no translational motion, 

the fixed joint CORs could additionally constrain the model, resulting in larger JRF estimates. 

Maximum differences in compressive and shear JRF at the beginning of the lift reached over 1300 

N and 800 N, respectively, but varied substantially by the subject and segment level. 

The DSX-based kinematics also revealed differences in forces generated within the 

muscles. For example, multifidus forces tended to increase with inclusion of DSX kinematics, as 

opposed to RHY kinematics, however the magnitude of this differences depended highly on the 

subject being investigated. Multifidi are considered to be stabilizing muscles, which act to 

constrain excessive vertebral translations168. Thus, including intervertebral translations could 

provide insights into stabilizing aspects of the muscles against excessive translations, which may 

not be revealed when using rhythm-based, rotation-only inputs. Furthermore, inclusion of DSX-

based kinematics consistently led to lower iliocostalis lumborum forces in all three subjects 

compared to models with rhythmic kinematics. 
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4.3.3  Effect of Intervertebral Bushing Stiffness 

The effects of bushing stiffness on lumbar loads were highly dependent on the model’s 

kinematic input. The inclusion of bushing stiffness (LBS or NLBS) had a relatively small effect 

on JRF near the beginning of the lifting motion compared to those calculated from NBS models. 

Theoretically, the inclusion of rotational stiffness should produce an extension moment when the 

joint is placed in flexion, which should aid the muscles in stabilizing the joint, leading to reduced 

muscle forces and corresponding JRF compared to those in NBS models. However, it should be 

noted that non-sagittal kinematics and stiffness parameters were also present in this simulation. 

Thus, the non-sagittal motions experienced during the lifting task impose additional passive 

moments which must be stabilized by the muscles. While the muscle forces require less force to 

stabilize the FE moment in LBS and NLBS models compared to NBS models, they also require 

more force to stabilize the non-sagittal motions at the joint. It is for this reason we do not observe 

differences between models with or without rotational stiffness near the first half of the lift. 

However, estimated JRF from LBS and NLBS grew larger compared to NBS models with lumbar 

extension towards the upright position, suggesting that the sensitivity of the model to non-sagittal 

stiffness is increased nearer to the upright position. These differences were further compounded in 

the second subject from approximately 75-100%MC degrees L2S1 extension until the end of the 

lift. Interestingly, it is around this same interval of time during the lift where the L4L5 segment 

transitions from a flexed pose to extension in relation to its neutral state (Figure 60). This is 

significant for models which consist of rotational stiffness at the joint – particularly those modeled 

to have greater stiffness such as the L45 and L51 – as the reaction moment of an extended joint 

will act in the flexion direction, placing an additional moment which the muscles must account for 



 147 

when achieving the desired kinematics. This may explain the relatively larger compressive and 

shear JRF in LBS and NLBS models as the subject progressed through the lift.  

4.3.4  Effect of Neutral State 

Overall, although model outputs were least sensitive to changing the neutral state position, 

the effects were magnified with the presence of either LBS translational stiffness or generic, 

rhythm-based kinematics. These results demonstrate the need for further characterization of the 

pre-stressed state of the intervertebral joint, particularly when used in musculoskeletal models 

using simplified assumptions for kinematics and passive stiffness inputs.  

4.3.5  Comparisons to Previous Studies 

Although comparatively more modest, previous modeling studies investigating effects of 

ignoring translations have reported similar trends as in the current study. For example, (Ghezelbash 

et al., 2015) reported a low-to-moderate effect of ignoring translational DOF on JRF predictions 

(~15% for compression and ~36% for shear) in a custom-developed nonlinear finite element-based 

model of the lumbar spine96,112,169. Deploying a force-dependent-kinematics (FDK) approach with 

an OpenSim®-based upper trunk model54,122 showed a modest reduction in compressive force 

estimates with coupled stiffness models for the intervertebral bushings, although the estimates 

were much more sensitive to rotational stiffness values than the translational stiffnesses. (Arshad 

et al., 2017) demonstrated modest (7%) reductions in compressive force estimates at L4L5 when 

translational stiffnesses (and, implicitly, translational DOF) were incorporated into an AnyBody®-

based model (de Zee 2007) with an FDK approach15,108. (Bruno et al., 2017) demonstrated the 
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sensitivity of predicted forces to assumed spinal curvature138. Incorporating CT-derived subject-

specific spinal curvatures resulted in a median difference of approximately 15% in computed 

compressive forces at the L3 level compared to a generic, scaled model based on subject’s height 

and weight, when simulating a 40° flexed posture with a 10kg weight. This parameter could be 

considered to be somewhat similar to the neutral state parameter in the current study, although the 

bushing stiffnesses were not adjusted to the defined initial states. Further, these were inverse static 

model-based studies, with most limited to investigating specific poses. 

Building on these past studies, the current study demonstrates how input kinematics, 

intervertebral disc stiffness, and joint neutral state definition affect model estimates of net joint 

reaction loads and muscle forces in the lumbar spine during a functional, dynamic task. The study 

not only highlights model sensitivity to choices made regarding these parameters separately, but 

also how the interactions between each of these choices can result in significant variability in joint 

loading estimates over the entire range of a given dynamic task. The results provide some evidence 

that inclusion of translational joint motion could lead to reduced compressive and shear JRF during 

flexion of the lumbar spine. However, a more “accurate” dataset for one of the inputs (e.g. 

segmental kinematics) might heighten the demand for accuracy of the accompanying input 

variables such as passive stiffness properties and presumed neutral state of the joint. 

 

4.3.6  Limitations  

While much effort was put into incorporating accurate in vivo data, there remain a few 

limitations within the musculoskeletal models used in this study. First, the current study focuses 

data from three subjects. While the results from this study cannot be considered representative of 
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a population, they were useful in laying out the study’s methodology and demonstrating the effects 

of and interactions between the studied parameters. Second, intra-abdominal pressure, which has 

been shown to affect load estimates in the lumbar spine, was not included in this study. It is our 

hypothesis that while introduction of intra-abdominal pressure would likely alter the magnitude of 

JRF and muscle loads, the overall effects due to changes in input kinematics, bushing stiffness, 

and joint neutral state would remain the same. However, to better represent in vivo conditions, 

intra-abdominal should be included in future modeling studies. Another limitation is that ligaments 

were not explicitly modeled; instead, the passive stiffness properties included in the model were 

meant to represent the entire passive joint structure, as commonly done in literature. The lumped 

representation of the passive joints structures also aligns with the representation of the FE-derived 

NLBS passive stiffness properties utilized in this work. Lastly, as the focus of the current study 

was on the portion of the lumbar spine measured by DSX, motion above the L2 and between the 

sacrum and pelvis was neglected. 

A considerable issue is that the large translational stiffnesses may not accurately represent 

the instantaneous physiological translational stiffnesses at the disc. A better approach may be to 

minimize the net joint reaction forces at each time frame of motion. The reason for this is as such: 

OpenSim Joint Reactions Analysis solves for the loads carried by the un-modeled structures. If it 

is desired to include the major load-bearing passive tissue structures (disc and ligaments) in the 

model, there are no remaining un-modeled structures which should bear significant loads in the 

joint. Thus, the values reported by JRA should, in theory, be small in magnitude. However, as 

evidenced by the current work, this was not the case. During the lifting motion, values of the net 

joint reaction forces reported by JRA – which did not include the prescribed stiffness reaction 

forces – were often over 1000 N, indicating that even after accounting for the disc and ligament 
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forces, there remained 1000 N unaccounted for by the joint’s un-modeled structures (Figure 25). 

The degree to which these errors effect the resulting net JRF and muscle loads is unclear, however 

the current study does show that with translational motion included within musuloskeletal models, 

these translational stiffness values do affect the net joint moments required to solve the classical 

equations of motion, and thus the associated muscle forces and JRF. 

4.3.7  Correlations with Intervertebral Disc Deformation 

The current work looked to compare the joint reaction force estimates from a 

musculoskeletal model to the observed disc deformation trend. Establishing a relationship between 

disc deformation and estimated JRF would provide valuable insight, and could potentially improve 

methods of incorporating passive stiffness properties in subject-specific musculoskeletal models, 

which have been shown by the current work to be inadequate when prescribed based on average 

force-displacement relationships from literature. In general, it would be expected that larger loads 

on the internal joint structure should results in greater disc deformation. However, results show 

that while estimated compressive JRF via musculoskeletal simulation may be larger due to added 

external load, it doesn’t necessarily correspond to further anterior compression of the disc. The 

intervertebral disc is a complex load-bearing structure, consisting of an incompressible nucleus 

surrounded by several layers of annulus. Thus, the relationship between deformation of the disc 

and the resulting compressive, shear, and radial loads is not as straightforward as it might be for a 

more simplistic structure. It’s plausible that the deformation data reported in the current study 

correlate with the estimated JRF in a more complex manner, such as the combined compression 

and shear at multiple regions of the disc, which may be extracted using a more involved method 

such as multiple linear regression. Improved accuracy of in vivo imaging techniques might also 
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help uncover potential correlations between the two quantities. For example, imaging techniques 

capable of detecting compression of the nucleus pulposus with superb accuracy during in vivo 

activities may help establish a relationship between loading conditions on the spine and 

compression of the nucleus pulposus.  
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5.0 Conclusion 

5.1 Summary of Results 

5.1.1  Disc Height and Deformation 

Analysis of disc height and deformation of the intervertebral disc resulted in several 

important conclusions. Overall, results showed that normal strains at the anterior and posterior 

regions of the L2L3, L3L4, and L4L5, reached approximately -40% and 60%, respectively, while 

shear strains reached approximately 30% and 60% at each region. However, L5S1 normal and 

shear strains were significantly less. Furthermore, deformation from L2L3 to L4L5 was relatively 

linear with respect to lumbar spine flexion during the functional lifting task, while the L5S1 

displayed much less linear correlation. The study provides evidence that bi-plane DSX imaging is 

a sufficient means to quantifying accurate changes in disc morphometry and generalized disc 

strains (not internal strains). Furthermore, it is accurate enough to detect differences in such 

characteristics between segment levels of the lumbar spine. The general disc height and 

deformation characteristics quantified in this work are valuable to understanding the basic science 

of intervertebral discs; more specifically, their in vivo mechanical and biochemical relationships. 

The current work also provides data which can contribute to the development of artificial disc 

implants that have otherwise been unsuccessful due to inadequate information regarding dynamic 

lumbar disc mechanics. Furthermore, the data shows that L51 disc height and deformation 

characteristics are markedly different than those from L23 to L45 during functional lifting tasks, 
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offering convincing evidence for segment-specific artificial disc implant designs, particularly at 

the L51. 

5.1.2  Facet Joint Kinematics 

The dynamic characterization of facet joint kinematics provides valuable insight on the 

functional mechanics of the facet joint in healthy subjects. Translations from L2L3 to L4L5 

reached approximately 5-6mm during a functional lifting task, with the majority of motion 

occurring in the superior-inferior direction (or long axis) of the facet joint. Magnitudes of 

translation were approximately 45% less at the L5S1. Facet gap and sideways sliding translations 

ranged approximately 0-1mm and -0.5 to -2mm, respectively, from the flexed to upright position. 

At the upright position, SI spacing between facet surfaces was larger at L5S1, while the facet gap 

was much smaller. Overall, the study offers an in vivo dataset of functional facet joint kinematics 

in healthy subjects, with which future studies can used to identify pathological conditions. By 

providing normal ranges of translation motion at the facet joints, the dataset helps put into 

perspective the deviations from normal motion that may be necessary to induce facet-based pain 

during functional activity. Similar to the disc deformation analysis, the detection of significant 

differences at the L5S1 suggests that surgical interventions or implants should be implemented on 

a segment-specific basis, particularly at the L5S1.  

5.1.3  Musculoskeletal Modeling  

Modeling approaches to quantifying lumbar loads commonly consist of several key 

assumptions regarding input parameters, such as intervertebral kinematics and stiffness properties. 
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Building on past studies, the current study demonstrated how input kinematics, intervertebral disc 

stiffness, and joint neutral state configuration affected net joint reaction loads and muscle forces 

in the lumbar spine during a functional, dynamic task, as estimated by a subject-specific 

musculoskeletal model.  In particular, the study not only highlights the effects of choices made 

regarding these parameters separately, but also how the interactions between each of these choices 

can result in significant variability in joint loading estimates. The current study provides evidence 

that inclusion of accurate 6-DOF joint motion leads to reduced estimates in compressive and shear 

JRF during flexion of the lumbar spine. Furthermore, inclusion of translations may provide a better 

understanding of the muscle force distribution between the abdominal and extensor muscles of the 

lower back. Lastly, the inclusion of the DSX kinematics shows significant interaction with other, 

and may heighten the demand on the accuracy of such parameters. The study also suggests that 

defining passive translational stiffness properties as a force-kinematic relationship should be 

excluded in musculoskeletal modeling simulations of the lumbar spine, as the introduction of such 

properties can place substantial spurious moments on the joints and can lead to large variations of 

load estimates at certain instances of the lifting motion. The only reason passive translational 

stiffnesses should be included within a model is if it represents accurately measured in vivo data 

on the same individual whose data is being implemented within the musculoskeletal model. 
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5.2 Future Work 

5.2.1  Future of Current Work 

The two motion analyses performed using the vertebral kinematics dataset can be further 

improved to provide additional information on soft tissue motion of the lumbar spine. For the disc 

deformation analysis, a valuable modification would be to measure deformation of the disc with 

respect to the supine position of the lumbar spine. This would provide additional insight on the 

total disc deformation occurring during functional activity. With respect to facet joint kinematics, 

it would be interesting to model the facet joint capsules to estimate its deformation during the 

lifting tasks. Further, contact deformation between facet surfaces could be simulated as well by 

observing the overlap between surfaces of adjacent CT-derived bone models. However, DSX 

imaging likely isn’t accurate enough to support such an analysis. 

The current musculoskeletal modeling work will be extended to include data from all ten 

subjects which participated in the DSX imaging study. This will help establish a more concrete 

baseline and variation of vertebral joint reaction and muscle forces during functional activity. 

Furthermore, it will provide a better understanding of the sensitivity of such estimates to input 

kinematics, passive stiffness properties, and joint configurations defined during musculoskeletal 

simulations. 

While literature shows that including passive stiffness affects lumbar spine load estimates 

derived from musculoskeletal models, the stiffness properties implemented are typically 

representative of in vitro data. As previously discussed, these stiffness properties do not replicate 

in vivo motion of the lumbar spine. In the case of subject-specific modeling, this could be 

increasingly true, given the variability in vertebral kinematics between subjects. The resulting JRF 
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derived from Joint Reactions Analysis – which describe the loads carried by un-modeled joint 

structures – should be very low, as the objective of including passive joint stiffness within a 

subject-specific model is to replicate in vivo passive forces and moments of all joint structures (no 

un-modeled joint structures). The current work shows that the stiffness values prescribed to the 

joint did not satisfactorily replicate disc translational forces that would have reduced JRF to 

approximately zero. A viable strategy to better replicate in vivo stiffness of the joints during the 

lifting task may be to find the passive stiffness properties which minimize or greatly reduce JRF 

during simulation. This may valuable in providing insight into the in vivo nonlinear stiffness 

properties of the lumbar joints.  

5.2.2  Objectives of Future Studies 

The current work serves as a preliminary baseline dataset for functional mechanics of the 

lumbar joints and its soft tissue during a lifting activity from which future studies can either build 

on or compare data against. From a methodological perspective, results from both the motion 

analysis and musculoskeletal simulation studies support the future acquisition of subject-specific 

vertebral kinematics via DSX imaging techniques to study disc deformation, facet joint kinematics, 

and lumbar spine loading patterns during various functional activities. Such studies can advance 

our knowledge of in vivo lumbar spine mechanics which can later be used as guidelines to identify 

pathological conditions and to design surgical interventions aimed at restoring normal in vivo 

mechanics. To advance the current state of knowledge of these quantities, future studies should 

utilize these methods to investigate lumbar mechanics during other functional tasks, such as 

asymmetric lifting or even more dynamic and demanding tasks such as heavy weightlifting. This 
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will provide a more complete assessment of healthy, in vivo lumbar kinematic and loading 

patterns. 

Results from the current work show that prescribing 6-DOF passive stiffness properties via 

uncoupled force-kinematic relationships may not accurately represent passive forces within the 

joint. Future studies should look towards other methodologies of representing the passive 

structures of the joint within a musculoskeletal framework. To date, some studies have elevated 

this representation by introducing coupled stiffness properties or have integrated data from finite 

element model simulations. While obtaining these data on a subject-specific basis is difficult, they 

may allow for more physiologically accurate approaches in subject-specific musculoskeletal 

simulation of the lumbar spine. 
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Appendix 

Joint Reaction Force and Muscle Force Supplementary Material 

Table 6: SI compressive forces for all subject #1 model variations. 
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Table 7: AP shear forces for all subject #1 model variations. 
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Table 8: SI compressive forces for all subject #2 model variations. 
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Table 9: AP shear forces for all subject #2 model variations. 
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Table 10: SI compressive forces for all subject #3 model variations. 
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Table 11: AP shear forces for all subject #3 model variations. 
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Table 12: Muscle forces for all subject #1 model variations. 

 

 



 165 

Table 13: Muscle forces for all subject #2 model variations. 
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Table 14: Muscle forces for all subject #3 model variations. 
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Table 15: Differences in SI JRF due to input kinematics (DSX-RHY) – Subject #1. 

 

Table 16: Differences in AP JRF due to input kinematics (DSX-RHY) – Subject #1. 
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Table 17: Differences in SI JRF due to input kinematics (DSX-RHY) – Subject #2. 

 

 

Table 18: Differences in AP JRF due to input kinematics (DSX-RHY) – Subject #2. 
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Table 19: Differences in SI JRF due to input kinematics (DSX-RHY) – Subject #3. 

 

 

Table 20: Differences in AP JRF due to input kinematics (DSX-RHY) – Subject #3. 
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Table 21: Differences in SI JRF due to stiffness properties (LBS-NBS) – Subject #1. 

 

 

Table 22: Differences in AP JRF due to stiffness properties (LBS-NBS) – Subject #1. 
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Table 23: Differences in SI JRF due to stiffness properties (LBS-NBS) – Subject #2. 

 

 

Table 24: Differences in AP JRF due to stiffness properties (LBS-NBS) – Subject #2. 
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Table 25: Differences in SI JRF due to stiffness properties (LBS-NBS) – Subject #3. 

 

 

Table 26: Differences in AP JRF due to stiffness properties (LBS-NBS) – Subject #3. 
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Table 27: Differences in SI JRF due to neutral state (SUP-UP) – Subject #1. 

 

 

Table 28: Differences in AP JRF due to neutral state (SUP-UP) – Subject #1. 
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Table 29: Differences in SI JRF due to neutral state (SUP-UP) – Subject #2. 

 

 

Table 30: Differences in AP JRF due to neutral state (SUP-UP) – Subject #2. 
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Table 31: Differences in SI JRF due to neutral state (SUP-UP) – Subject #3. 

 

 

Table 32: Differences in AP JRF due to neutral state (SUP-UP) – Subject #3. 
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Table 33: Differences in muscle force due to kinematic input (DSX-RHY) – Subject #1. 

 

Table 34: Differences in muscle force due to kinematic input (DSX-RHY) – Subject #2. 
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Table 35: Differences in muscle force due to kinematics input (DSX-RHY) – Subject #3. 

 

Table 36: Differences in muscle force due to stiffness properties (LBS-NBS) – Subject #1. 
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Table 37: Differences in muscle force due to stiffness properties (LBS-NBS) – Subject #2. 

 

Table 38: Differences in muscle force due to stiffness properties (LBS-NBS) – Subject #3. 
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Table 39: Differences in muscle force due to neutral state (SUP-UP) – Subject #1. 

 

Table 40: Differences in muscle force due to neutral state (SUP-UP) – Subject #2. 
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Table 41: Differences in muscle force due to neutral state (SUP-UP) – Subject #3. 
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