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Abstract

This work focuses on computational methods for generating planar random
networks composed of long fibres and on their effect on the ‘randomness’, defined
in terms of homogeneous fibre density and isotropic fibre orientation distribution.
The common procedure for generating planar networks is based on distributing
points uniformly and using them as seeds for the placement of fibres with random
orientation. Here, an analytical framework is introduced and used to investigate
this method with respect to its capability to generate random networks of
straight fibres. The study reveals that inhomogeneous and anisotropic networks
are obtained if the seeding domain and network domain of interest coincide. More
generally, it is shown that a non-circular domain of any size will lead to an
anisotropic network. Therefore, the use of a circular seeding domain is suggested
so that the errors in homogeneity and isotropy converge to zero with increasing
seeding size. Monte Carlo simulations verified the analytic results and further
validated the proposed extended circular seeding algorithm for highly tortuous
fibres. Since network generation stands at the beginning of the simulation
process, the results of this study have relevance for all discrete computational
approaches to modelling materials with long fibre network structure.

Keywords: fibre networks; homogeneity; isotropy; random structures;
computational modelling

1 Introduction
Fibrous networks, consisting of long fibres oriented predominantly within one plane,

form the basic structure of several materials, including paper [1], electrospun mem-

branes [2, 3, 4], needle-punched [5, 6] and spun-bonded non-wovens [7], glass wool

[8] and mats of sintered stainless steel fibres [9]. In spite of their structural sim-

ilarity, these materials show significant differences in their macroscopic material

behaviour due to, e.g. the different material properties, shapes and interactions of

the single fibres [10, 11]. This versatility enables the use of fibrous materials in a

multitude of different applications ranging from filters, protective clothing, sensors

or scaffolds for tissue engineering [12, 13, 14]. To analyze the large design space of

these fibrous materials both analytical considerations [15, 16] and discrete network

models [17, 8, 18] are commonly utilised. Both deterministic, e.g. straight or sinu-

soidal, and non-deterministic random curves can be used to model the shape of the

single fibre centre lines [19]. For the generation of the network models, the single

fibres need to be distributed within the modelling domain Ωc, for which the network

properties of interest are computed. Several algorithms exist for the construction

of random fibre networks. They typically start with distributing points randomly
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on a seeding domain Ωs. In the next step, the points are either connected through

different techniques, such as triangulation or random connection [20, 21], or used

as seeds from which fibres originate with random orientation.

The boundaries of the seeding domain ∂Ωs generally pose problems as, e.g. density

variations occur in their proximity [22, 23]. For short fibres, a method was proposed

to overcome these issues using periodic boundaries or ‘wrapping’, i.e. overhanging

parts of fibres leaving the modelling domain are reinserted at the opposite side

until the whole fibre is deposited [22, 24, 25, 26]. For deterministic fibres with

lengths orders of magnitude longer than the size of the modelling domain Ωc, such

as the fibres in electrospun networks (Fig. 2a), wrapping would lead to networks

with largely parallel fibres [26] and, if infinite length can be assumed with respect

to the size of Ωc, one fibre would fill the entire domain [27]. The strategy typically

used to distribute long fibres computationally is an algorithm [26, 27, 28], where the

seeding domain is square shaped and of the same size or larger than the modelling

domain (Ωs ≥ Ωc), and the generated fibres are cropped at the boundaries of the

modelling domain ∂Ωc. We will term this technique square seeding, and study in

detail the influence of the seeding domain Ωs on the randomness of the resulting fibre

network, defined through evenly distributed fibres, i.e. homogeneous fibre density,

and isotropic fibre orientation of the resulting fibre network within the modelling

domain Ωc. To this end, the resulting fibre density and orientation distribution are

assessed analytically and with Monte Carlo simulations for straight fibres. The study

shows significant deviations from the ideal random case when the square seeding

algorithm is applied, and reveals that the size and shape of the seeding domain

have a major effect on the randomness of the final network. An improved seeding

method based on an extended circular seeding domain Ωs is therefore proposed

and assessed with respect to its capability to generate random networks of straight

fibres. Since real network materials typically consist of randomly curved fibres [29],

both the square and extended circular seeding are subsequently studied in Monte

Carlo simulations with regard to their applicability to random networks of tortuous

fibres generated by a random walk.

2 Methods

2.1 Definition of random networks

Due to the discrete nature of a network consisting of a finite number of fibres, true

pointwise homogeneity and isotropy can never be achieved. Thus, the term ‘random

network’ is used here for networks which would have a homogeneous normalised fibre

density P̂ (xc) and a normalised isotropic orientation distribution p̂(xc, ϕ) within the

modelling domain Ωc in the limit case of an infinite number of sampled fibres. For

simplicity and to make the study scale independent, a modelling domain with unit

area (|Ωc| = 1) was used and all dimensions were normalised accordingly. Expressing

the conditions for a random network analytically, the fibre density

P̂ (xc) =
P (xc)

C
(1)
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with a normalising factor

C =

∫
Ωc

P (xc)dΩc (2)

and the fibre orientation distribution

p̂(xc, ϕ) =
p(xc, ϕ)

c(xc)
(3)

with normalisation

c(xc) =
1

2π

∫ 2π

0

p(xc, ϕ)dϕ (4)

are constant in the modelling domain, i.e.

P̂ (xc) = const = 1 , p̂(xc, ϕ) = const = 1 ∀xc ∈ Ωc. (5)

2.2 Error measures

Error measures are introduced to quantify the deviation of a network from the

random case. A global error measure Eh with respect to the homogeneous density

is defined as the maximal absolute difference of the normalised fibre density P̂ to

the homogeneous case (P̂ = 1)

Eh = max
Ωc

(|P̂ (xc)− 1|). (6)

A scalar local error ei(xc) of isotropy is defined as the integral absolute difference

of the normalised orientation distribution p̂ to the isotropic case (p̂ = 1)

ei(xc) =
1

2π

∫ 2π

0

|p̂(xc, ϕ)− 1|dϕ, (7)

based on which the global error in isotropy

Ei = max
Ωc

(ei(xc)) (8)

is calculated as the maximal local error ei(xc).

2.3 Computational network generation

We consider algorithms to generate random networks on the modelling domain Ωc

with long fibres, much longer than the characteristic length of Ωc, so that they

span from one edge to another one of Ωc. The modelling domain can generally

be arbitrary in shape (Fig. 1a), however, a square area of the specific network is

commonly chosen for further studies (Fig. 1b) and in line with |Ωc| = 1, we consider

square domains with unit edge length here. Most algorithms build on an initial

step, where seeding points for each fibre are sampled uniformly, i.e. by a Poisson

point process [30], on a seeding domain Ωs ≥ Ωc (Fig. 1a). Although, Ωs can also be
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of arbitrary shape (Fig. 1a), the common approach [26, 27, 28] is to use a seeding

domain with the same size as the square modelling domain (Ωs = Ωc) and we

will refer to this approach as square seeding throughout this contribution. Another

approach used previously [17] extends Ωs onto a square area concentric but larger

than the modelling domain Ωs > Ωc and this method will be referred to as extended

square seeding (Fig. 1b, Fig. 2bc). A third method, introduced in this contribution,

is based on using a concentric circular seeding domain larger than the modelling

domain and we will call this extended circular seeding (Fig. 6a).

After seeding, fibres are introduced with random orientation at every seeding point

to generate networks of either straight or tortuous fibres (Fig. 2bc). Straight fibres

(Fig. 2b) are introduced as lines with constant orientation angle sampled from a

uniform distribution φ ∼ Uni(0, 2π) with respect to an arbitrary but fixed axis. Non-

deterministic tortuous fibres (Fig. 2c) are defined through a random walk, or a chain

of links with length l [19, 31, 25, 32], and l = 4× 10−3 is chosen here. In particular,

following our previous work [26, 19] a worm-like model [33, 34] is used. Thus the first

link is introduced at each seeding point with random orientation φ ∼ Uni(0, 2π),

and consecutive links are added until the fibre reaches a boundary of Ωc. The angle

θ between two consecutive links is sampled from a Gaussian distribution [33, 19]

P (θ) =
1√

2π(l/`)
e−

θ2

2(l/`) , (9)

parametrised by the persistence length ` [19, 35, 34, 33]. Noteworthy, the limit case

(`→∞) leads to straight fibres.

2.4 Network density for straight fibres

An analytic approach, based on the probability of lines crossing a small circle,

was used to evaluate the network’s density distribution in the modelling domain

Ωc. When sampling the fibre direction from a uniform orientation distribution φ ∼
Uni(0, 2π), the probability of a fibre leaving the seeding point in the angular interval

∆φ is given by

P(∆φ) =
∆φ

2π
. (10)

Considering a circle with diameter ε at point xc and a distance r to a seeding point

xs, the ‘opening angle’ ∆φ at the seeding point, i.e. the angle between the two lines

connecting xs with the two intersection points of a diameter perpendicular to the

line xsxc (Fig. 3), can be calculated by

∆φ = 2arctan
ε

2r
. (11)

Inserting Eq. (11) in Eq. (10) leads to the probability of the straight fibre emerging

at xs to cross the circle with diameter ε at xc as

Pcs =
1

π
arctan

ε

2r
. (12)
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Considering all seeding points xs by integration of Pcs over the seeding domain Ωs

gives the probability, proportional to the line density, of a fibre seeded somewhere

in the seeding domain Ωs crossing the particular circle centered at xc

P (xc) =
1

C

∫
Ωs

PcsdΩs, (13)

where C is a nomalisation factor (Eq. (2)). Evaluating Eq. (13) with the probability

Eq. (12) in polar coordinates leads to

P (xc) =
1

C

∫ 2π

0

∫ Ls(xc,ϕ)

0

arctan
( ε

2r

)
rdrdϕ. (14)

The inner integral of Eq. (14) represents the orientation distribution

p(xc, ϕ) =

∫ Ls(xc,ϕ)

0

arctan
( ε

2r

)
rdr (15)

at xc and can be evaluated as

p(xc, ϕ) =
L2

s

2
(xc, ϕ)arccot

(
2Ls(xc, ϕ)

ε

)
+
ε

4

(
Ls(xc, ϕ)− ε

2
arctan

(
2Ls(xc, ϕ)

ε

))
.

(16)

The Taylor expansion of Eq. (16) is given by

p(xc, ϕ) = εLs(xc, ϕ)/2 +O(ε2), (17)

which simplifies Eq. (14) for small ε to

P̂ (xc) =
ε

2C ′

∫ 2π

0

Ls(xc, ϕ)dϕ =
1

Ĉ

∫ 2π

0

Ls(xc, ϕ)dϕ (18)

with Ĉ, according to Eq. (2), such that P̂ (xc) is normalised on the modelling domain

Ωc, i.e.

Ĉ =

∫
Ωc

∫ 2π

0

Ls(xc, ϕ)dϕdΩc. (19)

2.5 Fibre orientation distribution for straight fibres

The fibre orientation distribution was evaluated on a circle with diameter ε (Fig. 3).

As derived for the network density, the orientation distributions p(xc, ϕ) of fibres

crossing the circle at xc is given in Eq. (15). By evaluating the integral (16) and

making use of the according Taylor expansion (17), the normalised form p̂(xc, ϕ)

simplifies for small ε to

p̂(xc, ϕ) =
1

ĉ(xc)
Ls(xc, ϕ) (20)
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with

ĉ(xc) =
1

2π

∫ 2π

0

Ls(xc, ϕ)dϕ, (21)

revealing that the fibre orientation distribution is directly proportional to the dis-

tance Ls of the point xc from the boundary ∂Ωs of the seeding domain Ωs in the

direction specified by ϕ, cf. Fig. 3.

2.6 Monte Carlo simulations

In addition to the analytic considerations for straight fibres presented in Secs. 2.4-

2.5, Monte Carlo simulations were conducted. To this end, N fibres were generated

and distributed according to the different seeding algorithms with Matlab (R2016b,

The MathWorks Inc., Natick, MA, USA).

The fibre density was extracted by counting the number of fibres NMC crossing

Nc = 15 circles with diameter ε = 0.04 equally distributed on a line A spanning

from the origin to one of the corners of the square modelling domain (Fig. 1b).

These values were normalised, so that

P̂MC =
NMC

ĈMC
, (22)

where the factor ĈMC was calculated by means of the trapezoidal rule as numerical

integration of the discrete values NMC
k

CMC =
1

2Nc

Nc−1∑
k=1

(NMC
k +NMC

k+1). (23)

The global error in homogeneity was calculated according to Eq. (6) as

Eh = max
A

(|P̂MC − 1|), (24)

i.e. the maximum value obtained along A. We note that the number of circles

Nc = 15 was chosen large enough to adequately capture the change of density along

A. In general, an arbitrary number can be chosen, but the normalising factor CMC

(23) obtained by integration becomes more accurate with increasing Nc.

The orientation distribution was extracted by evaluating the orientation of the

fibres crossing the Nc = 15 circles equally distributed on the line A (Fig. 1b). For

each circle k = 1, 2, ..., Nc a histogram with n bins and an according bin width w =

2π/n specified by Sturges’ rule [36] was generated. The bin values vi = ci/c
MC were

calculated by normalising the bin counts ci ensuring a unit value in the isotropic

case cMC = n−1
∑n
i ci. The local error in the orientation distribution was calculated

from the values of the normalised histogram according to Eq. (7) as

eMC
i (xs) =

w

2π

n∑
i=1

|vi(xs)− 1| (25)
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and the normalised bin counts vi were considered as the discrete values of the

computed orientation distribution p̂MC. The global error in isotropy was defined as

the maximal local error along A

Ei = max
A

(eMC
i (xc)) (26)

in analogy with the analytical considerations (Eq. (8)).

3 Results
3.1 Deterministic straight fibres

For the computational generation of network structures, straight fibres [37, 27] are

often used as simplified base elements and are distributed on Ωc. In the following,

the influence of the seeding algorithm on the randomness of the final network within

Ωc is investigated analytically and by Monte Carlo simulations.

3.1.1 Square seeding

The fibre density P̂ (xc) obtained analytically reveals an inhomogeneous distribution

for the square seeding approach (Fig. 4ab). A comparison with the fibre density

obtained by Monte Carlo simulations P̂MC (N = 2×106) shows excellent agreement

(Fig. 4b).

The local error in isotropy ei(xc) for the square seeding of straight fibres reveals

that the orientation distribution is not constant over Ωc (Fig. 4cd), i.e. that the

networks are anisotropic. Comparison to the local error obtained by Monte Carlo

simulations eMC
i (xc) (N = 2 × 106) again shows accurate agreement (Fig. 4d). A

visualization of the orientation distribution of the square modelling domain at the

centre O (xc = [0, 0]) and close to a vertex at point Q (xc = [0.48, 0.48]) (Fig. 4c)

illustrates the deviation of the orientation distribution from the isotropic case (red

circle) at both points (Fig. 4ef). Evaluating the global errors in density (Eh = 42%)

and isotropy (Ei = 88%) quantifies the substantial difference of the network from

the ideal random case.

3.1.2 Extended square seeding

The extended square seeding uses a concentric square seeding domain Ωs larger than

the modelling domain Ωs > Ωc. The error in homogeneous density Eh is decreasing

and converging to zero for an increasing area ratio Ω̄s = |Ωs|/|Ωc| (Fig. 7). For large

Ω̄s, the decrease of Eh is proportional to the reciprocal of the area ratio (Eh ∝ Ω̄−1
s ).

Interestingly, the error in isotropy Ei is not converging towards zero with increasing

area Ω̄s (Fig. 7). The reason for this is that the distance Ls(xc, ϕ) of a point xc

to the edge of the seeding domain will always be dependent on the orientation ϕ

in case of a square seeding domain, thus leading to anisotropy, i.e. a non-uniform

orientation distribution in the modelling area Ωc also for high ratios Ω̄s. This is

visualised in Fig. 5 showing the deviation of the orientation distribution of fibres for

a large square seeding domain (Ω̄s = 28.3) at the centre (point O, xc = [0, 0]) and

close to a corner (point Q, xc = [0.48, 0.48]) of Ωc.
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3.1.3 Extended circular seeding

For the computational generation of random networks with homogeneous fibre den-

sity and isotropic fibre orientation in the network a circular seeding domain larger

than the square domain of interest Ωc is proposed (Fig. 6a). Evaluating the fibre

density by Eq. (18) for Ωs ten times larger than Ωs (Ω̄s = 10, Fig. 6a) shows a fairly

homogeneous distribution (Fig. 6b), particularly when compared to a network gen-

erated with the square seeding algorithm (Ω̄s = 1, Fig. 4a). The representation of

the global errors in homogeneity Eh and isotropy Eh against the area ratio Ω̄s re-

veals a decrease with increasing circular seeding domain and a reduction to less than

10% for a ratio Ω̄s > 3.5 (Fig. 7). For large Ω̄s, proportionality to the reciprocal of

the area ratio (Eh ∝ Ω̄−1
s ) is achieved.

3.2 Non-deterministic tortuous fibres

Most real networks do not consist of straight but tortuous fibres. A possibility

to model this kind of fibres is a random walk which can be parametrised by the

persistence length (see Sec. 2.3). In the following, the influence of the seeding domain

Ωs on the randomness of the final network in the modelling domain Ωc is investigated

by Monte Carlo simulations.

3.2.1 Square seeding

Here, the square seeding algorithm, sampling pivot points only in the modelling

domain Ωc = Ωs is used to distribute tortuous fibres with persistence length (` =

0.1). The final network is plotted for N = 1×103 fibres in Fig. 8a. The fibre density

at line A (Fig. 8a) is visualised by evaluating N = 6 × 104 fibres crossing N = 15

circles equally distributed along A. Figs. 8bc show a significant error (Eh = 70%)

in the homogeneity of the fibre density, revealing the limited applicability of the

square seeding algorithm for tortuous fibres to generate random networks.

3.2.2 Extended circular seeding

The extended circular seeding algorithm was used as an alternative to square seeding

to generate fibre networks of tortuous fibres. For a seeding to modelling area ratio

of Ω̄s = 28.3 N = 5× 104 fibres where generated and distributed. Fig. 9 shows the

fibre density P̂MC along the line A (Fig. 8a) and the orientation distribution p̂MC,

i.e. the normalised bin counts vi (see Sec. 2.6) of fibres crossing a circle (ε = 0.04)

at the point Q (xc = [0.48, 0.48]) for a network of highly tortuous fibres (` = 0.1).

Both P̂MC and p̂MC differ only moderately from the constant values characterising

a homogeneous fibre density and isotropic orientation distribution (Eh = 5.23%,

Ei = 3.61%). As a next step the persistence length was varied to represent fibres

ranging from highly tortuous (` = 0.1) to nearly straight (` = 2.15) shapes and to

investigate the influence of the tortuosity on the desired homogeneity and isotropy.

The results (Fig. 10) reveal that a ratio of Ω̄s = 10 is sufficient for highly tortuous

fibres (` = 0.1) to generate networks with a deviation Eh from the homogeneous

case of less than 10%. For increasing persistence lengths the required area ratio

reduces to the solution obtained analytically for straight fibres (Fig. 10 - grey solid

line). The ratio Ω̄s = 10 also leads to an error Ei below 10% in the fibre orientation

distribution for the whole range of tortuosities (` = 0.1...2.15) making this ratio

applicable to achieve networks with acceptable deviations from randomness (Eh <

10%, Ei < 10%).
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4 Discussion
In this work, a random network was defined as a structure with a homogeneous fibre

density and isotropic fibre orientation distribution. Evidently, a network consisting

of a finite number of fibres of finite dimensions can never be point-wise homoge-

neous and isotropic due to the discrete, i.e. non-continuous nature. However, the

local deviations from the ideal case should not correlate with the location within

the network, but again, be random. Therefore, we considered the limit case where

the number of fibres becomes infinite for the analytical model, and we evaluated the

density and isotropy for a small neighbourhood area of a point in Monte Carlo sim-

ulations, and we investigated how these characteristics change within the network.

For the case of straight fibres, we have shown that the fibre density and orientation

distribution derived from the theoretical limit case of an infinite amount of fibres

excellently agrees with the average of a finite amount of fibres investigated with

Monte Carlo simulations averaged over small circular areas around the respective

points.

By means of these methods, we have studied the effect of the size and shape of

the seeding domain on homogeneity and isotropy of networks with very long fibres

that span the entire seeding domain, i.e. that enter and leave Ωs at its boundary

∂Ωs. This type of network is of relevance for the computer-aided analysis of different

materials that consist of fibres much longer than the dimensions of the modelling

domain, which are restricted by the need for computational efficiency. Electrospun

networks or glass wool [2, 8] represent typical examples of such materials. Although

not analysed in the present work, straightforward considerations suggest that the

size of the seeding domain that can affect the modelling domain decreases with fibre

length, since fibres starting sufficiently far away cannot enter Ωc due to their finite

length. Accordingly, the problems of heterogeneity and isotropy reported here also

exist for shorter fibres, but they might be overcome by choosing an appropriate

finite ratio Ω̄s even for a square shaped seeding domain. In contrast to this, we have

shown that the (extended) square seeding will always lead to anisotropic networks

for straight fibres of infinite length (Fig. 7). In fact, due to the proportionality of

the orientation distribution at point xc to its distance Ls(xc, ϕ) from the boundary

of the seeding domain Ωs (Eq. (20)), it is generally impossible to obtain a constant

orientation distribution independent of ϕ within the entire seeding domain. If the

centre of the seeding domain lies within Ωc, the orientation distribution in this point

inherits the shape of the boundary of Ωs, as exemplified for the square shaped Ωs in

Fig. 4e. Consequently, in the limit case considered by the analytic model, isotropy

can only be obtained in one single point of Ωc that coincides with the centre of a

circular seeding domain.

Nevertheless, our results suggest that through the use of an extended circular

seeding domain centred within Ωc, reasonably random networks of both straight

and tortuous fibres can be generated and used for computational studies, and we

have shown that for straight fibres the errors in both homogeneity and isotropy

reduce proportional to Ω̄−1
s .

For straight fibres another method was proposed to generate random networks

based on µ-randomness [38, 39], that makes use of a polar seeding algorithm. Briefly,

seeding points are distributed on a circular domain with radius R by sampling its
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polar coordinates % and angle ϑ, with respect to a coordinate system centered

at the origin, so that % ∼ Uni(0, R), ϑ ∼ Uni(0, 2π) [40]. The fibres are oriented

at their seeding points perpendicular to the connection line from the origin to

their corresponding seeds [40]. We implemented and tested this method based on

Monte Carlo simulations with N = 12 × 104 fibres, and using the same methods

to quantify the errors in homogeneity and isotropy along a line A as described in

Sec. 2.6. Based on this, we found that polar seeding provides small errors in isotropy

for both straight fibres (Ei = 6%) and tortuous fibres with ` = 0.1 (Ei = 3%).

The error in homogeneity was also small for straight fibres (Eh = 6%), but for

tortuous fibres inhomogeneity is clearly observed (Fig. 11) with correspondingly

large errors (Ei = 62%), suggesting that this method overcomes the problem of

undesired anisotropy but cannot remedy the heterogeneity.

Finally, we critically remark on a few limitations of the study. To evaluate homo-

geneity and isotropy in Monte Carlo simulations a large, but clearly finite, number

of fibres, a fixed circle diameter ε and a given number of angular bins was used.

Each realisation of the network is subject to a statistical variation, and when the

corresponding statistical variations in density and orientation become larger than

those caused by a modification of Ω̄s, the effect of the latter is hidden. This is ob-

served in Fig. 10, where the Monte Carlo simulations do not indicate a reduction

of the errors for Ω̄s > 10 (Fig. 10a) and Ω̄s > 100.6 (Fig. 10b), respectively. The

instance Ω̄s at which this effect occurs depends on the number N of sampled fibres

and can thus be postponed to larger ratios by increasing N . In the present study, we

selected 10% as an upper bound for acceptable errors, which is reached already for

values of Ω̄s for which the effect of statistical variations is still small. The number

of fibres used for the studies (N > 12 × 104) was further validated by repeated

tests with half the number of fibres (Fig. 10). Since the observed influence on the

determined errors with values in the range of interest (E > 10%) was negligible,

the initially chosen number of fibres was considered sufficient. Additionally, we note

that in Monte Carlo studies homogeneity and isotropy are evaluated only along

the diagonal A (Fig. 4) for computational efficiency. For straight fibres (Fig. 4) the

results from both the Monte Carlo simulations and analytical model indicated that

the locations of the maximal errors in both homogeneity and isotropy fall on the

line A, connecting the centre with a vertex of the square modelling domain. For

this reason, the same locations were investigated for tortuous fibres.

5 Conclusions
In this contribution, different algorithms were assessed with regard to their ca-

pability to generate random planar networks of very long fibers in terms of an

even distribution, i.e. homogeneous density of fibres, and isotropic fibre orientation

distribution throughout the modelling domain Ωc. The square seeding algorithm,

distributing seed points uniformly on Ωc, leads to significant deviations from ran-

domness for both straight and tortuous fibres, as shown by analytic and Monte Carlo

studies. A homogeneous density distribution of straight fibres can be achieved by an

increased square seeding domain Ωs but the orientation distribution at any point

in Ωc generally remains anisotropic, independent of the size of Ωs, and does not

converge to the isotropic case for non-circular seeding domains. The proposed use
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of an extended circular seeding domain reduces the errors in both homogeneity and

isotropy with increasing ratio between seeding and modelling domain for straight

and tortuous fibres. For straight fibres, the analytical model reveals that the errors

in both homogeneity and isotropy scale with (Ωs/Ωc)−1. Given the relative ease

at which extended circular seeding domains can be implemented instead of square

ones, their use is highly recommended.
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Überlandstrasse 129, CH-8600 Dübendorf, Switzerland. 2ETH Zürich, Institute for Mechanical Systems,
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Figure 1 Seeding. (a) Modelling Ωc and seeding Ωs domain (b) Poisson point process, i.e.
random introduction of points by sampling coordinates from a uniform distributions in the seeding
domain Ωs.

a b c

Figure 2 Fibre generation.(a) Scanning electron micrograph of an electrospun non-woven as
example of a long fibre network (cf. [41]). (b) Introduction of fibres at previously introduced
points with planar orientation sampled from uniform distribution. (c) Introduction of tortuous
fibres generated by a random walk starting at the previously introduced points.
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Figure 3 Parameters for analytic study. Illustration of seeding point xs, sampling point xc,
opening angle ∆φ, in-plane angle ϕ and the distance Ls(xc, ϕ) of xc from the boundary ∂Ωs in
the direction specified by ϕ.
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Figure 4 Deviations from homogeneity and isotropy for straight fibre networks generated by
square seeding. (a) Inhomogeneous fibre density distribution obtained analytically. (b)
Comparison of fibre density obtained by Monte Carlo simulations (N = 2× 106) and analytic
calculations with the homogeneous case. (c) Error ei in isotropic fibre orientation distribution
obtained analytically. (d) Comparison of the error in orientation distribution obtained by Monte
Carlo simulations (N = 2× 106) and analytic calculations with the isotropic case. (ef) Fibre
orientation distribution at (e) the origin O (xc = [0, 0]) and (f) close to a corner at Q
(xc = [0.48, 0.48]) calculated by the analytic approach (black line), by Monte Carlo simulations
(blue bars, N = 2× 106) and compared to the ideal isotropic case (red line).
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Figure 5 Fibre orientation distributions. Orientation distribution at (a) the centre O of Ωc

(xc) = [0, 0] and (b) close to a corner in point Q (xc) = [0.48, 0.48] obtained by extended square
seeding with an area ratio of Ω̄s = 28.3.

a b

Figure 6 Extended circular seeding (a) Illustration of seeding Ωs and modelling Ωc domain in the
extended circular seeding algorithm with an area ratio of Ω̄s = 10. (b) Corresponding fibre density

distribution P̂ (xc) in the modelling domain for a network generated with the extended circular
seeding algorithm.
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Figure 7 Errors in homogeneity and isotropy. Errors in homogeneous fibre density (Eh) and
isotropic fibre orientation distribution (Ei) for different ratios Ω̄s between seeding and modelling
domain obtained with the extended square and circular seeding algorithms, respectively.

a b

1

A

c

Figure 8 Tortuous-fibre networks. (a) Network consisting of N = 1× 103 tortuous (` = 0.1)
fibres generated with the random seeding algorithm. (b) Normalised fibre density along line A in a
network generated with the square seeding (Ω̄s = 1) and the extended circular seeding
(Ω̄s = 28.3) algorithm for tortuous fibres (` = 0.1, N = 6× 104). (c) Normalised fibre density in
the modelling domain Ωc generated with the square seeding (Ω̄s = 1).
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Figure 9 Density distribution for tortuous-fibre networks generated through extended circular
seeding. (a) Normalised fibre density along A and (b) fibre orientation distribution at
xc = [0.48, 0.48] for a network generated with the extended circular seeding algorithm (Ω̄s = 28.3,
N = 5× 104) for tortuous fibres (` = 0.1).

a b

, 0.5

, 0.5

Figure 10 Effect of the seeding domain size. Error in the homogeneous fibre density Eh (a) and
isotropic orientation distribution Ei (b) obtained with the extended circular seeding algorithm for
different fibre persistence lengths ` and different ratios between Ωs and Ωc.
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Figure 11 Density distribution for polar seeding. Normalised fibre density for a network
generated with the polar seeding algorithm for straight (` =∞) and tortuous fibres (` = 0.1).


