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Abstract

The failure of micron-scale metallic components present significantly variability as a result 

of their size being comparable to microstructural length scales. Indeed, these components 

do not represent the bulk of the material but correspond to statistical volume elements 

(SVEs). This work investigates the role of SVEs on fatigue crack nucleation with a novel 

comparison between microbeam experiments and simulations. We recreate multiple 

microstructural computational realizations to estimate fatigue crack nucleation lives and 

orientations by means of physics-based crystal plasticity models. We demonstrate a unique 

approach to validate microstructure sensitive models and quantify the fatigue crack 

stochasticity associated with small volumes.

Keywords: Crystal plasticity, Mesoscale model, Microstructure, Fatigue, Statistical 

volume elements, MEMS

1. Introduction

Silicon-base micro-scale components such as micro-electro-mechanical systems

(MEMS) have increasingly found widespread applications in diverse industries such as 

automotive, aerospace, healthcare, defence and consumer electronics [1]. More recently, 
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new fabrication processes have innovated on metallic MEMS, which can have superior 

mechanical properties [2] (e.g., better fracture toughness, lower degradation at high 

temperature). Thus, there is an increasing need to study of the mechanical reliability of 

microscopic metallic components, among which fatigue failure is a leading concern  [3–

11].

Metallic MEMS typically have dimensions that are comparable to the microstructure 

length scales (i.e., a few to hundreds of microns). In such small volumes, only a limited 

number of microstructural arrangements (e.g., grains, twins) are present, which makes each 

MEMS a statistical volume element (SVE) [12] rather than a representative volume 

element (RVE). In other words, two devices will have different mechanical responses 

because they sample only a subset of the grain morphology, size and orientation 

distributions [13].  This is particularly important in the study of fatigue loadings, in which 

cracks tend to nucleate on the surface, which reduces even further the number of grains 

actively cracking. 

Conventional deterministic fatigue models are not appropriate to account for the role of 

microstructure heterogeneity on fatigue crack nucleation and growth [14]. Instead, 

microstructure-sensitive approaches such as those based on crystal plasticity finite element 

modelling (CPFEM) [15,16] are well posed to address these problems. CPFEM explicitly 

takes into consideration the effect of microstructure heterogeneity to quantify the fatigue 

response at the microstructural scale under cyclic loading [17].  This approach computes 

non-local Fatigue Indicator Parameters (FIPs) [18,19], which are computationally friendly 

surrogates for the fatigue damage driving force at the microstructure scale. FIPs provide a 

means for quantifying the probability of early crack formation and growth, and have been 

applied for predicting fatigue life scatter [20].

The computational burden of microstructure-sensitive approaches naturally promotes 
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the analysis of small volumes with limited number of grain, which correspond to SVEs. 

On the contrary, most experimental approaches usually rely on large experimental samples 

that may be considered RVEs. Some experimental approaches [21,22] have considered 

SVE by restricting the active volume with the introduction of an artificial crack. However, 

these analyses do not describe the incidence of small volumes on the natural nucleation of 

cracks. Other approaches [23,24] have employed MEMS to study fatigue initiation, but 

most microstructural-sensitive modelling approaches consider sample volumes that are 

significantly smaller than in experiments, which affects the results.

This paper integrates MEMS microresonator fatigue testing and 3D crystal plasticity 

models with equivalent volumes in order to predict the influence of component size and 

microstructure heterogeneity on the fatigue crack initiation. The results demonstrate the 

model ability to both predict and account for the microstructure influence on fatigue 

nucleation without the need for an explicit calibration of the stochasticity of the process.

2. Experimental Fatigue Crack Nucleation Study of Ni Microbeams

2.1 Microresonator experimental setup: measurement of fatigue crack initiation life

We employ a MEMS microresonator developed by Pierron and co-workers [25,26] to 

study the transgranular fatigue crack nucleation in Ni microbeams. The microresonator 

(Figure 1a) is a three-part structure: an electrically grounded Ni microbeam connected to 

a fan shaped mass, and two sets of interdigitated fingers on each side (for electrostatic 

actuation and capacitive sensing of resulting motion). The microbeam has dimensions of 

approximately 60 μm (length) x 12 μm (width) x 20 μm (thickness). The MEMS was 

electroplated using a conventional, additive-free sulphamate bath (including 405 g/L Ni 

sulphamate, 7.5 g/L Ni bromide, 97.5 g/L Ni, 37 g/L boric acid) at 30°C, pH = 4, using a 

direct current (DC) of 20 mA/cm2. In sulphamate baths without additives, deposition 
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parameters, especially current density, affect the amount of deposited impurities (light 

elements and metallic impurities), which in turn affects texture and microstructure [27–

29]. For current densities above 10 mA/cm2, the relatively high purity of the 

electrodeposited Ni (typically above 99.9%) results in a strong out-of-plane <001> texture 

and columnar microstructure with relatively large grains [27–30]. This is consistent with 

our microstructure characterization (see 2.3), with most grain widths ranging from to 2 μm 

to 4 µm, as also observed in other studies for current densities of 20 mA/cm2  [27–30]. 

Contrary to the top of the microbeam, which exhibits non-negligible roughness, the 

sidewalls are mostly smooth [31]. Hence, fatigue damage that emerges on the sidewalls is 

fully controlled by intergranular variability with minimum contribution from the surface 

finish [32].

The mechanical monotonic tensile properties have been previously measured using 

microtensile tests of dog bone shaped specimens [33]: the 0.2% yield stress is ∼650±70 

MPa, the tensile strength is ∼875±25 MPa, and the ductility exceeds 10%. These properties 

are in good agreement with another study for Ni sulphamate bath at the same current 

density (20 mA/cm2), which measured a 0.02% yield stress of 441±27 MPa (our 0.02% 

yield stress is ~450 MPa) and a tensile strength of 758±28 MPa [34]. The large yield stress 

compared to bulk Ni is likely the result of Hall-Petch strengthening [35], and solid solution 

strengthening from impurities that can range from 100 to 1000 ppm depending on the bath 

purity content and deposition conditions [27–29,36]. 



5

Figure 1.  SEM image of a Ni microresonator and a detail of the microbeam (inclined 

SEM images) [31]. Note the smooth surface on the sidewall, where cracks nucleate upon 

cycling loading.

The microresonator allows for the electrostatic actuation through one comb structure 

(via a high sinusoidal input voltage) resulting in a cyclic in-plane fully reversed bending 

of the microbeam when driven at the structure’s resonance frequency (~ 8 kHz). The 

damping effects and maximum applied input voltage limit the maximum amplitude of 

rotation to about 28 mrad (resp, 24 mrad) in air (resp. vacuum), corresponding to low 

plastic strain amplitudes εpa < 10−3 (high / very high cycle fatigue regime). For large enough 

amplitudes of rotation (> 14 mrad, which corresponds to stress amplitude above 300 MPa), 

the actuation of the microresonator at resonance results in fatigue damage on the 

microbeam sidewalls in the form of extrusion/intrusion, and eventually cracks. This 

damage decreases the microbeam stiffness and, consequently, the resonance frequency, 

which is measured throughout the fatigue test via the second comb structure. The decrease 

in f0 is therefore used as a metric to identify cracking. Fatigue failure of these microbeams 

typically occurs as two main fatigue cracks, spanning the entire thickness (20 µm), develop 

on each side of the microbeam and grow towards the neutral axis.  

In situ SEM fatigue tests allow for a thorough observation of the evolution of fatigue 

damage along the sidewalls [31] and show a clear fatigue crack spanning through several 
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grains along the microbeam thickness direction, formed for a 3-4% decrease in f0. Thus, 

we employ a 1% decrease in f0 as our criterion for determining the number of cycles to 

crack the first grain, which will be further validated with finite element models (see section 

4). As further justification, an in situ SEM fatigue test was performed and interrupted after 

1% decrease in f0 (see Figure 2a). The sidewalls after the tests (see Figure 2b) show 

significant fatigue damage in the form of extrusions, intrusions, and possibly cracks. 

Focused Ion Beam (FIB) sectioning of the microbeam (see section 2.2 for procedure) 

revealed, on average, that only 1 grain that was fully cracked (see Figure 2c), along with 

one or two other grains that are partially cracked.
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Figure 2- (a) Change in resonance frequency in a microresonator tested at 25.6 mrad 

rotation and interrupted after 1% frequency decrease (b) fatigue damage in the sidewall 

of the microbeam  (c) FIB cross-section and EBSD scans of the microbeam showing a 

transgranular crack on one grain .

2.2  FIB Sectioning and EBSD characterization of microstructure and fatigue cracks

Selected microbeams were cross-sectioned along their length (perpendicular to the 

thickness) using FIB by a depth of about 1.5 µm from the top surface. The microbeam was 

subsequently polished at a low FIB current in order to obtain a flat surface. The cross-

section was positioned in front of an Oxford Instruments Symmetry Electron Backscatter 

Diffraction (EBSD) sensor and the sample was scanned with a step size of 0.1 nm to a 2D 
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scan size of 40 µm x 15 µm, spanning the part of the microbeam where fatigue failure 

occurs. The microbeam was again cross-sectioned by another 1.5 µm and the procedure 

was repeated until the whole microbeam was characterized (about 13 cross-sections 

spanning the entire microbeam thickness (20 µm)). The EBSD data provide microstructure 

information (distributions of the morphology and size of grains) that informs models with 

equivalent synthetic microstructures (see 2.3). In addition, the cross-sections enable 

accurate identification of cracks within grains, which is not possible only based on SEM 

images of the sidewalls. As an example, the serial FIB sectioning of the specimen shown 

in Figure 2b only revealed one cracked grain (see Figure 2c) even though numerous 

extrusions and intrusions are observed on the sidewall. Appendix A presents further 

examples of cracks and EBSD scans.

2.3. Microstructure characterisation and reconstruction 

The microstructure in the microbeam consists of large columnar grains interspersed with 

smaller equiaxed grains. The morphology, size and orientation of the microstructure was 

quantified by means of EBSD and processed with Dream 3D [37]. Figure 3 depicts an 

EBSD map and a pole figure of the microbeam with a strong [001] texture. We consider 

grains segmented with a five-degree tolerance while voxels belonging to grains with less 

than 24 voxels and with an orientation confidence of less than 0.1 are removed and added 

to neighbouring larger grains. Since fatigue cracks tend to initiate from the relatively larger 

grains [38], we obtained the statistics of the largest area fraction grains consisting of 206 

grains with grain size over 1.9µm. The statistics of these grain distributions are then used 

for creating a SVEs with synthetic columnar grains. The experimental grain size 

distribution grains truncated at 1.9µm was fit to a log-normal  curve as shown in Figure 

4a. The aspect ratios of the real and the synthetic microstructures for the microbeam are 
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comparable, as shown in Figure 4b and 4c. 

a)

b)

Figure 3. (a) Sample EBSD map and (b) Grain texture (ODF) pole figure obtained from 

the microbeam.
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Figure 4.Grain statistics plots showing (a) Grain size distribution of extracted large grains 

from the 3D EBSD data with the fitted truncated log-normal curve used for creating the 

SVEs (b) B/A grain aspect ratio (c) C/A grain aspect ratio (A, B and C being semi-major 

axis of grains).

3. Microstructure-sensitive modelling

3.1 Finite element model

We represent the microbeam with a finite element mesh built with cuboidal reduced 

integration 8-node linear brick elements (C3D8R) from Abaqus element library (Figure 

5a). The microstructure in the microbeam central gauge section (Figure 5b) is recreated 
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with Dream 3D [37], which informs the statistics of grain morphology and orientation into 

an in-house Matlab script integrated with Abaqus python scripts. These were used to create 

20 meshes with statistically equivalent synthetic microstructures in the gauge section 

(Figure 5). The scripts also recreate sets of elements that form one-element-thick bands 

parallel to the crystallographic plane (Figure 5c). These bands serve as a crystallographic 

regularization length scale [12] in which fatigue cracks nucleate, as explained in the 

following section.

The simulations apply fully reversed bending to a reference point, to which the nodes 

at the microbeam free end are kinematically coupled (Figure 5a). Thus, a bending rotation 

at the reference point creates corresponding bending load in the microbeam. The extreme 

of the microbeam is constrained from displacing in all directions, as shown in Figure 5. 

We considered displacement controlled rotation angles of 18, 20, 25 and 30 mrad with a 

period of 0.00125s, which corresponds to the experimental resonant frequency. For 

completeness, Appendix B presents the quasi-linear relation between maximum strain and 

angle of rotation. 
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Figure 5. (a) Finite element model of the microbeam. Note the bending load and the 

different materials for the gauge section and the microbeam extreme sections. (b) Central 

gauge section presenting one synthetic microstructure realisation of the microbeam. (c) A 

grain with the color-coded crystallographic bands in which the local FIPs are averaged.

The microbeam gauge section employs a crystal plasticity model and the extreme sections 

employ an isotropic elasto-plasticity model constructed with the piece-wise experimental 

stress-strain curve (see Figure 6) and von Mises yield surface criteria. The  crystal plasticity 

formulation was originally designed by Castelluccio and McDowell [40] for modelling 

FCC metals under cyclic loading and recently reviewed for modelling electroplated Ni 

microbeams [41]. This constitutive model explicitly conveys dislocation-based hardening 

mechanisms, which have been independently parameterized. In addition, it considers the 

contribution from sessile dislocation structures on the back stress. The macroscopic 

response has been extensively validated for single- and poly-crystalline Ni and Cu. The 

model was implemented as a user-material subroutine (UMAT) in Abaqus [42] and further 

details about the formulations are presented in Appendix C. Figure 6a presents the 

polycrystal cyclic stress-strain curves from simulations at different deformation rates 

compared with the monotonic experimental results. These simulations correspond to 
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simple tensile models with 500 cuboidal grains [40], which were informed with the texture 

from EBSD scans. Overall, the constitutive model agrees with experiments on the elastic 

and plastic responses and presents a mild strain rate sensitivity, as expected for Ni [43,44]. 
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Figure 6. (a) A comparison of the stress-strain curves from monotonic experiment and 

cyclic deformation from CPFEM at various deformation rates.

3.2 Fatigue crack nucleation model

A convenient and efficient computational prognosis of fatigue crack nucleation relies on 

surrogate measures of the fatigue cracking driving force [45]. Following the framework 

proposed by Castelluccio and Mcdowell [16,39], we compare the fatigue crack nucleation 

resistance in different grains by surveying fatigue indicator parameters (FIPs) over 

domains representative of transgranular damage. The Fatemi-Socie [6] FIP is well posed 

to characterize transgranular cracking, which is driven by the cyclic shear strain range at 

each slip system  ),(∆𝛾𝛼𝑝
.FIPα =

∆γαp
2 (1 + k

𝜎𝛼𝑛𝜎𝑦) 1                                                              
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Here,  corresponds to the maximum stress oriented normal to the slip plane , while 𝜎𝛼𝑛 𝛼 𝜎𝑦
 is the macroscopic cyclic yield strength, and  = 0.5, as originally proposed by ≅400𝑀𝑃𝑎 k

Fatemi-Socie [46]. The FIP in Eq. Error! Reference source not found. is computed for 

each integration point and each octahedral slip system. Next, the FIPs are averaged along 

mesoscale domains, which correspond to bands parallel to crystallographic planes (see 

Figure 5(c)). The averaging over bands represents the transgranular damage process zone 

and mitigates the effects of discretization from the finite elements. The band-averaged FIP 

effectively serves as a computationally efficient surrogate of the driving force for 

transgranular failure [47].

The band-averaged FIP informs a semi-empirical formulation for predicting the 

cracking of individual grains, which is based on the work by Tanaka and Mura [48]. This 

approach estimates number of cycles required to nucleate a crack on each band (  ) 𝑁𝑁𝑢𝑐
[12],

  ,NNuc =
αg

dgr
(FIPα) -2

2                                                              

where  corresponds to the mechanical irreversibility, which depends strongly on the αg

environment and loading conditions (e.g., cycling frequency).  represents the grain 𝐷𝐺𝑅
cross section that becomes active when nucleating a crack. For each band we estimate 

  by computing,    𝐷𝐺𝑅
  ,𝐷𝐺𝑅 = 𝐷𝑠𝑡 + ∑𝑛

1
𝜔𝑖𝐷𝑖𝑛𝑑 3                                                              

in which  is diameter of the band taken as the square root of its surface while the second 𝐷𝑠𝑡
term is the weighted sum ( ) of the diameters ( ) of all the bands in neighbouring grains 𝜔𝑖 𝐷𝑖𝑛𝑑
having low disorientation (  between the crystallographic orientations and is computed 𝜃𝑘𝑑𝑖𝑠)
as
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.𝜔𝑖 = 〈1 ― 𝜃𝑘𝑑𝑖𝑠
20 〉 4                                                              

The Macaulay brackets satisfy that (a) = a if a>0, (a) =0 if a ≤ 0. 

Hence, the minimum  among all bands in all grains corresponds to the number of 𝑁𝑁𝑢𝑐
cycles required to crack the first grain. Next, we explore the attribution of the change in 

resonant frequency to cracking the first grain.

4. Results from Models and Experiments

First, we investigate the relation between the resonant frequency and the cracking of 

individual grains by considering synthetic microstructures with anisotropic elastic models 

achieved by artificially increasing the activation energy . In this way, we avoid force 𝐹0

transients due to the evolution of plastic deformation and we resolve precisely the effect 

of cracking individual grains on the resulting forces. We applied a rotation of 25mrad and 

computed the total force applied before and after cracking those bands that resulted in the 

minimum life with Equation (Error! Reference source not found.) in the subsequent 

CPFEM analysis. The relative decrease in reaction force due to a cracked grain is equal to 

the relative decrease in rotational stiffness of the microbeam, k, which is related to 

resonance frequency through [49],

 𝑓0 =
12𝜋 𝑘𝜃𝐽 5                                                              

where   is the resonant frequency,  is the rotational stiffness,  is the polar moment of 𝑓0 𝑘𝜃 𝐽
inertia.

Figure 7 shows a reduction in the reaction forces roughly between 0.5% and 2% upon 

cracking a single grain in 10 microstructural realizations with anisotropic elastic models. 

In addition, this reduction depends nonlinearly on the size of the grain cracked. According 

to Equation Error! Reference source not found., a 0.5 to 2% decrease in reaction force 
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results in a 0.25 to 1% decrease in . Hence, these results support that a reduction about 𝑓0

1% decrease in resonant frequency from experiments is a good estimate for the first 

nucleation of a crack in a grain.

Figure 7. Percentage change in reaction forces upon cracking one grain in anisotropic 

elastic models. The change in force depends nonlinearly on the size of the slip plane 

cracked.

Next, we compute the minimum number of cycles to nucleate the first fatigue crack in 

a single grain from 20 synthetic microstructures using CPFEM. Since the gauge section 

represent one-fourth of the actual volume on the real microbeam, we present a fair 

comparison by considering the lowest quartile life results (hence, the five lowest life 

predictions). 

Figure 8 presents the crack nucleation life results from the experiment and the CPFEM 

calculations (Equation Error! Reference source not found.), for different angle of 

rotations under vacuum and air. The experimental results correspond to the number of 

cycles required for a reduction in 1% of the resonant frequency. To estimate the crack 
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nucleation life for the respective environments, the  values based on Equation Error! αg

Reference source not found. for the vacuum and air environments were estimated to be 

1.0 and 0.00075 respectively. The results from 32 experiments and 60 CPFEM simulations 

overlap for loading amplitudes between 8 to 26 mrad. For completeness, Appendix B also 

presents the strain amplitude at the edge of the microbeam vs crack nucleation life curve. 

Figure 8. Predicted and experimental crack nucleation rotation-angle vs life curve for 

various rotations in vacuum and air environments. The arrows represent the runouts and 

the colours that correspond to the respective environments for experiment and CPFEM. 

For 18 mrad, three data points overlap on the logarithmic scale (total of 5 CPFEM per 

environment). A total of 32 experiments were performed using similar specimens and 

rotation angles from 8 to 26 mrad.

To further assess the predictive capability of the CPFEM damage model, we compare 

the number of cracks and location on the microbeam with models and experiments 

undergoing 25 mrad rotation in vacuum. We consider two experiments to quantify the 

number of cracks on a 200 µm2 area on the microbeam sidewall (see Figure 9a), which is 

equivalent to the crystal plasticity section on simulations. The accurate identification of 

cracks was possible thanks to the cross-sectioning of the microbeam with FIB (see Section 
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2.2). For simulations, we computed the density of cracks by quantifying the number of 

grains that present a band with an expected life below a target life. Upon increasing this 

target, larger number of grains would nucleate cracks as shown in Figure 9b, which 

compares the crack density from 20 microstructure realizations and two experiments. 

Overall, the experimental results fall within the variability predicted by the simulations.

a)

b)

Figure 9. – (a) Inclined SEM image of one experimental microbeam indicating the 

location of transgranular cracks  (b) Number of cracks per unit area for a rotation angle of 

25mrad in a vacuum environment from 20 model realizations and two experiments.
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Finally, we compare the orientation of cracks in models and experiments. First, we 

compute the orientation of the slip bands in Figure 10a and we compare with the orientation 

of the bands cracked in 20 model realisations. We measure the experimental slip 

localization from the sample in Figure 10a, for which the testing was stopped before 

abundant disruption of the surface (otherwise it would obscure the crack orientation). The 

empirical cumulative distribution functions (CDF) in Figure 10b shows that cracks 

predictions with models and in experiments overlap and are, in average, biased by almost 

10 with respect to 45, which would correspond to an isotropic response (maximum 

homogeneous shear). For comparison, we also performed 20 realizations with the same 

grain morphology, but using random crystallographic texture. These results are 

significantly different from experiments, which supports the predictive power of our 

computational approach.
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a)

  

 

b)

Figure 10.  (a) SEM image showing several slip bands whose orientation with respect to 

the z-axis was measured. (b) A cumulative density function plot comparing the direction 

angles of the cracked grain slip plane normal to the Y and Z directions in the 20 

microbeam microstructure realisations directions for the CPFEM simulations and 

experiments.

5. Discussion

The microstructural CPFEM framework implemented in this work has demonstrated its 

capability to predict transgranular fatigue damage at the microstructural level. A 

distinguishing feature of our approach is its ability to model the crack nucleation scatter 
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that arises from the limited number of grains strained on the microbeam without making 

any special provision or additional fitting of parameters. Furthermore, both the modelling 

and experimental approaches can be applied to other materials and loading configurations 

in which transgranular planar cracking dominates. 

Our work has quantified the impact on fatigue failure of the relatively small dimensions 

of the MEMS compared to the microstructure. We demonstrated the ability of models to 

quantify the variability of the fatigue crack nucleation life, which is different for two 

MEMS. Similarly, Figure 9b has shown that the density of cracks strongly depends on the 

particular on the specific microstructure and crystallographic texture. Hence, these 

distributions are a function of the sample dimension, loading direction, microstructural 

attributes, etc.

We argue that two main characteristics of our model contribute to its predictive power.  

First, we considered a detailed reconstruction of the microstructure morphology, which 

provides the basis to model accurately volumes fractions that are prone to damage. Our 

approach to discretise the grain in bands provides a key capability to distinguish the planes 

more favourably aligned for transgranular damage in elongated grains deformed with a 

gradient. Indeed, there is a competition between the size of the grain plane, the most 

favourable orientation for damaging, the grain size, and the bending grain gradient that 

biases the nucleation of cracks to values lower that 45, in average.

Secondly, our physics-based crystal plasticity model has been independently 

parameterized across scales to match Ni single- and poly-crystals. Compared to pure 

macroscopic Ni, only the parameterization of the glide barrier differs due to the 

strengthening of impurities, which results in a higher yield strength (monolithic FCC 

metals share similar mesoscale parameters). Since the system is deformed under rotation 

control, which is equivalent to strain control, a change in the yield stress affects mainly the 
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partition between the elastic and plastic deformation rather than the partition of plasticity 

across slip systems. The correct partition of plasticity, which is essential to capture texture 

effects, is conveyed from our earlier estimation [40] of mesoscale parameters from 

macroscopic Ni single crystal.

We also adjusted the fatigue irreversibility factor to account for the effect of the 

environment and the high deformation frequencies. This calibration affects the average life 

values, but has no significant effect on their variability. Thus, we argue that the scatter is 

not directly calibrated for, but it is an intrinsic result of reproducing the correct physics of 

microstructural attributes in the small MEMS volume. 

We conclude emphasizing that predictive physics-based models benefit from the 

independent parameterization at multiple scales, from single and polycrystals data. A 

convoluted fitting approach in which multiple parameters are adjusted from the same 

experimental data set carries the risk of spurious cancellation error between parameters 

and limit the predictive power of models [50].

6. Conclusions

This work employs a 3D mesoscale CPFEM model to investigate the influence of 

microstructure heterogeneity on the crack nucleation in Ni microbeams. The predicted 

distributions of fatigue life for the microbeams subjected to the bending loads agree with 

the experiments even when there is no explicit calibration for the scatter. The location of 

the cracks on the simulated microbeams were also consistent with the experimental 

observations on experimental samples. This work demonstrates the predictive capability 

as well as the model ability to account for the influence of microstructure heterogeneity on 

the fatigue life in metals.
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Appendix A

Figure 13 shows the crack path, along with the EBSD Scans, of one cross-section of the 

sample shown in Figure 2. Similarly, Figure 14 shows the crack path of the sample shown 

in Figure 9.

Figure 13. Transgranular crack path for sample in Figure 2

Figure 14. Trangranular cracks (upper cracks) and mixed mode (bottom crack) cracks for 

sample in Figure 9
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Appendix B.

For completeness, Figure 11 presents the relation between the maximum strain and angle 

of rotation computed with elasto-plastic isotropic model while Figure 12 present the 

corresponding strain vs life curve.

15 20 25 30 35 40

Angle of rotation [mrad]

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

M
a
x

im
u

m
 s

tr
a
in

[]

# 10
-3

Figure 11. Maximum strain as a function of the angle of rotation computed from 

simulation with isotropic elasto-plastic model.

Figure 12. Strain vs life curve in vacuum and air environments from models and 

experiments. 
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Appendix C

The crystal plasticity formulation employs a rate-dependent flow rule introduced by Kocks 

et al. [51] i.e.,                                                                                       

 .𝛾𝛼 = 𝜌𝑠𝑚𝑙𝑏𝑣𝐺𝑒𝑥𝑝( ― ∆𝐺(𝜏𝛼𝑒𝑓𝑓)𝑘𝐵𝑇 )𝑠𝑔𝑛(𝜏𝛼 ― 𝐵𝛼)  6                                                             

Here,  represents the dislocation mean free path,  corresponds to the mobile dislocations 𝑙 𝜌𝑠𝑚
density, B is the Burgers vector ~2.5 x 10-10 m,  is the dislocation attempt frequency  𝑣𝐺
~1012 s-1, T is the absolute temperature and  is Boltzmann constant. Furthermore,  𝑘𝐵 ∆𝐺
is the Gibbs energy required to bypass point obstacles,  is the effective stress and is 𝜏𝛼𝑒𝑓𝑓 𝐵𝛼
the slip system back stress.

The Gibbs energy corresponding to the glide barrier has been parameterised as [51,52],

,∆𝐺(𝜏𝛼𝑒𝑓𝑓) = 𝐹0〈1 ― [𝜏𝛼𝑒𝑓𝑓𝑆0𝑡 𝜇𝜇0

]
𝑝〉𝑞 7                                                              

in which F0 is the activation energy, and p, q are profile parameters,  is thermal slip 𝑆0𝑡  

resistance at 0 K, and µ and µ0 are the shear modulus (C44) at temperatures T and 0K, 

respectively. The effective stress, which stress drives the dislocation glide, depends on the 

back stress and threshold stress, , 𝑆𝛼
𝜏𝛼𝑒𝑓𝑓 = 〈|𝜏𝛼 ― 𝐵𝛼| ― 𝑆𝛼〉 8                                                              

in which is the resolved shear stress for slip system , and  correspond to the Macaulay 𝜏𝛼 𝛼 〈〉
brackets.

The threshold stress is given by,

,𝑆𝛼 = 𝛼𝐿𝐸 𝜇𝑏
(1 ― 𝑓𝑤)𝑑𝑠𝑡𝑟𝑢𝑐𝑡 + 𝜇𝑏(𝐴𝑖𝑖𝜌𝛼)

1
2 9                                                              

in which the first term corresponds to the stress required to bow out a dislocation and the 
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second term is self-interaction strength. Here,  is the dislocation line energy,  and   is  𝛼𝐿𝐸 𝑓𝑤
the dislocation wall fraction, which depends on the maximum plastic shear strain range per 

cycle, 

 𝑓𝑤 = 𝑓𝑖𝑛𝑓(𝑓0 ― 𝑓𝑖𝑛𝑓)𝑒𝑥𝑝( ―∆𝛾𝑚𝑎𝑥/2𝑔𝑝 ) 10                                                              

with   ,  , and  material parameters informed from dislocations structures.𝑓𝑖𝑛𝑓 𝑓0 𝑔𝑝
The back stress incorporates dislocation substructure effects by leveraging on a mean field 

formulation based on Eshelby approach[40], 

 ,𝐵𝛼
=

𝑓𝑤
1 ― 𝑓𝑤 2𝜇(1 ― 2𝑆1212)

1 + 4𝑆1212𝜇𝑓𝐻𝑖𝑙𝑙𝛾𝛼 11                                                              

where     correspond the Eshelby tensor component for a prolate spheroid, η 𝑆1212

corresponds to the normalized dislocation mean free path. The Hill factor, ,  𝑓𝐻𝑖𝑙𝑙
corresponds to the instantaneous macroscopic plastic deformation tangent and carries a 

dependence on the mean grain size, [40],𝑑𝑔𝑟
𝑓𝐻𝑖𝑙𝑙 = tanh (

0.005𝑑𝑔𝑟𝑑𝑠𝑡𝑟𝑢𝑐𝑡 )𝑑𝛾𝛼𝑑𝑡𝛼 12                                                              

This factor accounts for the potential for plastic accommodation and depends on the 

relative size between mesoscale  dislocation structures (which change with load) and 

grains/crystals.

Extensive experimental results have demonstrated that dislocation substructures follow the 

similitude principle, which the characteristic dislocation substructure distance, , is 𝑑𝑠𝑡𝑟𝑢𝑐𝑡
inversly propotional to the shear stress, [53,54],

 𝑑𝑠𝑡𝑟𝑢𝑐𝑡 = 𝐾𝑠𝑡𝑟𝑢𝑐𝑡𝜇(𝑇)𝑏 13                                                              

and the proportionality factor  ranges between 2 and 4 form most FCC metals under 𝐾𝑠𝑡𝑟𝑢𝑐𝑡
cyclic loading. 
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Dislocation mean glide distance is anisotropic and depends on the dislocation substructure 

formed upon cycling as proposed in [40]. Thus, we consider that  is proportional to  𝑙 𝑑𝑠𝑡𝑟𝑢𝑐𝑡
and the proportionality factor  ranges from 1 for cells to  25 for persisten slip bands,𝜂

 𝑙 ≈ 𝑙𝑠𝑡𝑟𝑢𝑐𝑡 = 𝜂𝑑𝑠𝑡𝑟𝑢𝑐𝑡 14                                                              

For further details about the identification of the dislocation structure please refer to [40].

We compute the mobile dislocation density on slip system α as a balance between 

dislocation multiplication, annihilation and cross slip,

𝜌𝑠𝛼𝑚 =
𝑘𝑚𝑢𝑙𝑡𝑖𝑏𝑙𝑠𝑡𝑟𝑢𝑐𝑡|𝛾𝛼| ― 2𝑦𝑒𝑑𝑔𝑒𝑠𝑏 𝜌𝑠𝛼𝑚 |𝛾𝛼| ― 𝛾2|𝜏𝛼 ― 𝐵𝛼|𝜇𝑏𝑑𝑠𝑡𝑟𝑢𝑐𝑡 |𝑈𝑛𝑙𝑜𝑎𝑑 + 𝜌𝑠𝑐𝑠|𝜁→𝛼 ―
 𝜌𝑠𝑐𝑠|𝛼→ζ 15                                                              

in which kmulti = 1 for cell structures and kmulti = 2 for parallel walls such as PSBs and 

labyrinth, γ=1 if  or ; otherwise   and 𝑠𝑔𝑛(𝜏𝛼 ― 𝐵𝛼
) ≠ 𝑠𝑔𝑛(𝜏𝛼 ― 𝐵𝛼) 𝛾𝛼 = 0 𝛾 = 0

. 𝜌𝑠𝑎𝑛𝑛𝑖ℎ𝛼|
𝑈𝑛𝑙𝑜𝑎𝑑

= 0

The term  represents the mobile dislocation cross slip rate from plane α  to ζ,   and 𝜌𝑠𝑐𝑠|𝛼→ζ
it follows a probabilistic approach proposed elsewhere [55–57], but considers the back 

stress to account for shielding effects of dislocation structures, i.e.,

𝜌𝑠𝛼𝑐𝑠 = ―𝜐𝑙𝐶𝑆𝑑0
𝜌𝑠𝛼𝑚 𝑒( ― 𝑣𝐶𝑆𝜏𝐼𝐼𝐼 ― |𝜏ζ ― 𝐵ζ|𝑘𝐵𝑇 )

16                                                              

Here,  are the dislocation length and the cross slip characteristic 𝑙𝐶𝑆 ≈ 𝑑𝑠𝑡𝑟𝑢𝑐𝑡 𝑎𝑛𝑑 𝜐 ≈ 1𝑠―1

frequency, respectively. The cross slip activation volume is inversely proportional to the 

slip system shear stress, i.e.  

𝑉𝛼𝐶𝑆 =
1000𝑏3𝑀𝑃𝑎

|𝜏𝛼|
17                                                              

The critical cross slip stress, , is inversely proportional to the  annihilation distance of  𝜏𝐼𝐼𝐼
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screw dislocations, ,𝑦𝑠𝑐𝑟𝑒𝑤𝑠
𝜏𝐼𝐼𝐼 =

𝜇𝑏
4𝜋𝑦𝑠𝑐𝑟𝑒𝑤𝑠 18                                                              

All parameters are summarized in Table 1 to Table 4 and agree with those presented earlier 

for pure Ni [40], except for the glide activation energy, which was increased to account for 

the solid solution strengthening of impurities as proposed before by the authors [58]. 

Further details about the choice of these parameters in the presence of solid solution 

strengthening impurities can be found elsewhere [59]. 

Table 1. Direct parameters for pure Ni

T @0K

293K 1013s-1 2.5x10-10 251GPa 150GPa 124GPa 131.7GPa 87.02GPa

Table 2. Parameters related to atomistic scale unit processes for pure Ni

p q

2.0ev 50MPa 0.6666 1.5 2nm 50nm 0.1 1.45 1000b3 0.65

Table 3. Parameters associated with mesoscale dislocation structures for pure Ni

1 5 20 20 3.5 2 1 0.25 0.5 1.25

Table 4. Initial values for internal state variables for pure Ni

2 x1012m-2 10μm 25 0.25 1000b3
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• Integrating physics-based models for predicting fatigue 

crack nucleation

• Modelling and experiments in small volumes.

• Validation of crack nucleation orientation and nucleation 

life statistical distribution.

• Use of non-local FIPs in microstructure-sensitive models 

with gradients.




