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Abstract

State-of-the-art building simulation programs require
detailed user input and long simulation times to cap-
ture the dynamic behavior of the building envelope
and its integrated energy systems. A simplistic model
will often be chosen for its speed but at a cost of re-
duced accuracy. This study uses Support Vector Re-
gression to generate a trained model that captures
the complexity of system models created in Model-
ica, but yields faster results. This work is unique be-
cause it attempts to capture the non-linear dynamics
that occur due to feedback loops present in a sys-
tem with multiple technologies and controllers. In
this paper the results of three case studies using sin-
gle zone buildings are presented. An annual heating
profile at 15 min resolution, was predicted 13x faster
than the detailed simulation, with an RMSE of 2.5kW
and overall error of 0.12%; however the performance
of the trained model relied on the quality and rele-
vance of the input data. This paper communicates
the process and considerations of using Support Vec-
tor Regression to predict the performance profile of
a building using a model trained on the results of
detailed simulation.

Introduction

Building Performance Simulation (BPS) is typically
used to predict the heating and cooling demands of
a building. The peak load is then used to size the
heating and cooling systems (Burdick, 2011). By siz-
ing for peak demand, the designed system will meet
the demand at any time of the year; however, it may
lead to a system that is under utilized for most of
the year, particularly in climates with high seasonal
variation. With increased integration of intermittent
renewables, for example wind and solar, an optimal
solution is one where the supply and demand profiles
match. The challenge for BPS is to capture the cou-
pling between energy generation, energy demand and
energy usage.

Next generation BPS tools are actively being de-
veloped through collaborative efforts by the Inter-
national Building Performance Simulation Associa-

tion (IBPSA) working group (IBPSA, 2017). The
tools consist of Modelica Libraries containing object-
oriented building and envelope components that can
be reused and assembled to investigate novel system
configurations. Despite the large effort into expand-
ing the capabilities of BPS, there is still a high cost
in computation when simulating systems that consist
of many components and sub-systems. For applica-
tions where multiple options and configurations need
to be simulated rapidly, the processing time can be
prohibitively long.

The need for a fast and accurate approach to building
performance simulation was voiced by Eturnity AG,
Switzerland, who wish to ultimately implement the
approach into their online platform (Eturnity, 2019).
To be practical for their purposes, the target simu-
lation for each configuration is less than 30 seconds
with the annual energy consumption deviating no less
than 20% from the detailed simulation.

Studies reported in literature tend to focus solely
on energy demand and load forecasting (Seyedzadeh
et al., 2018); the novelty of this study is the evalu-
ation of the integrated system as a whole. The in-
clusion of non-linear internal dynamics and feed-back
loops from building control and Energy Management
System (EMS)s make this a challenging task; for this
reason we have selected Support Vector Regression
(SVR) models that converge on the optimum solu-
tion and are designed to better handle non-linearity
as standard linear regression techniques. We also
present and discuss how to make these models ac-
cessible so they can be retrieved and employed in a
practical time frame.

Simplified Mathematical Modelling

Mathematical approaches to building simulation can
either be steady state or transient depending on the
level of detail required. Steady state modelling is gen-
erally faster as it neglects time constants and assumes
the building is in equilibrium with the environment.
For example the BREDEM model neglects the im-
pact of thermal capacitance by averaging the tem-
perature over the daily cycle to calculate an average
heat output (Anderson, 2002). This does not capture
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the capacitance effects of the building materials and
is more suited to applications where low resolution
results are acceptable, for example when reporting at
monthly or annual intervals. Transient simulations
take into account the thermal dynamics of the build-
ing and energy system and therefore are more suited
for generating demand profiles at high resolutions, for
example at time steps between 1 second and 1 hour.

Building Envelope

In its simplest form, the transient heat transfer of
a building envelope can be modelled as a resistor-
capacitor network of temperature nodes representing
air volumes and building materials. In this approach,
the nodes have properties such as mass, temperature,
thermal resistance and thermal capacitance. There is
no limit to the number of nodes; however the nodes
of complex models can be lumped together to form
a simplified model. The verification of a two-node
lumped model showed close agreement to an explicit
solution solved using the finite difference approach
(Kampf 2007) The simplification of envelope models
have been implemented in Modelica (Baetens et al.,
2015) (Lauster et al., 2014). In the latter it was
found that a low order model, based on guidelines
in the VDI 6007, generated acceptable results com-
pared with an IDA ICE model. The same second-
order model was compared to a reference model com-
prised of detailed components from the same library
and achieved an 88% decrease in simulation speed
while maintaining comparable results (Lauster et al.,
2014). While showing promise for the simulation of
building envelopes, these studies do not consider the
influence of coupling with an energy system.

Energy System

The primary purpose of the energy system is to pro-
vide a comfortable and functional internal environ-
ment for the building occupants. Energy systems are
generally comprised of a generator, a distribution net-
work, storage and an emitter. The more components
in system, the greater number of equations and the
longer it will take to simulate. To simplify the sim-
ulation in hydraulic systems, the terms for pressure
can be neglected, which makes it easier to calculate
the mass and energy balances across each component.
Stinner et al. developed an enthalpy connector that
works on this principle; using this connector they
achieved a reduction in simulation speed of nearly 5x
when compared to the standard Modelica.Fluid pack-
age (Stinner et al., 2015). A demonstration of a large
detailed building model in Modelica, comprised of 32
detailed building zones, multiple integrated energy
technologies and various controllers, took 18 hours
to solve a one-year simulation (Jorissen et al., 2015).
This indicates that reliance on these libraries alone
will not be sufficient at achieving the target simula-
tion of this project.

Reduced Order Modelling

Reduced Order Models (ROMs) are simplifications of
dynamical models which consist of many equations
and variables. They are commonly used to simulate
complex processes within a practical amount of time,
yet maintaining acceptable accuracy. ROMs are cre-
ated using Model Order Reduction (MOR), a process
which identifies the essential features of the complex
original system. To produce the ROM, the origi-
nal model needs to be simulated for a short period,
during which the MOR approach captures the essen-
tial features of the system. ROMs have a particular
relevance to Computational Fluid Dynamics (CFD)
problems which are now part of commercial packages
(Ansys, 2017). Mullen et al. extracted ROMs from
CFD simulations of a multi-zonal building to enable
the building management system to make rapid de-
cisions based on the impact of changing parameters.
Using the ROMs, they were able to generate a so-
lution in 20 seconds compared to 5-8 hours for the
CFD simulation. Despite this, the models still re-
quired a converged initial solution from which the
ROM would be extracted. A parametric investiga-
tion revealed that the ROMs produced acceptable re-
sults if the initial conditions varied by 5°C (Mullen
et al., 2015). However there is no discussion on the
impact of changing other parameters e.g. air flow
rate, internal gains etc. as these could invalidate the
ROM. Kim and Braun used the Balanced Truncation
Method to reduce the number of states in a thermal
network based on finite volume formulation (Kim and
Braun, 2015). Only the building envelope was consid-
ered because Heating, Ventilation and Air Condition-
ing (HVAC) systems introduce non-linearity. Using
this approach, a 100x speed reduction was achieved
compared to TRNSYS. In a separate study Shi and
O’Brien used orthogonal decomposition to capture
the first order thermal result before using a clustering
method to group zones together (Shi and O’Brien,
2016). The method achieved a 95.6% reduction in
computational time compared to the original model.
The parameter dependence and time taken to pre-
pare the ROM make this approach impractical for
the rapid evaluation of integrated energy systems

Machine Learning

Machine learning techniques differ from ROMs as
they make predictions when exposed to new data.
ROMs on the other-hand are a simplification of a
well-defined problem, and are therefore highly sen-
sitive to changes in the input parameters. Machine
learning models also suffer from this problem but
they allow greater control over the parameters used
in the training phase and are able to capture non-
linearity. Typical applications for machine learning
include stock market prediction, weather forecast-
ing and targeting marketing. Machine learning has
also been used to predict energy consumption and
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performance. Gao and Malkawi used an unsuper-
vised, K-means clustering approach to predict the
overall energy demand of a building as an alternative
benchmarking technique for non-commercial build-
ings (Gao and Malkawi, 2014). Interestingly, in the
feature selection stage, they found that the most in-
fluential features of the building were those related to
operational factors rather than construction materi-
als and heating unit type. Zhang and O’Neill used
multiple machine learning techniques to predict the
hot water demand profile using outside dry bulb air
temperature as the sole input value (Zhang et al.,
2015). Despite the seemingly limited selection of in-
put variables, they were able to predict demand with
a respectable RMSE of 11.60-12.24. The authors sug-
gest that inclusion of the occupant schedules would
have a significant influence on the model prediction
in some cases.

Time Series Prediction

Time series prediction is a field of statistical meth-
ods that can be either univariate or multivariate. A
popular univariate technique is Autoregressive Inte-
grated Moving Average Model (ARIMA). ARIMA is
a linear regression method that examines past corre-
lations in data to predict future outputs. ARIMA can
also be adopted to account for temporal variation or
seasonality. Despite the popularity of ARIMA, many
problems, such as building performance simulation,
are non-linear with multiple influential observations.
The general aim of a multivariate time series predic-
tion can be expressed as (1).

x̂(t+ ∆t) = f(x(t− v1), x(t− v2), ..., (t− vn)) (1)

Where x̂ is the predicted value of a discrete time series
x and v1 to vn are the input variables (Sapankevych
and Sankar, 2009).

Artificial Neural Network (ANN) is a machine learn-
ing technique, inspired by the neural connections in-
side a brain, that approximates a mapping function
between the input and output variables. Young Tae
Chae used an ANN to predict sub-hourly electricity
usage in commercial buildings. In this study the key
input variables were day-type indicator, time-of-day,
HVAC set temperature, ambient dry bulb temper-
ature and outdoor humidity. The study was able to
predict the daily electricity demand, at 15-min resolu-
tion forecasting interval with 10% Root Mean Square
Error (RMSE) (Chae et al., 2016).

Kandananond used a hybrid approach using ARIMA
and an ANN to predict the electricity consumption
of Thailand. The ANN took multiple input variables
(SET index, GDP and Export) to determine the out-
put energy. The ANN outperformed the ARIMA ap-
proach; however the improvement was not deemed to
be significant and it was concluded that the ARIMA
method is preferable due to its practicality Kan-

dananond (2011).

Time series prediction can also be achieved using Sup-
port Vector Machine (SVM)s. The concept behind
SVM is to find a function of the input values which
deviates from the measured output by no greater than
the specified error term. For this reason the SVM,
unlike ANN, is guaranteed to converge to the opti-
mal solution(Sapankevych and Sankar, 2009). The
application of SVM to time series estimation is called
support vector regression (SVR). This is an extension
of linear time series estimation based on linear regres-
sion. In SVR a nonlinear kernel basis (such as radial
basis functions) is used to better capture nonlineari-
ties in the estimated time series.

Method

In this project we have used Modelica for detailed
simulations of the performance of buildings with cou-
pled energy systems. The results from these detailed
simulations are then used to train a library of mod-
els, which aim to predict a performance profile faster,
and without a significant loss of accuracy, compared
to the detailed simulation model. The stages of the
approach are as follows:

1. Creation of the envelope component using
archetype data

2. Connection of systems inside the Modelica model
using a Python wrapper

3. Simulation of Modelica model in JModelica to
generate energy profiles

4. Training of an SVR model using the simulation
results

5. Prediction of a demand profile from new input
data using the trained model

Envelope Archetypes

The Episcope Tabula Project was an EU funded ini-
tiative that used a consistent classification scheme to
create building typologies across the partner coun-
tries Loga et al. (2016). The Tabula database defines
typical construction properties of external wall, in-
ternal wall, roof, floor and window for different age
bands in each of the participating countries. In this
project the Tabula archetypes for single family houses
in Germany were used to create the set of input pa-
rameters required by the MixedAir thermal zone of
the LBNL Buildings Modelica Library. A summary
of these parameters are displayed in Table 1.

Connecting Systems

The majority of components used in this project are
from the Modelica Buildings Library developed by
the Lawrence Berkeley National Laboratory (LBNL)
(Wetter et al., 2015). This is because the library
is compatible with JModelica and the building zone
models within the library have been validated against
the BESTEST standard.
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Table 1: Summary of the properties for each
archetype. The values were derived from the
DE.N.SFH.Gen.ReEx archetype of the Tabula
dataset.

Age Gross Building
Category Area U-Value

[m2] [W/m2K]
<1859 245.62 2.40
1860-1918 190.40 1.50
1919-1948 336.80 1.42
1949-1957 121.60 1.30
1958-1968 160.90 1.14
1969-1978 193.92 0.82
1979-1983 207.04 0.71
1984-1994 164.48 0.49
1995-2001 136.74 0.36
2002-2009 153.25 0.29
2010-2015 264.70 0.27

A Python wrapper has been created that treats Mod-
elica systems as components. Parameters are speci-
fied at the highest level of the system and these are
directly accessed using the Python wrapper. The sys-
tems are connected together using a look up table,
which returns the Modelica script required to connect
the two systems.

Table 2: The SVR settings used to train the model.
Parameter Value
Kernel Radial-basis function
Error Penalty C 2.0
Inverse Kernel Bandwidth γ 2.0
Epsilon ε 0.01

Model Training

When training the model it is vital to control causal-
ity between the training inputs and outputs. This
could pose a problem when dealing with the many
different parameter combinations. In SVMs the in-
put and output parameters can be controlled. The
SVR class from the Scikit-learn Python Package was
used to train the models. The SVR training requires
the tuning of hyper-parameters as shown in Table 3.
A preliminary study was carried out to compare the
performance of SVR against standard linear regres-
sion. Radiative heat prediction RMSE sensitivity to
U-value are shown in Figure 1 show the radiative
heat RMSE prediction for SVR and linear regression
for buildings with three different construction years
(1918, 1950, 1980). Nominal U-Value for each build-
ing is represented by a relative value of 1.0, for which
the prediction error is minimal. The SVR is able to
capture the influence of the U-Value while the linear
regression is not able. SVR performance is also bet-
ter than linear regression for U-Value within ± 5% of
its nominal value. Variation of RMSE versus relative
U-Value is represented as an indication of its the sen-

sitivity. The 1980 is less sensitive to variation of the
U-Value.

Figure 1: Sensitivity analysis to U-Value. Radiative
heat RMSE prediction for SVR and linear regression
and three different archetypes. Nominal U-Values are
represented by a relative value of 1.0.

The SVR hyper-parameters settings used in this
study are shown in Table 2.

Case Studies

In this paper we report on three different case studies
where this approach has been applied:

• Case 1: Prediction of internal temperature and
heating load for a single zone building under dif-
ferent climates. A model was trained from sim-
ulated data using weather parameters to predict
the annual profiles of the heating load and inter-
nal air temperature of the building.

• Case 2: Prediction of heating demand profile
from archetype data. In the first study, 20 days
of training data was used to predict the perfor-
mance over the subsequent 10 days for each of the
archetypes. A model was trained using simulated
energy demand profiles simulated from nine of
the eleven archetypes. The trained model was
then used to predict the specific heating load
(W/m2) profile for the remaining two unseen
archetypes.

• Case 3: Prediction of radiative and convective
output from a PVT system installed in buildings
of different construction materials.

Results

Case 1

The simulation used to train the model contained a
single thermal zone connected to a controller that
heated the zone when its temperature fell below 20
°C. There was no cooling system present. The model
was used to predict the internal temperature and heat
demand using climate variables as inputs. The pre-
diction was validated against a simulation created
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Table 4: Computation time and accuracy metrics
for the one year simulation, training and prediction
phases for temperature (summer) and heating (win-
ter) using 15 min resolution.

Phase Temp. Heating
1 year simulation 332 sec
Seasonal training 42 sec 39 sec
Seasonal prediction 21 sec 25 sec
Coefficient of determination 0.71 0.73
RMSE 3.23°C 2.50 kW

from the same inputs. It was found that the sup-
port vector algorithm had difficulty handling periods
of no heat demand during the summer, and the con-
trolled internal zone temperatures during the winter.
As a result, using a whole year of input data for both
predictions lead to 10x increase in training and pre-
diction time, and a loss in accuracy. For this climate
and building type, it was known that heating is not
required in the summer and the internal temperature
is controlled in the winter; therefore predictions of
heat demand and zone temperature were only made
in the winter and summer respectively. The weather
parameters used to train the models included irra-
diance (diffuse and direct), wind speed and ambient
temperature (dry bulb, wet bulb and dew point). The
results of the prediction are shown in Figure 2 and
a comparison of simulation, training and prediction
times are shown in Table 4.

Case 2

This case is made up of two sub-studies, in both a
model was trained to predict the heating demand of
an archetype using building U-Value, percentage of
south facing wall and exposed perimeter. These pa-
rameters were identified as having the largest influ-
ence on the cumulative heating energy demand of the
building using a correlation matrix. In the first study,
20 days of training data was used to predict the per-
formance over the subsequent 10 days, the RMSE of
heating power for each archetype is shown in Figure 4.

In the second study, one month of training data from
9 archetypes was used to predict the heating and cool-
ing demand for two other archetypes for the same
month of March. The RMSE of this prediction is

Figure 2: A comparison of simulated and predicted
zone temperature (top) and heating load (bottom).
Temperature is predicted during the summer months
and heating load during the cooling months.

Figure 3: Prediction of heating power using build-
ing archetypes. In this case, 9 archetypes are used
for training, while prediction is done for two 2 other
archetypes. RMSE are shown in Figure 5.

Table 3: Intuitive rules for SVR hyper-parameters tuning.
Hyper-parameters Increased value ↗ Decreased value ↘
Kernel Bandwidth 1

γ2 Wide kernel bandwidth Narrow kernel bandwidth

Filtering/smoothing effect Sharp and spiky effects
Regularization 1

C Better robustness to May lack robustness towards
unpredictable dynamics. unpredictable dynamics.
Less fitting accuracy. Better fit on the training data set.
Avoiding overfitting. Risk of overfitting.

Epsilon ε Larger insensitive tube Smaller insensitive tube
around data. around data.
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shown in Figure 5. A comparison of the simulated
and predicted profiles are shown in Figure 3.

In these plots, the trained RMSE is the RMSE when
the model is re-fed with data that was used in the
training. The prediction RMSE is the RMSE of input
data not used to train the model, but used to make
predictions. For all models, the RMSE is compared
with the average heating demand of heat property to
determine the deviation.

Figure 4: Case 2.1: Prediction of Heating power
RMSE [kW] using 20 days of training and prediction
for the following 10 days using all 11 archetypes. Av-
erage heating power for March is also displayed.

Case 3

A model was trained to predict the radiant and con-
vective output of a pre-sized PVT system. The in-
put to the model were the building’s area-weighted
U-Value and weather parameters: global horizontal
irradiance and ambient dry bulb temperature. One
of the main challenges was to capture the offset be-
tween the in heat transfer after peaks of irradiance.

The U-Values input parameters, corresponding to
three different building archetypes, referenced by con-
struction year, are used to train the model on the
same time period, e.g. April 1st to 20th as shown in
Figure 6. Then, the prediction is done on the period
of April 21th to April 30th for these three different
U-Values to evaluate their ability to distinguish be-
tween the three archetypes. The overall input/output
signals used for training and prediction phase, along
with reference signals, are shown in Figure 6.

Discussion

The trained models were able to predict a the sum-
mer temperature profile and winter heating demand
in 21 and 25 seconds respectively, compared to 332
seconds for the simulation. The difference in total
energy demand between the simulated and predicted
model was 0.12% despite the profiles not having an
exact match, see Figure 2 with a RMSE of 2.5kW.
This first study represented a relatively simple case,
where seven weather parameters were used to predict
two outputs, zone air temperature and heating power.
Using this approach achieved a prediction speed of

Figure 5: Case 2.2: Heating power RMSE [kW] with
training on 9 archetypes and prediction on 2 other
archetype on the all month of March. Average heating
power for March is also displayed. The time series of
the prediction is shown in Figure 5.

over 10x faster than the simulation with comparable
values for overall energy use. However care must be
taken when using this approach. In this case, the
omission of predicting heating loads in the summer,
and controlled internal temperatures during the win-
ter, was an obvious decision; however in other cases
the decision might not be so clear. Attempting to
predict variables with insufficient input data, or the
inclusion of bogus dynamics, will lead to long training
and prediction times.

In the second study archetype data was used to cre-
ate a trained model. Such a trained model would be
appropriate when there is a need to simulate the per-
formance of a building with a configuration unseen
before, provided it is with the parameter limits used
to create the trained model. In this study the model
was trained using building u-value, exposed perime-
ter, percentage of total wall area for each window
orientation, global irradiance and ambient dry bulb
temperature. As the room was connected to a tem-
perature controller for both heating and cooling, it
was deemed unnecessary to predict the zone temper-
ature as this would simply fluctuate between the two
set-points. This study used eight input parameters
to predict two outputs, heating power and cooling
power. In the ten day projection, the model achieved
a RMSE of 1.6 kW for heating and a RMSE of 0.22
kW for cooling. The cooling prediction was not effec-
tive as the training data used was from the heating
season, highlighting the importance of selecting the
relevant parameters during the training phase. When
the model was used to predict the performance of an
archetype outside of the training data, the simula-
tion time for the three month period was on average
43 sec for the archetypes compared to a training and
prediction time of 15 sec and 2.3 sec respectively.

In the third study the performance of a fixed size PVT
system was applied to buildings of the different con-
struction materials (represented by the year of con-
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Figure 6: Training and prediction of the heating load (convective and radiative) of the building with PVT
system. Three different U-Values, corresponding to three different building archetypes, are used to train the
model. Prediction RMSE of radiative heat and its sensitivity to U-Value is shown in Figure 1 - Study 3.

struction). The value of this study is to understand
the ability of the trained model to capture non-linear
dynamics within a system of multiple-feed back loops
and controllers. The PVT system contained pump
controllers that switch the system off when there is
insufficient radiation. The collector was connected to
a hot water cylinder which delivered hot water to ra-
diators when the temperature of the room fell below
20 °C. There was no back-up system and the model
predicted the convective and radiative exchanges with
the zone through the radiator system. Two months
of training data was used to predict the subsequent
months. The results showed that it was possible to
predict the radiative and convective exchange with a
RMSE of 170W and 270W respectively, and compar-
ison to their respective total energy exchange differed
by 4.5% (radiative) and 3.5% (convective).

Conclusion

In this study SVR was successfully able to decrease
the time needed to generate an energy profile of a
building that would otherwise be produced using de-
tailed simulation. As with other reduced-order mod-
elling approaches, a detailed model is needed to gen-
erate the data to train the model; however, once
trained, this model can predict an energy profile much
faster than the detailed simulation. The cases de-
scribed in this paper show that these predictions can
be made using both weather and archetype data as

inputs to the trained model. The method was also
able to predict the convective and radiative exchange
of a PVT system with the thermal zone of the build-
ing; thus showing that the method can effectively cap-
ture non-linear dynamics from internal feedback loops
within the system. In all three studies the choice of
input parameters has proven vital in ensuring quality
of the prediction.
Further work is required to investigate the sensitiv-
ity of these models to changing parameters, which
will involve applying these methods to more complex
integrated systems. Another future challenge of this
research is to define the parameter limitations of each
trained model so that they can be applied practically
to a given problem.
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Nomenclature

x̂ predicted value

vn input variable n

x time

Abbreviations

ANN Artificial Neural Network. 3
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ARIMA Autoregressive Integrated Moving Aver-
age Model. 3

BPS Building Performance Simulation. 1

CFD Computational Fluid Dynamics. 2

EMS Energy Management System. 1

HVAC Heating, Ventilation and Air Conditioning.
2

IBPSA International Building Performance Simu-
lation Association. 1

LBNL Lawrence Berkeley National Laboratory. 3

MOR Model Order Reduction. 2

RMSE Root Mean Square Error. 3

ROM Reduced Order Model. 2

SVM Support Vector Machine. 3

SVR Support Vector Regression. 1
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