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Multi-resolution convolutional 
neural networks for inverse 
problems
feng Wang1,2*, Alberto eljarrat2, Johannes Müller2, Trond R. Henninen1, Rolf erni1 & 
Christoph T. Koch2

Inverse problems in image processing, phase imaging, and computer vision often share the same 
structure of mapping input image(s) to output image(s) but are usually solved by different application-
specific algorithms. Deep convolutional neural networks have shown great potential for highly variable 
tasks across many image-based domains, but sometimes can be challenging to train due to their 
internal non-linearity. We propose a novel, fast-converging neural network architecture capable of 
solving generic image(s)-to-image(s) inverse problems relevant to a diverse set of domains. We show 
this approach is useful in recovering wavefronts from direct intensity measurements, imaging objects 
from diffusely reflected images, and denoising scanning transmission electron microscopy images, just 
by using different training datasets. These successful applications demonstrate the proposed network 
to be an ideal candidate solving general inverse problems falling into the category of image(s)-to-
image(s) translation.

Most physical theories allow us to make predictions: given a complete description of the state of a physical system, 
we can predict or simulate some measurements. Recovering parameters that describe the physical state of a sys-
tem from measurement requires solving an inverse problem, which often can be a problem that cannot be solved 
deterministically and non-iteratively. The forward simulation is explicit, in many cases, much faster than any 
inversion, and may often also include more physically significant effects to the observed signal than most inverse 
algorithms. However, in many situations, physically meaningful information can only be extracted from experi-
mental data by solving inverse problems, either by least-squares-minimization or probabilistic approaches, which 
often tend to be slow and probably under-determined due to a lack of data and their inner non-linearity. Inverse 
problems are some of the most important mathematical problems in science. However, in most cases, their solu-
tions are designed to solve particular problems under particular conditions, making good use of domain-specific 
knowledge but lacking transferability to other inverse problems. The non-linear nature of many of these problems 
has so far prevented the framework of a generic solver.

Motivated by recent advances in the development of computing hardware and driven by large datasets1,2, 
deep learning3 has recently shown great potential particularly in image(s)-to-image(s) translation tasks, such as 
super resolution4, image denoising5 and image generation6. Many inverse applications7,8 have been purposed and 
have achieved promising results, since the universal approximation theorem guarantees that neural networks 
can approximate arbitrary functions well9–11. However, there are no guarantees those neural network weights can 
be found by optimization, and because of the high non-linearity of such deep architectures, their performance 
crucially depends on proper hyper-parameter configurations. Recent advanced big models even require years to 
develop and tens of thousands of dollars to train12,13. Deep learning has been widely used especially in recent com-
putational imaging applications14,15, although many tricks exist to tune the hyper-parameters of a neural network 
such as the proper setting of the learning rate, the regulations, the design of the hidden units, the convolutional 
kernels and the network architectures16,17, none of these measures, achieves both a speed-up of convergence and 
quality of the resulting solution18.

Aware of the fact that a deep convolutional neural network (DCNN) often first quickly recovers the dominant 
low-frequency components, and afterward the high-frequency ones in a rather slow manner19,20, and inspired 
by the idea of multi-grid methods21, we propose a novel multi-resolution deep convolutional neural network 
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(MCNN). This architecture extends the functionality of the hidden layers in the decoder of a U-Net22,23 by con-
necting these hidden layers to additional convolution layers to produce coarse outputs, in an attempt to match the 
low-frequency components, as is demonstrated in Fig. 1. Further modification by attaching different coarse inputs 
to the layers in the encoder has also been tested, but no apparent improvements in convergence is observed. 
Another possible variation is mutating the architecture progressively by starting to fit only the components of 
low frequencies at the initial phases, then inserting new layers to match the increasingly high-frequency features 
during the training, as has been demonstrated in some of the recent applications24,25. This architecture speeds up 
the network convergence and dramatically stabilizes the training process. As is shown in the lower-left of Fig. 1, 
with identical setups, when solving an inverse Laplacian problem from a second-order gradient approximation, 
MCNN quickly reaches a mean-absolute-error (MAE) loss around 0.07 while the conventional U-Net is challeng-
ing to train, being trapped around 0.2. Additional normalization layers can also accelerate the convergence26,27, 
but will very likely introduce undesired distortions (extended data Fig. 2a,b), and should be used carefully. A 
topological setup of those coarse MCNN output branches are visualized in the lower right part of Fig. 1, in which 
the outputs matching the low-frequency components of different resolutions are shown; while the U-Net shown 
in the upper part directly matches the input layer to the desired output of the same resolution. More details, 
including the implementation, the training settings, and the prediction results, of this comparison, can be found 
within the notebook attached in the released code.

In contrast to conventional problem-oriented inverse applications, MCNN aims to solve every inverse prob-
lem falling into the category of image(s)-to-image(s) conversion, without being limited to specific applications, 

Figure 1. By matching outputs at all frequencies, MCNN achieves better stability and faster convergence than 
U-Net. A simplified architecture of an MCNN is demonstrated. This application is designed to predict phases 
from a defocused image. The network is composed of a classic U-Net (the upper part) with an additional 7 
branches for multi-resolution reconstruction (from Output-2 to Output-8). With this topology, the input image 
is first encoded into a high dimension tensor, then is decoded into 8 images of different sizes to match different 
frequency components of the desired phases. The convergence curves of the test set show the significant 
advantages of an MCNN over a classic U-Net: the MAE of MCNN drops quickly in 100 iterations, while the 
U-Net converges slowly and can get stuck at local minima.

Figure 2. Extended Figure: Distortions introduced by normalization layers. Inserting normalization layers 
before or after the activation layers will improve the convergence of the networks, but further research is desired 
to deal with the distortions introduced by the normalization layers. This can be directly observed from the 
intermediary results when training to predict the phases and amplitudes from 8 defocused HeLa cell images. (a) 
Stripe distortion as a result of group normalization. (b) Speckle defects from batch normalization.
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but relying on massive datasets from fast numerical simulation or direct measurement. This generalization capa-
bility is demonstrated by solving three different inverse problems.

The phase problem
The first problem is to retrieve phases of a propagated complex wave by using the direct intensity measurements. 
This problem is a very fundamental inverse problem in optics, astronomy, or microscopy with neutrons, X-rays, 
or electrons. It has attracted a lot of research effort and led to the invention of numerous methods to reconstruct 
the missing phases from intensity measurements. Following Dennis Gabor’s proposal of the holographic prin-
ciple28, numerous methods have been invented to extract phases by post-processing images29–32. These methods 
often-times only work under deliberate approximations or elaborate experimental configurations.

In conventional phase retrieval schemes, a trade-off between simple invertibility and accuracy has to be made. 
When approximating the imaging process by the transport of intensity equation (TIE)29, the relationship between 
the wavefront and a gradient measurement in the intensity domain can be approximated by a second-order par-
tial differential equation, the solution of which can be found by assuming either periodic33 or other, often more 
appropriate boundary conditions34. To obtain a reliable gradient estimation, multiple intensities have to be meas-
ured at focal planes below and above the plane of focus, in pairs symmetrically to the in-focus plane31,32. One of 
the recent applications based on deep learning takes the complex wave of the back-propagated hologram inten-
sities as inputs35, another variant retrieves the complex phase also making use of prior information from Fresnel 
propagation36, rather than directly mapping the measured intensities to desired phases. The proposed MCNN 
does not suffer from such restrictions. In our application, a direct resolution is demonstrated by mapping meas-
urements to phases straightforwardly in an end-to-end manner. Phases can be predicted from intensities recorded 
at arbitrary plane(s) of focus. Since predicting the phase from its second-order gradient is a straight forward 
application, this problem has been included as a tutorial in our open-source codebase.

The results are presented in Fig. 3, in which three models have been trained to predict the amplitudes and the 
phases of HeLa cells directly from recorded intensities. Comparing with the reference results shown in Fig. 3a, 
which is produced by multi-focus TIE (MFTIE)32 using all 51 images, these applications converge very quickly 
in 2 epochs with 2048 training samples, and yield, albeit predicted from different images, very similar phases, 
which are shown in Fig. 3b,c. The predicted amplitudes are quite blurred compared to the MFTIE result. And no 
apparent improvement has been observed by including more intensities and training even longer. This behavior 
is expected, since the neural networks are trained by minimizing the MAE, with which the optimizer will try to 
minimize the averaged error, giving equal weights to all pixels despite some pixels having particularly high errors. 
Other applications dealing with the pure phase case are also presented for a reference. In these applications, the 
prediction results from one and two measured intensities are given in extended Fig. 4b–d, which are quite similar 
to the result obtained by Gaussian process TIE (GPTIE) given in a for reference. It is worth mentioning that the 
conventional U-Net produces a worse result with identical settings of MCNN, as is shown in Fig. 3d, although 
it tends to give out similar results in the long run. Moreover, coherent diffraction imaging neural networks37 
(CDINN) gives a rough contour, only reconstructing the low frequency components of the Hela cells, as is shown 
in Fig. 3e.

Figure 3. Amplitudes and phases predicted from defocused images. First row: 51 defocused Hela cell images 
recorded at focal planes exponentially spaced from  −500 μm to 500 μm (only 11 are shown). (a) Phases (top) 
and amplitudes (bottom) reconstructed by MFTIE from all 51 images32. A range-of-interest of 470 × 520 pixels 
is selected; (b) MCNN prediction using 2 images taken from  −1 μm and 1 μm; (c) MCNN prediction using 
4 images taken from  −1.30 μm to 1.30 μm; (d) U-Net prediction using 4 images taken from  −1.30 μm to 
1.30 μm; (e) CDINN prediction using 4 images taken from  − 1.30 μm to 1.30 μm.
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To further explore the prediction qualities in the frequency domain, the Fourier ring corrections (FRC) of sev-
eral numerical experiments are calculated. Figure 5a shows that MCNN recovers low frequency components well 
from a single image. The high-frequency features can be compensated by introducing fine details in the inputs, 
as is shown in Fig. 5b. Including more measurements improves the performance, but not very apparent with the 
high frequencies, as is shown in Fig. 5c,d.

Figure 4. Extended Figure: Phase predicted from defocused image(s). From one or more defocused images 
of a pure phase object made up of human cheek cells acquired equally spaced by dz = 4 μm from  −256 μm to 
256 μm (only 11 shown), MCNNs are capable of phase prediction. (a) GPTIE reconstruction from gradients 
estimated using 129 images from different focal planes, with a range-of-interest of 945 × 888 pixels selected31. 
(b) Phase prediction from 1 image at a distance of  −108 μm, with 1024 × 1024 pixels. (c) Prediction from 1 
image at a distance of 108 μm. (d) Prediction from 2 images at  −52 μm and 52 μm, showing good performance 
on par with the state-of-the-art reconstruction algorithm demonstrated in (a).

Figure 5. Extended Figure: MCNN gives good results in low-frequency domains. The simulated intensities 
are presented in the first row, and their predictions are presented in the second row (with their MAE shown 
in the upper right corner). The ground truths are presented in the third row for a visual comparison. The last 
row shows the Fourier ring correlations between the predictions and the ground truths. In (a), the inputs are 
defocused images, in which low-frequency details are prevalent. The low-frequency features recover well in this 
case. In (b), the inputs are intensity gradients, in which high-frequency details dominates. The high-frequency 
features are largely recovered in this experiment. In (c,d), the inputs are astigmatic images, simulated by rotating 
a cylinder lens with different angles. Multiple rotations can improve the quality of the output phases, as are 
shown in the last row of (c,d), but not so much in the high frequencies.
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Imaging objects from diffuse reflection
The second problem is to image objects that are hidden from direct view using their indirect diffuse light reflec-
tions. Observing objects located in inaccessible regions is particularly useful in the fields of remote sensing, com-
puter vision, and autonomous driving. This problem has drawn significant attention in recent publications38–40, 
but most of these applications require controlled or time-varying illumination, high-speed sensing or compli-
cated inversion algorithms employing ray optics.

Although deep learning has been employed to do object classification from non-line-of-sight (NLOS) imag-
ing41, our application demonstrates experimentally for the first time, to our best knowledge, that a series of color-
ful two-dimensional objects can be predicted from DNN.

The training of our neural networks relies on the massive dataset. The dataset can be simulated from existing 
theories if the domain-specific knowledge is well-established. In cases of simulations that are not feasible due 
to theory or unknown parameters, the training dataset can also be collected from direct measurements. Using 
an ordinary laptop, with 768 images captured by its camera and 768 screenshots recorded from its screen, our 
MCNN could be trained and enabled to reconstruct additional screenshots from diffusely reflected rays, i.e., the 
camera-captured images. The data collection procedure is shown in b of Fig. 6: a laptop is facing a door with a 
program running on it to record images from the screen and the camera at two frames-per-second (fps). One pair 
of the captured images are shown in Fig. 6a,c. The predicted images from the testing set match the ground truth 
well for images dominated by low-frequency features. The prediction of the prediction can be verified from the 
visualized absolute difference shown at the last row in Fig. 6d–h, where most differences are close to zero (black), 
especially the regions corresponding to the sky, the cloud, and the green grass. Nevertheless, the high-frequency 
details are missing in the predicted images as the optimizer is minimizing MAE. For example, in Fig. 6d, the ear 

Figure 6. Imaging objects from diffuse reflections. This is done by training an MCNN matching the camera 
captured diffuse reflective images to the screenshot images. (a) A screenshot of the video Big Buck Bunny42 being 
displayed. This is one of the target images matching the MCNN output. (b) Experimental setup. Everything is 
done with a laptop facing a door, no additional devices required. (c) A camera captured image corresponding 
to the screenshot shown in (a). The cropped zone marked with a dotted rectangle is one of the input images of 
the MCNN. (d–h) Predictions randomly sampled from test set. The first row shows the selected range of the 
camera captured images (cropped and flipped), the second row shows the predictions, the third row shows the 
screenshots and the last row shows the absolute difference between the predictions and the screenshots, with the 
MAE value presented at the lower-left corner.

https://doi.org/10.1038/s41598-020-62484-z


6Scientific RepoRtS |         (2020) 10:5730  | https://doi.org/10.1038/s41598-020-62484-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

of the rabbit and the red apple are lost; in e and g, the details of the eyes are lost; in f, all details of the animals are 
blurry. More results on the test set are included in the extended data video 1.

Denoising STEM images
The third problem is to denoise heavily noisy scanning transmission electron microscopy (STEM) images. 
Modern STEM can provide sub-ångström imaging resolution43,44, but this is limited by, e.g, the beam sensitivity 
of the specimen. Lowering the electron dose results in noisy images with a poor signal-to-noise ratio (SNR) 
less than 0 dB, and complicated extraction of relevant specimen information. Moreover, STEMs can produce 
millions of images in a few hours at a speed of 100 fps, and this amount of data can require months to process 
for a conventional algorithm. It is, therefore, essential to predict realistic images from noisy observations very 
quickly without loss of information45. Due to the complex unknown environmental variables of specific STEM 
setups, real-world STEM image denoising is too complicated for a single monolithic denoising algorithm. Many 
conventional algorithms exist to address this problem, but they heavily depend on domain-specific knowledge 
or a priori information46,47, and their application for real-time denoising is difficult. Recent variations48–53 based 
on DCNNs work well by directly matching a noisy input image to a clean output image, or using unclean images 
or unpaired images at a price of a small performance penalty54–56, but they are constrained to high SNR images, 
mostly above 10.0 dB, with known noise sources, and most of them only consider a single signal independent 
noise with known levels.

Here we train our MCNN to recover clean results from massively noisy STEM images recorded with less 
than ten counts per pixel, falling into an SNR less than 0 dB, which means that our experimental data contain 
more noises than signals. If all the noise parameters are known, a training set can be simulated according to 
these parameters. With such a training set, a neural network can yield a good prediction, as is shown in Fig. 7d. 
However, since various noises of unknown levels exist in the recorded STEM images, including but not limited to 
the Poisson noise, Gaussian noise, and clipping noise, it is nearly impossible to simulate a proper training set. The 
first layer of our neural network is manually designed to mimic the performance of four LPFs to address this prob-
lem. This strategy can be understood as converting the denoising problem into a deblurring problem. With much 
deeper architecture and much more trainable parameters, this model gives out clearer results than the most recent 
noise2void model56 and the well-known residual Gaussian denoising convolution neural networks5 (DnCNN), as 
is demonstrated in the lower rows in Fig. 7d. To further study the behavior of our model, the frequency responses 
of two randomly selected denoised HAADF images acquired at different conditions are presented in Extend 
Fig. 8a,b. While identifying most of the high-frequency components of the experimental images as noises, our 
model effectively modulates the low-frequency components as well, predicting much more Gaussian-like images 
than conventional denoising methods using a low pass filter. Our model gives a Gaussian-like shape for atomic 
peaks, which is to be expected as the experimental images are formed by a Gaussian-like electron beam being 
scanned (convolved) over sub-pixel sized atomic nuclei. Our network achieves an excellent performance of up to 
440 fps when working with images taken at 150 fps with 128 × 128 pixels, more than three orders of magnitude 

Figure 7. Validation of the denoising application on heavily-noised aberration-corrected high-annular 
dark-field (HAADF) STEM images of sub-nanometre sized Platinum clusters. MCNN performs well on 
heavily-noised datasets, as is demonstrated in (a). The numbers on the upper-left corner are the SNRs and the 
upper-right are MAEs. Also MCNN gives out clear and consistent results on consecutive experimental image 
frames shown in the left columns, which are recorded at 150 fps with 128  ×  128 pixels (b) and at 15 fps with 
512  ×  512 pixels (c), and are taken under electron dose in range [105, 106]eÅ−2s−1 with a FEI Titan Themis. 
The upper images are for the first frames, the lower images are for the second frames. Similar denoising results 
produced by PGURE-SVT are shown in the middle columns for a comparison, which are not as clear as the 
MCNN results in the right columns. The neural network without the LPFs layer can still predict clear result, 
if the input images have the same noisy features, as is shown in the upper rows of (d); but when applying this 
model to experimental images, the neural network equipped with the LPFs layer gives much better result than 
conventional neural network such as the recent noise2void model and DnCNN model. Fine-running the model 
with the LPFs layer by connecting a conditional generative adversarial network (GAN), the clusters in the 
predicted image are more atomic-like, as is shown in lower rows of (d).
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faster than conventional methods, taking significant advantage of modern hardware acceleration like other deep 
learning applications (extended data Fig. 9).

The effectiveness of this MCNN application has been validated in two ways. First, it is tested using simulated 
noisy atomic images with Poisson noise, Gaussian noise, and white noise of SNR less than  −10 dB. In this task, 
the MCNN achieves an average SNR as high as 20 dB. Two examples are shown in Fig. 7a, in which all atoms 
are successfully restored, and the MAEs are less than 0.01. Second, it is cross-validated with the state-of-the-art 
Poisson-Gaussian Unbiased Risk Estimator for Singular Value Thresholding (PGURE-SVT) algorithm47. Two 
randomly selected consecutive frames from two experimental dataset are shown in Fig. 7b,c. Visually comparing 
their denoised results, the neural network gives similar, but much clearer atomic images on consecutive frames, 

Figure 8. Extended Figure: Denoising behavior in frequency domain. Our method gives much more Gaussian-
like results than conventional denoising method using a low pass filter. Our method identifies most of the high 
frequency components as noises, and also modifies the low frequency components in pursuit of clear atomic 
images.

Figure 9. Extended Figure: MCNN outperforms conventional denoising algorithms by more than three orders. 
This figure shows the average denoising time for MCNN, BM3D and PGURE-SVT methods, on experimental 
images from 128 × 128 pixels to 1024 × 1024 pixels.
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demonstrating the effectiveness of MCNN, despite the predictions are only from single frames. This result allows 
for studying the actual dynamics of the atoms in real time. More results on the experimental dataset can be found 
in the extended data video 2 and 3.

Additionally, our model gives clear and consistent Gaussian-like results on consecutive frames suffering from 
coma defects, as is shown in extend Fig. 10. This probably due to the hand-crafted LPFs in the first layer which 
effectively removes this kind of error, even though our model has never been trained on such data.

conclusion
An application-neutral framework for solving inverse problems in different domains that involve image to image 
mappings has been proposed and demonstrated. The generic capability of this framework has been demon-
strated using three applications in very different domains. The difficulties of a challenging application, the com-
plex experimental setups, and the complicated inverse algorithm implementation has been alleviated with this 
framework. Quick and smooth convergence is guaranteed by matching additional output layers to corresponding 
low-frequency features, reducing the frustration of DNN hyper-parameter tuning, providing sufficient datasets 
available either from numerical simulation or direct measurement. We expect that this robust, general-purpose 
architecture, will inspire the emergence of a new branch of new schemes that deal with different kinds of inverse 
problems, broadening the scope of inverse problem applications.

Method
Dataset. For phase retrieval applications, we simulated the training sets using Fourier optics57, includ-
ing slight Poison noise and white noise. We randomly sampled the phases and amplitudes from Open Images 
Dataset58 (OID). Then we simulated millions of defocused images. However, for each MCNN, only 2,048 random 
samples were selected to train, as we did not find apparent performance improvement when expanding the train-
ing set even to 51,200. The exponentially spaced defocused images shown in Fig. 4 come from an open access 
GPTIE dataset31. Each image has 1024 × 1024 pixels with effective size 0.31 × 0.31 μm2 per pixel. The sample 
is unstained cheek cells from a human’s mouth, placed on a microscope slide and sealed with a cover slide. This 
sample represents nearly a pure phase object, though there are some specks of amplitude variation. The defocused 
images shown in Fig. 3 come from the MFTIE dataset32. Each image has 2560 × 2160 pixels with effective size 
0.1625 × 0.1625 μm2 per pixel. The sample is HeLa cancer cells, which are relatively transparent.

For the diffused reflection reconstruction application, we collected the dataset using an HP OMEN 17 laptop. 
With a full-screened film, Big Buck Bunny42 with 4K resolution and 60 Hz frame-rate, being played at a half-speed 
on a 17.3 inches LCD screen (16:9, 43.9 cm in diagonal), this laptop, mounted on a laptop stand, was positioned 
facing to a door at a distance about 30 cm, as is shown in Fig. 6 (B), and a Python script was running simultane-
ously, acquiring pictures (RGB) from its camera with a resolution of 1280 × 720 pixels and capturing screenshot 
images (RGB) with a resolution of 1920 × 1280 pixels at 2 fps. Multiple sources of noise exist in the acquired 
image-pairs coming from three main contributors. Firstly, the sensitivity of the camera was adjusted automati-
cally and adaptively, resulting in slightly varying brightness and contrast between frames. This is very apparent 
in the first few frames. Secondly, the laptop vibrated a lot during recording. A powerful gaming GPU is equipped 
on this laptop, and a loud fan is attached to the GPU for thermal control. This GPU was under heavy pressure 
when a 4K resolution film was displaying at a screen with a refresh rate of 120 Hz, and the fan switched its work-
ing mode frequently during the acquisition time. Lastly, there was a small but random time interval between the 

Figure 10. Extended Figure: Denoising HAADF images with coma distortions. MCNN gives clear and 
consistent results on consecutive frames containing coma distortions, even though our model has never seen 
this kind of data before.
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screen-shooting and camera capturing. The acquisition program is coded carefully in a way ensuring both the 
screen images and the camera images are cached in the random access memory (RAM) before saving to the hard 
disk, but still, the Python script runs slowly in nature and its garbage collection behavior is uncontrollable, and 
therefore the uncertainty of the timing difference is inevitable. After 1024 image pairs were collected, we selected 
the first 256 pairs for testing, and the rest 768 pairs for training by matching the images from the camera to the 
screenshots. We cropped an area of 640 × 360 pixels of each input image to fit our model into the GPU model, 
and the output images were scaled from 1920 × 1280 pixels down to 1280 × 720 pixels. Besides, as a mirror reflect 
an image with a left/right reversal, the cropped input images were horizontally flipped. We presented all the pre-
dicted results from the first 256 camera captured images in the extended data video 1.

For the denoising application, we included Poisson noise, Gaussian noise, white noise, and clipping noise in 
the training set generation. We generated millions of images from the clear images randomly sampled from OID 
images and simulated annular dark-field (ADF) STEM images. These ADF images are simulated using convolu-
tions between random pulse signals and 2D Gaussian atomic peaks, with 512 × 512 pixels. For the first training 
stage, we trained the neural network with half of the images from OID and the other half from ADF images. 
It is crucial to include random images sampled from OID. This strategy prevents the network from predicting 
everything to be zero at the very beginning because the simulated ADF images contain small average intensities. 
For the second stage, we fine-tuned this neural network on millions of simulated ADF images with a minimal 
learning rate. Later we re-tuned this neural network with millions of atomic images simulated from molecular 
dynamics using up to 14 atoms with 128 × 128 pixels but did not observe an apparent difference in the trained 
denoising model. We tested the denoising network on various experimental STEM images recorded using a probe 
corrected FEI Titan Themis at 300 kV, with an electron dose ranging from 105eÅ−2 to 106eÅ−2. The samples 
were made by plasma sputtering Pt onto Protochips Fusion thermal chips. The typical pixel sizes of the recorded 
images are 6.3–12.5 pm acquired at 15-150 fps and resolutions from 128 × 128 pixels to 512 × 512 pixels.

Network architectures. The convolution layers inside each cell shown in Fig. 1 and the depth of the net-
work are flexible of design but are generally restricted by the hardware and dataset. In our applications, we tested 
two types of architectures commonly used in recent deep learning applications. For the first type, there is a single 
convolutional layer with stride 2 in the encoder and a single deconvolutional layer with stride 2 in the decoder. 
This is the choice of the phase-only retrieval shown in Fig. 4 and the denoising application shown in Fig. 7, with 
about 50 million trainable parameters inside. For the phase-and-amplitude retrieval application shown in Fig. 3 
and diffuse reconstruction application shown in Fig. 6, a bottleneck structure is selected in each of the unit cells, 
expanding the network to hundreds of layers, but reducing the trainable parameters to 20 million, to acceler-
ate the training process and fit the model into the GPU memory. This is inspired by the recent architectures 
ResNeXt59 and Xception60. Also, the low-frequency output branches are reduced from 7 to 3 to fit everything into 
GPU memory. For the denoising network, an extra four-channeled layer is inserted right after the input layer. The 
filters of this layer are specially designed to mimic the functionality of 4 LPFs: 
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 in which r and c are the row and column index of the filters. This hand-crafted layer significantly stabilized the 
performance of the neural network, enabling it to provide robust prediction when the noise levels vary from 
images to images as the experimental setup changes with time. Furthermore, to prevent the network from pre-
dicting every pixel to be zero during the training and to make the high-intensity pixel clusters more atomic-like, 
a GAN in the conditional setting has been employed to adjust the back-propagated errors61. The different pre-
diction behaviours of MCNN, MCNN with LPFs, and MCNN with LPFs and GAN are demonstrated in Fig. 7d.

Training settings. We trained all the networks with 2 Nvidia GTX 1080 Ti GPUs using an Adam optimizer62. 
The phase retrieval applications converge very quickly, and we trained all these networks two epochs with a batch 
size of 4 in a few hours. We trained the diffuse reflection reconstruction application for 256 epochs with a batch 
size of 2 in a few days. For the denoising model, we pre-trained it eight epochs without attaching a GAN, and then 
we constructed a U-Net using the extracted weights from the corresponding MCNN layers. We fine-tuned this 
U-Net model by connecting an additional GAN with a tiny learning rate for 4096 epochs with a batch size of 8. 
The total training time is about one week. More detailed training settings are available within the released source 
code.

Code and data availability
An open-source version is available at https://github.com/fengwang/MCNN. Related datasets and a minimal 
MCNN tutorial will found in this repository as well. An demo project to reproduce the results in this paper 
is a at https://github.com/fengwang/mcnn-demo, and an online capsule is available at https://codeocean.com/
capsule/6012862/tree/v1.
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